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Abstract: This paper puts forward a new algorithm that utilizes compressed sensing and two chaotic
systems to complete image compression and encryption concurrently. First, the hash function was
utilized to obtain the initial parameters of two chaotic maps, which were the 2D-SLIM and 2D-
SCLMS maps, respectively. Second, a sparse coefficient matrix was transformed from the plain
image through discrete wavelet transform. In addition, one of the chaotic sequences created by
2D-SCLMS system performed pixel transformation on the sparse coefficient matrix. The other
chaotic sequences created by 2D-SLIM were utilized to generate a measurement matrix and perform
compressed sensing operations. Subsequently, the matrix rotation was combined with row scrambling
and column scrambling, respectively. Finally, the bit-cycle operation and the matrix double XOR
were implemented to acquire the ciphertext image. Simulation experiment analysis showed that
the compressed encryption scheme has advantages in compression performance, key space, and
sensitivity, and is resistant to statistical attacks, violent attacks, and noise attacks.

Keywords: image encryption; compressed sensing; chaotic system; bit-cycle operation; double
XOR operation

1. Introduction

In the wake of the development of the internetworking and information technique,
digital images are extensively used in numerous domains [1–4]. A great quantity of
information is presented in a digital image form, which usually contains private and
important information. When important information is falsified or leaked, it can cause
acute consequences [5,6], which makes the privacy security issue very prominent. Hence,
the information security protection of digital images has aroused widespread attention [7,8].
In this situation, multiple encryption scenarios have emerged.

In the past few years, due to the excellent characteristics of chaotic maps [9,10], var-
ious encryption scenarios based on chaotic maps have been created [11–14]. Wang et al.
utilized parameter controlled scroll chaotic attractors for encryption [15]. Gao proposed a
new 2D hyperchaotic system for image encryption [16]. In addition, chaotic maps can be
combined with a variety of methods for encryption. Chen et al. combined chaotic maps
and DNA coding for encryption and the results indicated that the effect was better than
using chaotic maps alone [17,18]. Yu et al. combined chaotic maps and fractional Fourier
transform for optical image encryption [19,20]. Choi et al. combined chaotic maps and
cellular automata for encryption [21,22]. Sundarakrishnan et al. used chaotic mapping
and cellular automata to encrypt color images, increased the key space, and used a dou-
ble permutation and replacement framework, which significantly reduced the correlation
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and improved the security of the algorithm [23]. Based on the advantage of chaos theory
to encryption, many scholars began to use multiple chaotic systems in the encryption
framework. Ramasamy et al. achieved secure and efficient encryption using the proposed
enhanced logical map, chaotic map, and general encryption framework—scrambling, dif-
fusing, and generating a key stream [24]. Masood et al. used multiple chaotic systems such
as two-dimensional Arnold cat mapping, Newton–Leipnik dynamic system and improved
Logistic–Gaussian chaotic system, to generate sequences for multiple links of color image
encryption, which improved the security of the algorithm [25]. This image encryption
scheme using multiple chaotic systems combined with the encryption framework makes
full use of the advantages of chaos for encryption, making encryption more secure and
efficient, obtaining good encryption effects under various experimental tests, and resisting
various attacks. Although the above-mentioned algorithms have achieved good results,
none of the above algorithms are applicable due to the bandwidth constraint problem.

To satisfy the bandwidth-constrained demands, the theoretical concept of compressed
sensing (CS) was established [26,27]. Soon afterward, multifarious compressed encryption
scenarios based on CS were put forward [28,29]. Lu et al. created an image encryption
scenario [30] that compressed images by CS and encrypted images by double random
phase coding technology. Although this algorithm reduced the amount of data, its method
of using the metric matrix as the key takes up a large amount of storage space and is
bandwidth-constrained.

To resolve these issues, a new image compression encryption scenario has attracted
much attention [31–36]. This scenario combines compressed sensing with chaotic systems,
which utilizes compressed sensing to compress the image to meet the bandwidth demands
in transmission and can also make full use of the excellent properties of the chaotic system
by using the initial parameters of chaotic maps as the key, and using the created sequences
to form the measurement matrix. This method resolves the problem that the key occupies a
large storage space and the limited bandwidth.

