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Abstract: In this paper, a multi-strategy adaptive comprehensive learning particle swarm optimiza-
tion algorithm is proposed by introducing the comprehensive learning, multi-population parallel, and
parameter adaptation. In the proposed algorithm, a multi-population parallel strategy is designed
to improve population diversity and accelerate convergence. The population particle exchange and
mutation are realized to ensure information sharing among the particles. Then, the global optimal
value is added to velocity update to design a new velocity update strategy for improving the local
search ability. The comprehensive learning strategy is employed to construct learning samples, so
as to effectively promote the information exchange and avoid falling into local extrema. By lin-
early changing the learning factors, a new factor adjustment strategy is developed to enhance the
global search ability, and a new adaptive inertia weight-adjustment strategy based on an S-shaped
decreasing function is developed to balance the search ability. Finally, some benchmark functions
and the parameter optimization of photovoltaics are selected. The proposed algorithm obtains the
best performance on 6 out of 10 functions. The results show that the proposed algorithm has greatly
improved diversity, solution accuracy, and search ability compared with some variants of particle
swarm optimization and other algorithms. It provides a more effective parameter combination for
the complex engineering problem of photovoltaics, so as to improve the energy conversion efficiency.

Keywords: CLPSO; multi-strategy; search ability; photovoltaic optimization

1. Introduction

Many problems in reality can be transformed into optimization problems. These
optimization problems have complex characteristics, such as multiple constraints, high
dimensionality, nonlinearity, and uncertainty, making them difficult to solve by the tradi-
tional optimization methods [1,2]. Therefore, an efficient new method is sought to solve
these complex problems. Swarm intelligence optimization algorithms are a new evolu-
tionary computing technology, which refers to some intelligent optimization algorithms
with distributed intelligent behavior characteristics inspired by the swarm behavior of
insects, herds, birds, fish, etc. [3–5]. This has become the research focus of more and more
researchers. It has a special relationship with artificial life, and includes Harris hawk
optimization (HHO), slime mold algorithm (SMA), artificial bee colony (ABC), firefly
optimization, cuckoo search, and brainstorming optimization algorithm [6–9] for engineer-
ing scheduling, image processing, the traveling salesman problem, cluster analysis, and
logistics location.

PSO is a swarm intelligence optimization technology developed by Kennedy and
Eberhart [10]. The main idea is to solve the optimization problem through individual
cooperation and information sharing. The PSO takes on a simple, strong parallel structure.
Therefore, it has been used in multi-objective optimization, scheduling optimization, ve-
hicle routing problems, etc. Although the PSO shows good optimization performance, it
has slow convergence in solving complex optimization problems. Thus, a variety of im-
provement strategies for PSO are presented. Nickabadi et al. [11] presented a new adaptive
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inertia weight approach. Wang et al. [12] presented a self-adaptive learning model based
on PSO for solving application problems. Zhan et al. [13] presented an orthogonal learn-
ing strategy for PSO. Li and Yao [14] presented a cooperative PSO. Xu [15] presented an
adaptive tuning for the parameters of PSO based on a velocity and inertia weight strategy
to avoid the velocity close to zero in the early stages. Wang et al. [16] presented a hybrid
PSO using a diversity mechanism and neighborhood search. Chen et al. [17] presented an
aging leader and challenger PSO. Qu et al. [18] presented a distance-based PSO. Cheng and
Jin [19] presented a social learning PSO based on controlling dimension-dependent param-
eters. Tanweer et al. [20] presented a self-regulating PSO with the best human learning.
Taherkhani et al. [21] presented an adaptive PSO approach. Moradi and Gholampour [22]
presented a hybrid PSO based on a local search strategy. Gong et al. [23] developed a
new hybridized PSO framework with another optimization method for “learning”. Nouiri
et al. [24] presented an effective and distributed PSO. Wang et al. [25] presented a hybrid
PSO with adaptive learning to guarantee exploitation. Aydilek [26] presented a hybrid
PSO with a firefly algorithm mechanism. Xue et al. [27] presented a self-adaptive PSO.
Song et al. [28] presented a variable-size cooperative co-evolutionary PSO with the idea of
“divide and conquer”. Song et al. [29] presented a bare-bones PSO with mutual information.

Sources Results and Contribution to PSO

Nickabadi et al. [11] Designed an adaptive inertia weight strategy for PSO

Zhan et al. [13] Designed an orthogonal learning strategy for PSO

Xu [15]
Designed an adaptive tuning strategy for the parameters
for PSO

Wang et al. [16] Developed a hybrid PSO

Cheng and Jin [19] Developed a social learning PSO

Tanweer et al. [20] Developed a self-regulating PSO

Moradi and Gholampour [22] Designed a local search strategy for PSO

Gong et al. [23] Developed a new hybridized PSO

Xue et al. [27] Developed a self-adaptive PSO

Song et al. [28]
Developed a variable-size cooperative
co-evolutionary PSO

Song et al. [29] Developed a bare-bones PSO

The comprehensive learning PSO (CLPSO) algorithm is a variant of PSO, and has good
application in multimodal problems. However, because the CLPSO algorithm uses the cur-
rent search velocity and individual optimal value to update the search velocity, the search
velocity value in the later iteration is very small, resulting in slow convergence and reducing
the computational efficiency. In order to improve the CLPSO algorithm, researchers have
conducted some useful works. Liang et al. [30] presented a variant of PSO (CLPSO) using a
new learning strategy. Maltra et al. [31] presented a hybrid cooperative CLPSO by cloning
fitter particles. Mahadevan and Kannan [32] presented a learning strategy for PSO to
develop a CLPSO to overcome premature convergence. Ali and Khan [33] presented an at-
tributed multi-objective CLPSO for solving well-known benchmark problems. Hu et al. [34]
presented a CLPSO-based memetic algorithm. Zhong et al. [35] presented a discrete CLPSO
with an acceptance criterion of SA. Lin and Sun [36] presented a multi-leader CLPSO based
on adaptive mutation. Zhang et al. [37] presented a local optima topology (LOT) struc-
ture with the CLPSO for solving various functions. Lin et al. [38] presented an adaptive
mechanism to adjust the comprehensive learning probability of CLPSO. Wang and Liu [39]
presented a novel saturated control method for a quadrotor to achieve three-dimensional
spatial trajectory tracking with heterogeneous CLPSO. Cao et al. [40] presented a CLPSO
with local search. Chen et al. [41] presented a grey-wolf-enhanced CLPSO based on the
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elite-based dominance scheme. Wang et al. [42] presented a heterogeneous CLPSO with a
mutation operator and dynamic multi-swarm. Zhang et al. [43] presented a novel CLPSO
using the Bayesian iteration method. Zhou et al. [44] presented an adaptive hierarchical
update CLPSO based on the strategies of weighted synthesis. Tao et al. [45] presented an
enhanced CLPSO with dynamic multi-swarm.

Sources Results and Contribution to PSO

Maltra et al. [31] Developed a hybrid cooperative CLPSO

Ali and Khan [33] Developed an attributed multi-objective CLPSO

Hu et al. [34] Presented a CLPSO with local search

Zhong et al. [35] Presented a discrete CLPSO

Lin and Sun [36] Designed an adaptive mutation for multi-leader CLPSO

Lin et al. [38] Designed an adaptive mechanism for CLPSO

Cao et al. [40] Developed a CLPSO with local search

Chen et al. [41] Developed a grey-wolf-enhanced CLPSO

Wang et al. [42] Developed a heterogeneous CLPSO

Zhou et al. [44] Developed an adaptive hierarchical update CLPSO

Tao et al. [45] Developed an enhanced CLPSO with dynamic multi-swarm

These improved CLPSO algorithms use the individual optimal information of parti-
cles to guide the whole iterative process, have better diversity and search range, and can
solve complex multimodal problems. However, because the global optimal value does not
participate in the particle velocity and position, the particle velocity is too small in the later
search, and the convergence speed is slow. At the same time, due to the lack of measures
for avoiding the local optimization, once the optimal values of most particles fall into the
local optimization, the convergence is unable to find the global optimal value, and the
performance is unstable. Therefore, to improve the optimization performance of CLPSO, a
novel multi-strategy adaptive CLPSO (MSACLPSO) based on making use of comprehen-
sive learning, multi-population parallel, and parameter adaptation was designed for this
paper. The MSACLPSO effectively promotes information exchange in different dimensions,
ensures information sharing in the population, enhances the convergence and stability, and
balances the search ability compared with the other related algorithms.

The main contributions and novelties of this paper are described as follows.

(1) A novel multi-strategy adaptive CLPSO (MSACLPSO) based on comprehensive learn-
ing, multi-population parallel, and parameter adaptation is presented.

(2) A multi-population parallel strategy is designed to improve population diversity and
accelerate convergence.

(3) A new velocity update strategy is designed by adding the global optimal value in the
population to the velocity update.

(4) A new adaptive adjustment strategy of learning factors is developed by linearly
changing the learning factors.

(5) A parameter optimization method of photovoltaics is designed to prove the actual
application ability.

2. PSO

PSO is a population-based search algorithm that simulates the social behavior of
birds within a range. In PSO, all individuals are referred to as particles, which are flown
through the search space to delete the success of other individuals. The position of particles
changes according to the individual’s social and psychological tendencies. The change of
one particle is influenced by knowledge or experience. As a modeling result of the social
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behavior, the search is processed to return to previously successful areas in the search space.
The particle’s velocity (v) and position (x) are changed by the particle best value (pBest)
and global best value (gBest). The formula for updating velocity and position is given
as follows:

vt+1
ij = ωvt

ij + c1r1

(
pBestt

ij − xt
ij

)
+ c2r2

(
gBestt

ij − xt
ij

)
(1)

xt+1
ij = xt

ij + vt+1
ij (2)

where vt+1
ij is the velocity of the ith particle at the jth iteration, xt+1

ij is the position of particle

ith at the jth iteration, and the position of the particle is related to its velocity. w is an
inertia weight factor, which is used to reflect the motion habits of particles and represent
the tendency of particles to maintain their previous speed. c1 is a self-cognition factor,
which reflects the particle’s memory of its own historical experience, and represents that the
particle has a tendency to approach its best position. c2 is a social cognition factor, which
reflects the population’s historical experience of collaboration and knowledge sharing
among particles, and represents that particles tend to approach the best position in the
population or field history. r1 and r2 represent random numbers in [0, 1], which denote
the remembrance ability for the research. Generally, the value in the V can be clamped to
the range [−Vmax, Vmax] in order to control the excessive roaming of particles outside the
search space. The PSO is terminated until the maximal number of iterations is reached or
the best particle position cannot be further improved. The PSO achieves better robustness
and effectiveness in solving optimization problems.

The basic flow of the PSO is shown in Figure 1.

Figure 1. The basic flow of the PSO.