To further improve the security of these schemes, many scenarios have adopted
scrambling methods [37–41]. According to the position of the scrambling in the algorithm,
these can be divided into two categories. One is to perform the scrambling and confusion
operation after the measurement value is obtained by compressed sensing [40,41]. The other
is to first obtain a sparse coefficient matrix through a sparse transformation of the original
image and then perform a scrambling operation on the sparse coefficient matrix [38,39].
Both types of methods can decrease the image correlation and heighten the security of the
scenarios, while the latter has the advantage of effectively enhancing the reconstruction
quality of the decrypted image [42]. In general, there are two scrambling methods in the
encryption process: scrambling using Arnold map [38] and scrambling of the index values
obtained by sorting the chaotic sequences [37,38]. Both methods have drawbacks. The
Arnold map scrambling method cannot be directly used for non-square images [43]. The
second scrambling method is easy to operate and its scrambling effect is determined by the
randomness of the chaotic sequence [44], so it is not suitable for a chaotic system with bad
randomness. Therefore, a scrambling method called pixel transformation is proposed.

To increase the security and meet the demand of limited bandwidth, a compressed
encryption plan based on two chaotic systems and CS was put forward in this paper.
First, the SHA-384 of the original image was used to calculate the initial parameters of
the 2D-SLIM and 2D-SCLMS system and used as the key, which greatly heightened the
relevance between the scheme and the plaintext, and can better resist known plaintext
attacks and selective plaintext attacks. Second, the plaintext image is converted into a
sparse coefficient matrix. Third, to increase the reconstruction quality of the decrypted
image, a new scrambling technology is created. In addition, the chaotic sequence is utilized
to create the measurement matrix and implement the compressed sensing operation, which
greatly meets the transmission bandwidth requirements. To further heighten the security,
the encryption operation combines matrix rotation with row scrambling and column
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scrambling, respectively, followed by a bit-cycle operation. Finally, double XOR of the
matrix is implemented to acquire the ciphertext image.

The novelties of this paper are: (1) By combining two chaotic systems and compressed
sensing, a new image encryption scheme is generated; (2) a new pixel transformation
scrambling method is proposed; and (3) the combination of matrix rotation and scrambling
improves the security of the algorithm.

The remaining sections are organized as follows. Section 2 presents the related work.
Section 3 designs the new compression encryption scenario. Section 4 demonstrates the
corresponding decryption algorithms. Section 5 presents the various performance analyses
of the compression encryption scenario. Section 6 provides our conclusions.

2. Related Works
2.1. Compressed Sensing

In 2006, Donoho et al. proposed a compressed sensing formulation and processing
method for signals [26,27]. This concept smashes the restrictions of Shannon’s sampling
theorem by exploiting the sparsity of the natural signal itself or the sparsity of a certain
transform domain, allowing for the recovery of the sampled signal with a small amount
of samples at lower than the Nyquist sampling rate. Compressed sensing, also known as
compressive sampling, allows for sampling, compression, and encryption to be conducted
concurrently [43,45].

The pivotal elements of compressed sensing comprises sparse representation, the
measurement matrix, and the reconstruction scheme. In general, the signal is not sparse in
the time domain, but in some transform domains, the signal may become sparse. Therefore,
the classic sparsity representation methods comprise discrete wavelet transform (DWT),
fast Fourier transform (FFT), and discrete cosine transform (DCT).

We took a 1D signal to explain the step of compressed sensing. The sparsity expression
for a non-sparse signal x (N × 1) in the transform domain is

x = Ψs (1)

In Equation (1), Ψ (N × N) is known as the normal orthogonal matrix and s (N × 1) is
a K sparse vector.

According to Equation (1), the specific expression of compressed sensing is

y = Φx = ΦΨs = Θs (2)

In Equation (2), Φ (M × N) is the measurement matrix; Θ (M × N) is the sensing
matrix; and y (M × 1) is the measured value matrix. In particular, M < N.

Compressed sensing demands that Θ has the content of the restricted isometry prop-
erty [46], that is to say, Φ and Ψ are uncorrelated. In addition, the length of y ought
to be

M ≥ cK log
N
K

(3)

In Equation (3), c is a constant with a small value.
To exactly recover the s from the measured value matrix y, theoretically, the problem

of l0 norm minimization should be solved

min||s||0
s.t.y = ΦΨs

(4)

However, Equation (4) is an NP-hard problem. Therefore, in general, the problem of l1
norm minimization is used to supersede Equation (4)

min||s||1
s.t.y = ΦΨs

(5)
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There are many reconstruction algorithms for compressed sensing, the most common
ones are the orthogonal matching tracking algorithm, subspace pursuit algorithm, and
the smooth l0 norm (Sl0) algorithm. We chose the Sl0 algorithm for the reconstruction in
this paper.

2.2. Sigmoid Function

A common S-shaped function, also known as an S-shaped growth curve, is the Sigmoid
function [39], whose expression is

y =
a

1 + e−b(x−c)
(6)

where the range of y is [0, a]. We utilized the sigmoid function for quantization, so we
set a = 255, b = 80/(15.518 × (Xmax − Xmin)), c = (Xmax + Xmin)/2. Xmax and Xmin are the
maximum and minimum values of X, respectively. For different images, Xmax and Xmin are
different, (i.e., the values of b and c are taken differently).

2.3. Chaotic System
2.3.1. 2D-SCLMS System

The 2D-SCLMS map is a hyperchaotic system generated based on Logistic and Sine
maps [47] with the expression

xi+1 = sin(4π2(µ sin(4πxi(1− xi))) + 4uyi(1− yi))

yi+1 = sin(4π2(µ sin(4πyi(1− yi))) + 4uxi+1(1− xi+1))
(7)

where µ > 0.1 is the parameter. xi, yi∈ (−1,1), i = 1, 2, . . . .

2.3.2. 2D-SLIM

The 2D-SLIM is a chaotic map with complex properties for image encryption [48]. Its
expression is

xi+1 = sin(µ1yi) sin(50/xi)

yi+1 = µ2(1− 2x2
i+1) sin(50/yi)

(8)

where µ1, µ2 ∈ (0,+∞), xi, yi ∈ (−1,1), i = 1, 2, . . . We set µ1 = 2π, µ2 = 1.

3. Image Encryption Process

A new encryption scenario was created and its flow chart is presented in Figure 1.

3.1. Key Generation

The hash algorithm was utilized to create the initial parameters of the 2D-SCLMS map
and the 2D-SLIM, which enhanced the relevance between the ciphertext image and the
original image. First, the SHA-384 hash function generates a binary sequence composed of
384 bits and then this sequence is separated into blocks every 8 bits (i.e., 48 decimal numbers
h1, h2, . . . , h48). The 2D-SCLMS system is mainly used for pixel transformation, row
scrambling, and column scrambling, and the initial values and parameters are calculated as

x0 = mod(
10
∑

i=1
ki, 256)/256

y0 = mod(
20
∑

i=11
ki, 256)/256

u = mod(
30
∑

i=21
ki, 256)/256 + α

(9)
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The 2D-SLIM is mainly utilized to establish the measurement matrix and perform
bit-cycle, where the initial values are calculated as

a = mod(
48
∑

i=43
ki, 256)/2560

z0 = mod(
36
∑

i=31
ki, 256)/256 + a

w0 = mod(
42
∑

i=37
ki, 256)/256

(10)

3.2. Encryption Process

The proposed encryption algorithm is depicted as follows.
Step 1: The initial parameters (x0, y0, u), obtained in Section 3.1, are entered into the

2D-SCLMS map for 500 + N2 iterations. The first 500 values are removed to acquire the
sequences X, Y. Sequence X1 is obtained

X1 = mod(round(X× 10̂8), 4) (11)

X1 is divided equally into four sequences and each sequence is transformed into an
N/2 × N/2 matrix named X11, X12, X13, X14.
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The sequence X is transformed into a matrix X2 (N × N) and X2 is divided into X21,
X22 by rows, so the matrices A, B are obtained, respectively.