3. CLPSO

PSO can easily fall into local extrema, which leads to premature convergence. Thus,
a new update strategy is presented to develop a CLPSO algorithm. In the PSO, each
particle learns from its own optimal value and the global optimal value. Therefore, in the
velocity update formula of CLPSO, the social part of the global optimal solution of particle
learning is not used. In addition, in the velocity update formula of the traditional PSO
algorithm, each particle learns from all dimensions of its own optimal value, but its own
optimal value is not optimal in all dimensions. Therefore, the CLPSO algorithm introduces
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a comprehensive learning strategy to construct learning samples using the pBest of all
particles to promote the information exchange, improve population diversity, and avoid
falling into local extrema. The comprehensive learning strategy is to use the individual
historical optimal solution of all particles in the population to update the particle position
in order to effectively enhance the exploration ability of the PSO and achieve excellent
optimization performance in solving multimodal optimization problems. The velocity
update of particle and position is described as follows:

vt+1
ij = ωvt

ij + crt
ij

(
pBestt

fi(j) − xt
ij

)
vt+1

ij = min
(

vijmax, max
(

vt
ijmin, vt+1

ij

))
xt+1

ij = xt
ij + vt+1

ij

xt+1
ij = min

(
xijmax, max

(
xijmin, xt+1

ij

)) (3)

where i = 1, 2, 3, · · · , P and j = 1, 2, 3, · · · , D. P is the size of the population and D
is the search space dimension. xt

i = [xt
i1, xt

i2, · · · , xt
ij, · · · , xt

iD] is the particle position,

vt
i = [vt

i1, vt
i2, · · · , vt

ij, · · · , vt
iD] is the velocity of particle i,

[
xijmin, xijmax

]
is the search range

of particle i,
[
vijmin, vijmax

]
is the velocity range, ω is the inertia weight, c is the learning

factor, rt
ij is a randomly distributed number on (0, 1), fi(j) refers to other particles that

particle i needs to learn in the D-dimension, and pbestt
fi(j) can be the optimal position of

any particle.
The determination method of fi(j) is described as follows: For each particle dimension,

a random probability is produced. If the random probability is greater than the learning
probability Pci , then this particle dimension learns from the corresponding dimension of its
own individual optimal value. On the other hand, two particles are randomly selected to
learn the better optimal value. To ensure the population’s polymorphism, the CLPSO also
sets an update interval number m; that is, when the individual optimal value of particle i
has not been updated for m iterations, it is regenerated.

4. MSACLPSO

PSO has simplicity, practicality, and fixed parameters, but it has the disadvantage of
easily falling into local optima, as well as weak local search ability. The CLPSO has slow
velocity in the later search, low convergence speed, and unstable performance. To solve
these problems, a multi-strategy adaptive CLPSO (MSACLPSO) algorithm is proposed by
introducing a comprehensive learning strategy, multi-population parallel strategy, veloc-
ity update strategy, and parameter adaptive strategy. In MSACLPSO, a comprehensive
learning strategy is introduced to construct learning samples using the pBest of all particles
to promote information exchange, improve population diversity, and avoid falling into
local extrema. To overcome the lack of local search ability in the later stage, the global
optimal value of the population is used for the velocity update, and a new update strategy
is proposed to enhance the local search ability. The multi-population parallel strategy is
employed to divide the population into N subpopulations, and then iterative evolution is
carried out appropriately to achieve particle exchange and mutation, enhance the popu-
lation diversity, accelerate the convergence, and ensure information sharing between the
particles. The linearly changing strategy of the learning factors is employed to realize the
iterative evolution in different stages and the adaptive adjustment strategy of learning
factors, which can enhance the global search ability and improve the local search ability.
The S-shaped decreasing function is adopted to realize the adaptive adjustment of inertia
weight to ensure that the population has high speed in the initial stage, reduce the search
speed in the middle stage—so that the particles will more easily converge to the global
optimum—and maintain a certain speed for the final convergence in the later stage.
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4.1. Multi-Population Parallel Strategy

The idea of multi-population parallel is based on the natural phenomenon of the
evolution of the same species in different regions. It divides the population into multiple
subpopulations, and then each subpopulation searches for the optimal value in parallel
to improve the search ability. The indirect exchange of the optimal value and dynamic
recombination of the population can enhance the population diversity and accelerate the
convergence. A multi-population parallel strategy is proposed here. The main ideas of
the multi-population parallel strategy are described as follows: The population is divided
into N subpopulations in the process of evolution. For each subpopulation, the particle
carries out iterative evolution, and the particle exchange and particle mutation under
appropriate conditions are executed according to certain rules, so as to ensure information
sharing between the particles of the population through the exchange of particles between
subpopulations. Therefore, to enhance the local search ability of the CLSPO algorithm in
the later stage, a new update strategy is presented after the g0 generation is completed.
That is, the global optimal value gBest of the population is added to the velocity update, as
shown in Equation (4):

vt+1
ij = ωvt

ij + c1rt
1ij

(
pBestt

fi(j) − xt
ij

)
+ c2rt

2ij

(
gBestt

fi(j) − xt
ij

)
vt+1

ij = min
(

vijmax, max
(

vt
ijmin, vt+1

ij

))
xt+1

ij = xt
ij + vt+1

ij

xt+1
ij = min

(
xijmax, max

(
xijmin, xt+1

ij

)) (4)

where c1 and c2 are learning factors, pBestt
fi(j) is the optimal value of the particle in each

subpopulation
{

pBestt
1 , pBestt

2, · · · , pBestt
p, · · · , pBestt

P

}
, gBestt

fi(j) is the optimal value of

each subpopulation
{

gBestt
1 , gpBestt

2, · · · , gBestt
p, · · · , gBestt

P

}
, rt

1ij and rt
2ij are randomly

distributed numbers on (0, 1).

4.2. Adaptive Learning Factor Strategy

In PSO, the values of c1 and c2 are set in advance according to experiences, reducing
the self-learning ability. Therefore, the linearly changing strategy of the learning factors
is developed for c1 and c2. In the early evolution stage, the self-cognition item is reduced
and the social cognition item is increased to improve the global search ability. In the later
evolution stage, the local search ability is guaranteed by encouraging particles to converge
towards the global optimum. Therefore, the adaptive learning factor strategy is described
as follows:

c1 = cmin + (cmax − cmin)(T − t)/T (5)

c2 = cmin + (cmax − cmin)t/T (6)

where cmax and cmin are the maximum value and minimum value, respectively.

4.3. Adaptive Inertia Weight Strategy

In PSO, when the particles in the population tend to be the same, the last two terms
in the particle velocity update formula—namely, the social cognition part, and the indi-
vidual’s own cognition part—will gradually tend towards 0. If the inertia weight ω is less
than 1, the particle speed will gradually decrease, or even stop moving, which result in
premature convergence. When the optimal fitness of the population has not changed (i.e.,
has stagnated) for a long time, the inertia weight ω should be adjusted adaptively according
to the degree of premature convergence. If the same adaptive operation is adopted for the
population, when the population has converged to the global optimum, the probability of
destroyed excellent particles will increase with the increase in their inertia weight, which
will degrade the performance of the PSO algorithm. To better balance the search ability, an
S-shaped decreasing function is adopted to ensure that the population has high speed in
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the initial stage, and the search speed decreases in the middle stage, so that the particles
can easily converge to the global optimum value and, finally, converge at a certain speed
in the later stage. The S-shaped decreasing function for the inertia weight ω is described
as follows:

ω = (ωmax −ωmin)/(1 + exp(2 ∗ a ∗ t/T − a)) + ωmin (7)

where ωmax and ωmin are the maximum and minimum values, respectively—ωmax = 0.9
and ωmin = 0.2—and a is the control coefficient to adjust the speed change, where a = 13.

4.4. Model of MSACLPSO

The flow of MSACLPSO is shown in Figure 2.

Figure 2. The flow of MSACLPSO.

The steps of MSACLPSO are described as follows:
Step 1: Divide the population into N subpopulations, and initialize all parameters.
Step 2: Execute the CLPSO algorithm for each subpopulation. The objective function

is used to find out the individual optimal value of the particle, the optimal value of the
subpopulation, and the global optimal value of the population. To ensure the high global
search ability in the early stage, T0 is set for the early stage, and each subpopulation updates
all particle states according to Equation (3). To enhance the local search ability of CLSPO in
the later stage, after the T0 iteration is completed, each subpopulation updates all particle
states according to Equation (4).

Step 3: If the optimal value of one subpopulation does not update for successive R1
iterations, the population may fall into local optimization. To avoid falling into the local
optimum for the subpopulation, the mutation strategy is used here. Each dimension of
each particle in the subpopulation is mutated with the probability Pm. The mutation mode
is described as follows:

xt
id = xt

id + randn(xidmax − xidmin)(T − t
)
/T (8)
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where randn is the random number on (−1, 1).
Step 4: After T0 iterations are executed, to enhance population diversity, the particles

are randomly exchanged between populations every interval R iteration to recombine
subpopulations. The recombination of subpopulations is described as follows: All sub-
populations randomly select 50% of the particles, which are randomly exchanged with
the particles of other populations. Then, according to the fitness values of all particles in
all subpopulations, 1/N particles with the best fitness values in each subpopulation are
selected to construct a new population. It is worth noting that the exchanged particle can
be any particle in any other population.

Step 5: Determine whether the end conditions are met. If they are met, the optimal
result is output; otherwise, return to Step 2.

5. Experiment Simulation and Analysis
5.1. Test Functions

To verify the performance of MSACLPSO, 10 famous benchmark functions were
selected. The detailed description is shown in Table 1.

Table 1. The detailed description.

Function Name Function Expression S Fmin f−bias

Sphere F1 =
D
∑

i=1
xi [−100, 100]D 0 −450

Schwefel 1.2 F2 =
D
∑

i=1

(
i

∑
j=1

xj

)2
[−100, 100]D 0 −450

High Conditioned Elliptic F3 =
D
∑

i=1

(
106) i−1

D−1 x2
i

[−100, 100]D 0 −450

Schwefel 1.2 with Noise F4 =

 D
∑

i=1

(
i

∑
j=1

xj

)2
 ∗ (1 + 0.4|N(0, 1) [−100, 100]D 0 −450

Schwefel 2.6 F5 = max{|x1 + 2x2 − 7|, |2x1 + x2 − 5|} [−100, 100]D 0 −310

Rosenbrock F6 =
D−1
∑

i=1
(100(x2

i − xi+1)
2
+
(

xi − 1)2) [−100, 100]D 0 390

Griewank F7 =
D−1
∑

i=1

x2
i

4000 −
D
∏
i=1

cos
(

xi√
i

)
+ 1 [−100, 100]D 0 390

Ackley
F8 = −20exp

(
−0.2

√
1
D

D
∑

i=1
x2

i

)
−

exp
(

1
D

D
∑

i=1
cos(2πxi)

)
+ 20

[−32, 32]D 0 −140

Rastrigin F9 =
D
∑

i=1

(
x2

i − 10 cos(2πxi) + 10
)