X21 = X2(1 : N × CR, :)
X22 = X2((1− CR)× N + 1 : end, :)

A = mod( f loor(X21 × 1010), 256)
B = mod( f loor(X22 × 1010), 256)

(12)

The sequence Y is transformed into an N × N matrix and is then divided into two
parts Y1, Y2, according to the number of rows. The matrix Y1 is arrayed in descending
order by the columns, and the matrix Y2 is arrayed in ascending order by rows to obtain
the index matrix L1, L2, respectively.

Y1 = Y(1 : N × CR, :)
Y2 = Y((1− CR)× N + 1 : end, :)
[ ∼, L1] = sort(Y1, 2, ‘descend′)

[ ∼, L2] = sort(Y2)

(13)

Step 2: The plaintext image P (N × N) generates a discrete coefficient matrix P1
through DWT, and then matrix P1 is divided equally into four small matrices P11, P12, P13,
and P14.

P1 = Ψ× P×ΨT (14)

Step 3: Perform pixel transformation on P11, P12, P13, P14 using matrices X11, X12, X13,
X14. Take X11 as an example for illustration.

If X11(i, j) = 0, then
temp = P11(i, j)

P11(i, j) = P12(i, j)
P12(i, j) = temp

If X11(i, j) = 1, then
temp = P11(i, j)

P11(i, j) = P13(i, j)
P13(i, j) = temp

If X11(i, j)= 2, then
temp = P11(i, j)

P11(i, j) = P14(i, j)
P14(i, j) = temp

If X11(i, j) = 3, then
temp = P11(i, j)

P11(i, j) = P11(
N
2 + 1− i, N

2 + 1− j)

P11(
N
2 + 1− i, N

2 + 1− j) = temp

(15)

Similarly, pixel transformation was performed again based on the values of X12, X13,
X14, respectively. When the pixel transformation was over, the four matrices were combined
to acquire P2.

Step 4: The initial values (z0, w0), created in Section 3.1 and the parameters, are entered
into the 2D-SLIM iterating 500 + d ×M × N times to produce two chaotic sequences. The
first 500 values of the two sequences are removed to obtain the chaotic sequence Z, W.
M = CR × N, wherein CR is the compression rate and d is the sampling distance.

Sequence Z1 is acquired by sampling from sequence Z according to the sampling
distance d. The measurement matrix Φ (M × N) is generated.

Z′i = 1− 2Z1+id, i = 1, 2, · · · , MN

Φ =
√

2
M reshape(Z′i , M, N)

(16)
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Take the MN values from the sequence W and transform it into a matrix W1. According
to Equation (17), W2 and C can be generated.

W2 = mod( f loor(W1 × 106), 8)
C = mod( f loor(W1 × 106), 256)

(17)

Step 5: Compress P2 to obtain the measurement results P3.

P3 = Φ× P2 (18)

Step 6: Quantize P3 according to the sigmoid function introduced in Section 2.2 and
round the quantized result to obtain P4.

P4 =
a

1 + e−b(P3−c)
(19)

Step 7: Rotate P4 counterclockwise by 180◦ and then scramble the columns according
to the index matrix L1 to obtain P5.

P41 = rot90(rot90(P4))
P5(i, j) = P41(i, L1(i, j))

(20)

Step 8: Rotate P5 counterclockwise by 180◦ and then scramble the rows according to
the index matrix L2 to obtain P6.

P51 = rot90(rot90(P5))
P6(i, j) = P51(L2(i, j), j)

(21)

Step 9: Rotate P6 counterclockwise by 180◦ and then perform the bit-cycle operation
according to W2. If W2(i, j) = 1, then P61(i, j) is shifted left by one bit. If W2(i, j) = 2, then
P61(i, j) is shifted left by two bits. Similarly, if W2(i, j) = 7, then P61(i, j) is shifted left by
seven bits, and finally P7 is obtained.