[−5, 5]D 0 −330

Expanded Schaffer F10 = 0.5 +

(
sin2

(√
x2+y2

)
−0.5

)
(1+0.001(x2+y2))2

[−100, 100]D 0 −300

5.2. Experimental Environment and Parameter Setting

The experimental environment mainly included Core I5-4200H, Win10, RAM-16GB,
and MATLAB R2018b. The optimization performance of MSACLPSO was compared
with other state-of-the-art algorithms, including the basic version of PSO (PSO) [46],
self-organizing hierarchical PSO (HPSO) [47], fully-informed PSO (FIPS) [48], unified
PSO (UPSO) [49], CLPSO [30], and static heterogeneous particle swarm optimization (sH-
PSO) [50]. In MSACLPSO, the population is divided into two subpopulations, and four
main parameters are adjusted to balance exploration and exploitation. These parameters
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include population size, acceleration coefficients, iteration number, and dimensions. In our
experiment, a large number of alternative values were tested, and some classical values
were selected from other literature, and then these parameter values were experimentally
modified until the most reasonable parameter values were selected. These selected parame-
ter values attained the optimal solution, so that they could accurately and efficiently verify
the effectiveness of MSACLPSO in solving optimization problems. Some parameters that
were tuned included the population size NP = 40, the number of subpopulations N = 2,
c_min = 0.5 and c_max = 2.5, the dimension D = 30, run times T = 30, the maximum number of
iterations G = 200, and function evaluations FEs = 300,000. The specific settings are shown
in Table 2.

Table 2. The parameter settings.

Algorithms ω c c1 c2 Pci NP FES

PSO 0.9~0.4 — 2.0 2.0 — 60 300,000
HPSO — — 2.5~0.5 0.5~2.5 — 40 300,000
FIPS — 2 — — — 40 300,000
UPSO — 1.49445 — — — 40 300,000
OLPSO 0.9~0.4 2 — — — 40 300,000
CLPSO 0.9~0.4 1.49445 — — 0.5 40 300,000
sHPSO 0.72 — 2.5~0.5 0.5~2.5 — 40 300,000
MSACLPSO 0.95~0.3 3.0~1.5 2.5~0.5 0.5~2.5 0.5 40 300,000

5.3. Experimental Results and Analysis

The population was divided into two subpopulations, and different numbers of
individuals were set. The error mean (mean) value and standard deviation (Std) value
were applied to evaluate the optimization performance of MSACLPSO. The obtained
experimental results with the different numbers of individuals for 30-dimensional problems
are shown in Table 3. The best results are the bold.

As can be seen from Table 3, the subpopulation size P1 = 10 and P2 = 30 obtained
the best optimization performance for the 10 test benchmark functions compared with
other subpopulation sizes. However, for the functions F5, F6, and F9, MSACLPSO did not
obtain satisfactory optimization performance. Therefore, the subpopulation size P1 = 10
and P2 = 30 was selected for performance evaluation of MSACLPSO.

MSACLPSO was compared with some variants of PSO algorithms. The optimization
performance was obtained according to the mean and Std of the 20 obtained results.
The obtained experimental results using different algorithms for test functions with 30
dimensions are shown in Table 4. The obtained best results are highlighted in bold.
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Table 3. The different numbers of individuals (P1 and P2) in two subpopulations for MSACLPSO.

Functions Indices 10 + 30 15 + 25 20 + 20 25 + 15 30 + 10 40 + 0

F1
Mean 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Std 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

F2
Mean 1.9862 × 10−8 1.6547 × 10−6 2.2056 × 10−4 1.6547 × 10−2 3.3274 × 10−1 3.7543 × 10−1

Std 3.5974 × 10−8 1.7430 × 10−6 3.3469 × 10−4 1.3275 × 10−2 4.5401 × 10−1 4.7341 × 10−1

F3
Mean 5.5673 × 10−5 6.1432 × 105 8.4102 × 105 1.3610 × 106 2.1977 × 106 2.3560 × 106

Std 1.7703 × 10−5 2.4205 × 105 3.2359 × 105 6.6034 × 105 9.2605 × 105 6.6496 × 105

F4
Mean 4.2485 × 102 5.0328 × 102 6.0462 × 102 8.1743 × 102 1.4058 × 103 1.4135 × 103

Std 2.4452 × 102 2.8874 × 102 4.4718 × 102 4.0569 × 102 7.1673 × 102 6.4532 × 102

F5
Mean 2.7830 × 103 2.5065 × 103 2.8913 × 103 3.1673 × 103 3.2137 × 1033 3.5478 × 103

Std 5.5702 × 102 4.1407 × 102 4.0531 × 102 5.9613 × 102 4.2715 × 102 5.5379 × 102

F6
Mean 3.1637 2.2637 2.1975 7.1762 × 10−1 2.9757 × 10−1 3.3405 × 10−1

Std 3.3643 4.0623 3.4537 9.2546 × 10−1 5.2504 × 10−1 6.6492 × 10−1

F7
Mean 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Std 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

F8
Mean 1.9745 × 101 1.9805 × 101 1.9832 × 101 1.9867 × 101 1.9835 × 101 2.0645 × 101

Std 8.3746 × 10−2 7.1485 × 10−2 5.8043 × 10−2 5.7903 × 10−2 8.8562 × 10−2 7.8530 × 10−2

F9
Mean 1.0673 1.0245 × 10−1 0.0000 0.0000 0.0000 1.2473

Std 1.0305 3.8672 × 10−1 0.0000 0.0000 0.0000 1.2865

F10
Mean 1.0782 × 101 1.0954 × 101 1.1065 × 101 1.1438 × 101 1.1714 × 101 1.1904 × 101

Std 4.0645 × 10−1 5.4680 × 10−1 4.3591 × 10−1 5.4613 × 10−1 4.1527 × 10−1 4.3681 × 10−1



Entropy 2022, 24, 890 11 of 18

Table 4. The obtained experimental results using different algorithms.