P61 = rot90(rot90(P6))
P7 = P6(bit− cycle)

(22)

Step 10: The final ciphertext image P8 is obtained by double XOR of P7.

P8 = bitxor(mod(bitxor(P7, C) + A, 256), B) (23)

4. Decryption Process

The specific decryption method is demonstrated below and its flow chart is presented
in Figure 2.

Step 1: The initial parameters are brought into the two chaotic systems. The specific
method is the same as Steps 1 and 4 in Section 3.2.

Step 2: Perform the reverse operation of the double XOR on the ciphertext image P8
to obtain P7, then perform the inverse operation of the bit cycle and rotate 180◦ counter-
clockwise to obtain P6.

P7 = IXOR(P8)
P61 = P7(Ibit− cycle)
P6 = rot90(rot90(P61))

(24)

Step 3: Perform the inverse scrambling operation on the rows of P6 according to the
index matrix L2 and then rotate 180◦ counterclockwise to obtain P5.

P51(L2(i, j), j) = P6(i, j)

P5 = rot90(rot90(P51))
(25)
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Step 4: Perform the inverse scrambling operation on the columns of P5 according to
the index matrix L1 and then rotate 180◦ counterclockwise to obtain P4.

P41(i, L1(i, j)) = P5(i, j)
P4 = rot90(rot90(P41))

(26)

Step 5: Perform inverse quantization on P4 according to the sigmoid function intro-
duced in Section 2.2 to obtain P3.

P3 = − log(
a
P4
− 1)× 1

b
+ c (27)

Step 6: Use the smooth l0 norm method to reconstruct P2.

P2 = SL0(P3, Φ) (28)

Step 7: Divide P2 into four blocks on average and perform inverse pixel transformation
to obtain P1.

P1 = IPT(P2) (29)

Step 8: Perform the reverse DWT on P1 to acquire the decrypted image P.

P = ΨT × P1 ×Ψ (30)
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5. Simulation Experiment and Performance Analysis

Multiple experiments were conducted to prove the performance of the newly presented
compressed encryption scenario. The operating system used for all experiments was
Windows 10 Ultimate with AMD Ryzen 2.00 GHz CPU, 8 G RAM, and 1 TB hard disk and
the operating software was MATLAB R2020a. The test selected six images with a size of
512 × 512 (“Lena”, “Cameraman”, “Cattle”, “Einstein”, “Boat” and “Couple”) and three
images with a size of 256 × 256 (“Barbana”, “Lena”, “Cameraman”).

5.1. Simulation Results

Figure 3 displays the original images, compressed encrypted images, and decrypted
images for all of the test images. All experiments were verified with a compression ratio of
0.5 as an example. Hereon, the original images in lines (a)–(f) are 512 × 512 and the original
images in lines (g)–(i) are size of 256 × 256.
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The ciphertext images were similar in noise and were smaller than the original images
in Figure 3, which indicates that this scheme has a good compression and encryption
effect. Furthermore, the decrypted images were of high quality and were the same size
as the plaintext images, which showed that the scenario had a good reconstruction and
decryption effect.
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5.2. Compression Performance Analysis
5.2.1. Peak Signal-to-Noise Ratio (PSNR)

PSNR [49] was utilized for the assessment of the compression performance. This is
expressed as

MSE = 1
N×N

N
∑

i=1

N
∑

j=1
(X(i, j)−Y(i, j))2

PSNR = 10× log10(
255×255

MSE )

(31)

In Equation (31), X and Y are the plaintext and the decrypted image, respectively.
The larger the PSNR value, the better the compression performance. Figure 4 shows the
simulation of “Lena” under different CRs and their corresponding PSNR values. It can be
concluded that even if the CR = 0.25, the PSNR exceeded 30 db. Table 1 lists the PSNR of
different images. The PSNR of the tested images exceeded 30 db, which indicates that the
compression characteristic of the scenario was excellent and stable. Table 2 compares the
PSNR of different compression encryption algorithms for “Lena” (256 × 256). The PSNR of
our algorithm was 32.6176, which was higher than the other scenarios, which showed that
the newly proposed scenario was better.
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Table 1. The PSNR (db) of the proposed algorithm for different images.