Functions Indices PSO HPSO FIPS OLPSO UPSO sHPSO CLPSO HCLPSO MSACLPSO

F1
Mean 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Std 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

F2
Mean 3.70 × 10−1 3.79 × 10−6 7.79 × 101 1.38 × 101 2.65E-07 1.44 × 10−2 1.14 × 103 1.70 × 10−6 1.99 × 10−8

Std 3.20 × 10−1 2.82 × 10−6 2.71 × 101 8.33 2.42E-07 7.10 × 10−2 2.53 × 102 1.71 × 10−6 3.60 × 10−8

F3
Mean 6.53 × 106 7.72 × 105 2.45 × 107 1.60 × 107 1.54 × 106 8.75 × 105 1.22 × 107 6.42 × 105 5.57 × 105

Std 4.17 × 106 2.96 × 105 6.29 × 106 7.04 × 106 4.75 × 105 5.34 × 105 3.34 × 106 2.61 × 105 1.77 × 105

F4
Mean 3.81 × 102 2.48 × 104 1.15 × 103 2.18 × 103 7.28 × 103 2.02 × 104 8.77 × 103 5.22 × 102 4.25 × 102

Std 3.31 × 102 5.71 × 103 3.73 × 102 1.09 × 103 2.79 × 103 9.94 × 103 1.85 × 103 3.09 × 102 2.45 × 102

F5
Mean 3.85 × 103 9.20 × 103 2.22 × 103 3.30 × 103 6.32 × 103 6.94 × 103 4.47 × 103 2.97 × 103 2.78 × 103

Std 8.00 × 102 1.81 × 103 5.14 × 102 3.75 × 102 1.63 × 103 1.43 × 103 4.26 × 102 4.55 × 102 5.57 × 102

F6
Mean 7.02 × 101 5.04 × 101 3.77 × 101 2.07 × 101 6.82 × 101 1.15 × 102 2.39 2.39 3.16

Std 9.51 × 101 5.05 × 101 3.50 × 101 2.50 × 101 9.64 × 101 2.29 × 102 3.84 4.27 3.36

F7
Mean 7.60 × 10−1 1.00 × 10−2 3.00 × 10−2 1.00 × 10−2 2.00 × 10−2 4.00 × 102 7.00 × 10−1 2.00 × 10−2 0.00

Std 1.41 1.00 × 10−2 2.00 × 10−2 1.00 × 10−2 1.00 × 10−2 4.00 × 102 1.50 × 10−1 2.00 × 10−2 0.00

F8
Mean 2.09 × 101 2.07 × 101 2.09 × 101 2.10 × 101 2.10 × 101 2.02 × 101 2.10 × 101 2.09 × 101 1.97 × 101

Std 7.00 × 10−2 1.50 × 10−1 6.00 × 10−2 8.00 × 10−2 5.00 × 10−2 1.90 × 10−1 6.00 × 10−2 9.00 × 10−2 8.37 × 10−2

F9
Mean 1.90 × 101 1.07 × 101 5.71 × 101 0.00 8.52 × 101 8.25 × 101 1.00 × 102 0.00 1.07

Std 5.37 4.96 1.46 × 101 0.00 1.69 × 101 2.44 × 101 1.25 × 101 0.00 1.03

F10
Mean 1.27 × 101 1.23 × 101 1.31 × 101 1.31 × 101 1.28 × 101 1.31 × 101 1.26 × 101 1.19 × 101 1.09 × 101

Std 4.30 × 10−1 3.70 × 10−1 2.10 × 10−1 2.00 × 10−1 3.30 × 10−1 3.90 × 10−1 2.20 × 10−1 5.80 × 10−1 4.06 × 10−1
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As shown in Table 4, all algorithms performed equally on test function F1, and PSO
obtained the best solution on test function F4. FIPS obtained the best solution on test
function F5. MSACLPSO performed well on test functions F1~F5. For multimodal functions,
MSACLPSO performed well on all functions, and obtained the best performance on test
functions F7, F8, and F10, and the second-best performance on test functions F6 and F9. On
the other hand, CLPSO and HCLPSO obtained the best solution on test function F6, and
OLPSO and HCLPSO obtained the best solution on test function F9. Overall, MSACLPSO
obtained the best performance on 6 out of 10 test functions. Therefore, MSACLPSO
performs well, and obtains the best optimization performance for multimodal problems.
In our experiment, MSACLPSO used several strategies of comprehensive learning, multi-
population parallel, and parameter adaptation. Although the strategies of comprehensive
learning and parameter adaptation need more running time, the multi-population parallel
strategy can reduce the running time. Therefore, the time complexity of MSACLPSO is
similar to that of the other compared algorithms.

To test the statistical difference between MSACLPSO and the other variants of PSO
algorithms, the non-parametric Wilcoxon signed-rank test was used to compare the re-
sults of MSACLPSO and the results of the other variants of PSO. The obtained results of
MSACLPSO against other algorithms are shown in Table 5.

Table 5. The test results under α = 0.05.

Functions PSO HPSO FIPS OLPSO UPSO sHPSO CLPSO HCLPSO

F1 = = = = = = = =

F2 + + + + + + + +

F3 + + + + + + + +

F4 − + + + + + + +

F5 + + − + + + + +

F6 + + + + + + − −
F7 + + + + + + + +

F8 + + + + + + + +

F9 + + + − + + + −
F10 + + + + + + + +

+/=/− 8/1/1 9/1/0 8/1/1 8/1/1 9/1/0 9/1/0 8/1/1 7/1/2

As shown in Table 5, MSACLPSO performs better than the other variants of PSO
algorithms through the number of (+/=/−) in the last row of the Wilcoxon signed-rank
test results under α = 0.05.

To sum up, it can be seen that the optimized values of parameters for MSACLPSO are ω
= 0.43, c = 2.1, c1 = 1.8, c2 = 2.1, and Pci = 0.5 for solving these complex optimization problems.

6. Case Analysis

Renewable energy has always been the focus of dealing with the key issues of tra-
ditional energy consumption, which uses nonrenewable energy. Solar energy is an up-
and-coming resource, in which PV plays a vital role. However, the PV device is usually
placed in an exposed environment, which leads to its degradation. This seriously affects
the efficiency of PV. Therefore, MSACLPSO was employed to effectively and accurately
optimize the PV parameters to establish an optimized PV model. The values of parameters
for MSACLPSO were the same as given in Section 5.3.
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6.1. Modeling for PV

A lot of PV models have been designed, and were applied to illustrate the I–V charac-
teristics. The SDM and DDM are the most widely used [51]. The PV model is described in
Table 6.

Table 6. The modelling for PV.

PV IL

SDM IL = Iph − Isd

[
exp
(

q(VL+IL Rs)
nkT

)
− 1
]
− VL+IL Rs

Rsh

DDM IL = Iph − Isd1

[
exp
(

q(VL+IL Rs)
n1kT

)
− 1
]
− Isd2

[
exp
(

q(VL+IL Rs)
n2kT

)
− 1
]
− VL+IL Rs

Rsh

It is crucial to search for the optimal parameter values in order to minimize the error
of the PV models. The error functions are described as follows: For the SDM, f (VL, IL, x) = Iph − Isd

[
exp
(

q(VL+ILRs)
nkT

)
− 1
]
− VL+ILRs

Rsh
− IL

x =
{

Iph, Isd, Rs, Rsh, n
} (9)

For the DDM, f (VL, IL, x) = Iph − Isd1

[
exp
(

q(VL+ILRs)
n1kT

)
− 1
]
− Isd2

[
exp
(

q(VL+ILRs)
n2kT

)
− 1
]
− VL+ILRs

Rsh
− IL

x =
{

Iph, Isd1, Isd2, Rs, Rsh, n1, n2

} (10)

To evaluate the PV model, the RMSE is described as follows:

RMSE(x) =

√√√√ 1
N

N

∑
k=1

f (VL, IL, x)2 (11)

6.2. Modeling for PV

To validate the performance of MSACLPSO, the PSO, BLPSO, CLPSO, CPMPSO, IJAYA,
GOTLBO, SATLBO, DE/BBO, DBBO, STLBO, WOA, CWOA, LWOA, GWO, EGWO, WDO,
DE, JADE, and MPPCEDE [52–64] algorithms were used for comparison. The parameter
values of MSACLPSO were the same as given in Section 5.2. The parameter values of
the other compared algorithms were the same as in the literature. The maximum number
of iterations was G = 200, and these algorithms were executed for 20 runs. Therefore,
the statistical results of the SRE, LRE, MRE, and Std were obtained. The value of RMSE
was employed to quantify the solution accuracy, while the Std of the RMSE described the
reliability. The statistical results of the experiment with the SDM and DDM are shown in
Tables 7 and 8, respectively. The obtained best results are highlighted in bold.

As can be seen from Table 7, CPMPSO, MPPCEDE, and MSACLPSO obtained the SRE,
LRE, and MRE values. For the Std of RMSE, MSACLPSO performed well. Therefore, the
optimization performance of MSACLPSO was better than that of the compared algorithms
for SDM. As can be seen from Table 8, MSACLPSO obtained the best results for the SRE,
LRE, MRE, and Std of RMSE. For the Std of RMSE, MSACLPSO obtained the best Std.
Therefore, MSACLPSO is the best algorithm for DDM.

To sum up, it can be seen that the performance of MSACLPSO was demonstrated
by optimizing the PV model parameters All of the compared results containing the opti-
mized parameters, along with the SRE, LRE, MRE, and Std values, show that MSACLPSO
can obtain the optimal parameters. This provides a more effective parameter combina-
tion for the complex engineering problems of photovoltaics, so as to improve the energy
conversion efficiency.



Entropy 2022, 24, 890 14 of 18

Table 7. The obtained results of RMSE for the SDM.

Algorithms SRE LRE MRE Std Symbol

PSO 2.44805 × 10−3 9.86022 × 10−4 1.31844 × 10−3 5.24500 × 10−4 +
BLPSO 1.74592 × 10−3 1.03122 × 10−3 1.31377 × 10−3 1.90400 × 10−4 +
CLPSO 1.25274 × 10−3 9.92075 × 10−4 1.06081 × 10−3 7.04200 × 10−5 +
CPMPSO 9.86022 × 10−4 9.86022 × 10−4 9.86022 × 10−4 2.17556 × 10−17 +
IJAYA 9.86841 × 10−4 9.86022 × 10−4 9.86051 × 10−4 1.49300 × 10−7 +
GOTLBO 1.39559 × 10−3 9.86608 × 10−4 1.08300 × 10−3 9.70900 × 10−5 +
SATLBO 1.00674 × 10−3 9.86025 × 10−4 9.88799 × 10−4 4.81300 × 10−6 +
DE/BBO 1.84123 × 10−3 9.86022 × 10−4 1.25173 × 10−3 2.08225 × 10−4 +
DBBO 2.36083 × 10−3 9.86820 × 10−4 1.38755 × 10−3 2.70008 × 10−4 +
STLBO 1.02033 × 10−3 9.86022 × 10−4 9.87207 × 10−4 6.25700 × 10−6 +
WOA 1.00397 × 10−2 1.10759 × 10−3 3.25587 × 10−3 2.16463 × 10−3 +
CWOA 3.28588 × 10−2 9.98677 × 10−4 5.44921 × 10−3 6.33831 × 10−3 +
LWOA 1.92042 × 10−2 9.99621 × 10−4 3.44545 × 10−3 3.33774 × 10−3 +
GWO 4.43070 × 10−2 1.28030 × 10−3 1.13440 × 10−2 1.48470 × 10−2 +
EGWO 5.24900 × 10−3 2.11210 × 10−3 3.50150 × 10−3 1.59880 × 10−3 +
WDO 4.42600 × 10−3 1.22101 × 10−3 2.18020 × 10−3 7.63880 × 10−4 +
DE 1.81059 × 10−3 9.86022 × 10−4 1.02116 × 10−3 1.44688 × 10−4 +
JADE 1.41030 × 10−3 9.86060 × 10−4 1.08330 × 10−3 1.09000 × 10−4 +
MPPCEDE 9.86022 × 10−4 9.86022 × 10−4 9.86022 × 10−4 0.00000 +
MSACLPSO 9.86022 × 10−4 9.864574 × 10−4 9.83758 × 10−4 7.52967 × 10−18

Table 8. The obtained results of the RMSE for the DDM.

Algorithms SRE LRE MRE Std Symbol

PSO 4.34952 × 10−2 9.82485 × 10−4 4.37645 × 10−3 1.01270 × 10−2 +
BLPSO 1.93654 × 10−3 1.08218 × 10−3 1.53462 × 10−3 2.45890 × 10−4 +
CLPSO 1.38835 × 10−3 9.94316 × 10−4 1.13959 × 10−3 9.39950 × 10−5 +
CPMPSO 9.86022 × 10−4 9.82485 × 10−4 9.83137 × 10−4 1.33980 × 10−6 +
IJAYA 9.99410 × 10−4 9.82494 × 10−4 9.86860 × 10−4 3.22120 × 10−6 +
GOTLBO 1.53359 × 10−3 9.85097 × 10−4 1.16335 × 10−3 1.51770 × 10−4 +
SATLBO 1.23062 × 10−3 9.82824 × 10−4 1.00544 × 10−3 5.02710 × 10−5 +
DE/BBO 1.63508 × 10−3 9.87990 × 10−4 1.19281 × 10−3 2.03849 × 10−4 +
DBBO 9.84995 × 10−4 2.29052 × 10−3 1.22395 × 10−3 3.08780 × 10−4 +
STLBO 1.52433 × 10−3 9.82561 × 10−4 1.03435 × 10−3 1.41980 × 10−4 +
WOA 1.15633 × 10−3 1.16011 × 10−2 3.42961 × 10−3 2.23226 × 10−3 +
CWOA 8.86567 × 10−3 1.13004 × 10−3 3.50587 × 10−3 2.15341 × 10−3 +
LWOA 1.04935 × 10−3 1.11900 × 10−2 3.12337 × 10−3 1.81559 × 10−3 +
GWO 4.07970 × 10−2 1.02742 × 10−3 9.90850 × 10−4 1.29040 × 10−2 +
EGWO 5.00690 × 10−3 1.80620 × 10−3 3.06700 × 10−3 1.70500 × 10−3 +
WDO 4.93450 × 10−3 1.68120 × 10−3 3.29180 × 10−3 8.41370 × 10−4 +
DE 2.00941 × 10−3 9.82936 × 10−4 1.06862 × 10−3 2.23325 × 10−4 +
JADE 2.23830 × 10−3 9.83510 × 10−4 1.46570 × 10−3 3.81000 × 10−4 +
MPPCEDE 9.82908 × 10−4 9.82485 × 10−4 9.82504 × 10−4 8.02951 × 10−8 +
MSACLPSO 9.82743 × 10−4 9.82368 × 10−4 9.81463 × 10−4 9.68924 × 10−9

7. Conclusions

In this paper, a multi-strategy adaptive CLPSO with comprehensive learning, multi-
population parallel, and parameter adaptation is proposed. A multi-population parallel
strategy was designed to improve population diversity and accelerate convergence. Then,
a new velocity update strategy was designed for the velocity update, and a new adaptive
adjustment strategy of learning factors was developed. Additionally, a parameter optimiza-
tion method for photovoltaics was designed to prove the actual application ability. Ten
benchmark functions were used to prove the effectiveness of MSACLPSO in comparison
with different variants of PSO. On 6 out of 10 functions, MSACLPSO obtained the best
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performance. MSACLPSO performed well and obtained the best optimization performance
for multimodal problems. In addition, the actual SDM and DDM were selected for pa-
rameter optimization. The experimental results show that the actual application ability of
the MSACLPSO was confirmed in comparison with the other algorithms. MSACLPSO is
an alternative optimization technique for solving complex problems and actual engineer-
ing problems.

However, MSACLPSO is still insufficient in solving large-scale parameter optimization
problems, such as time complexity and easy stagnation, among others. In the future, these
applications should be considered [65–72]. The algorithm should be deeply studied, and
the parameter adaptability of MSACLPSO in different stages and scales should also be
further explored in future works.
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Nomenclature

PSO Particle swarm optimization
HPSO Hierarchical PSO
FIPS Fully-informed PSO
UPSO Unified PSO
sHPSO Static heterogeneous PSO
CLPSO Comprehensive learning PSO
MSACLPSO Multi-strategy adaptive CLPSO
ABC Artificial bee colony
SMA Slime mold algorithm
HHO Harris hawk optimization
w Inertia weight factor
c1 Self-cognition factor
c2 Social cognition factor
Vmax Max velocity
RMSE Root-mean-square error
SRE Smallest RMSE
LRE Largest RMSE
MRE Mean RMSE
Std Standard deviation
PV Photovoltaics
SDM Single-diode model
DDM Double-diode model
I–V Current–voltage
P–V Power–voltage
r1,r2 Random numbers
vt+1

ij Velocity
P Size of population
D Search space dimension
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