Image PSNR

Lena 33.9387
Cameraman 32.3925

Boat 31.1828
Couple 31.1743
Einstein 32.4941
Peppers 32.4268

Table 2. The PSNR (db) comparison for several schemes.

Image Ref. [31] Ref. [48] Ref. [50] Ours

Lena (256 × 256) 30.71 29.23 31.2302 32.6176
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5.2.2. Structural Similarity Index Measurement (SSIM)

A momentous indicator to survey the similarity of two images is SSIM, and its range is
[0, 1]. The larger the SSIM [51], the greater the similarity of the two images. The expression
of SSIM is

SSIM(X, Y) =
(2µXµY + (K1L)2)(2σXY + (K2L)2)

(µ2
X + µ2

Y + (K1L)2)(σ2
X + σ2

Y + (K2L)2)
(32)

In Equation (32), X and Y are the plaintext and reconstructed image. µX and σ2
X are

the mean value and the variance of X, respectively. µY and σ2
Y are the mean value and

the variance of Y, respectively. σXY is the covariance of X and Y. M is the total number of
windows. L = 255. K1 = 0.01, K2 = 0.03. We tested the SSIM values for multiple images, as
shown in Table 3. The SSIM of the images was close to 1, which indicates that the plaintext
image and reconstructed image had high similarity (i.e., the reconstruction algorithm
achieved good results). Table 4 compares the SSIM of different compression encryption
algorithms for “Lena” (256 × 256). The SSIM calculated by the newly proposed scenario
was larger, which shows that the image reconstructed by the new scenario was more similar
to the plaintext image.

Table 3. The SSIM for different images.

Image SSIM

Lena 0.9001
Cameraman 0.8323

Boat 0.8447
Couple 0.8313
Einstein 0.8704
Cattle 0.8021

Peppers 0.7082

Table 4. The SSIM comparison for different algorithms.

Image Ref. [48] Ref. [50] Ours

Lena (256 × 256) 0.7129 0.6475 0.7337

5.3. Key Space Analysis

The key space of a scenario must be larger than 2100 to ensure that the algorithm is
good and secure enough against brute force attacks [52].

The new algorithm has an internal key α and utilizes the hash-384 algorithm. As-
suming that the computer has a computational precision of 10−14, the entire key space is
1014 + 2384, which is much larger than 2100. Thus, the scenario has a large key space and
can resist violent attacks.

5.4. Key Sensitivity Analysis

A good encryption scenario is sensitive to the key, that is, even though the key changes
very little, the encrypted image has a great difference.

The number of pixel change rate (NPCR) and the unified average change intensity
(UACI) can be used to test the sensitivity of the scenario. These are expressed as

NPCR = 1
M×N

M
∑

i=1

N
∑

j=1
|Sign(C1(i, j)− C2(i, j))|

UACI = 1
M×N

M
∑

i=1

N
∑

j=1

|C1(i,j)−C2(i,j)|
255

(33)

where C1 and C2 are two different cipher images. Table 5 lists the NPCR and UACI for
multiple images.



Entropy 2022, 24, 885 13 of 22

Table 5. The key sensitivity.

Image
Key

NPCR UACI

Lena 99.5911% 33.4233%
Einstein 99.6094% 33.5026%
Couple 99.6117% 33.4125%
Cattle 99.6017% 33.3956%
Boat 99.6056% 33.4358%

Cameraman 99.5834% 33.5923%
Peppers 99.6307% 33.5688%
Barbana 99.5880% 33.5250%

The NPCR and UACI were close to 99.6094% and 33.4635%, respectively, which
indicates that the scenario is sensitive to key.

5.5. Statistical Attack Analysis
5.5.1. Histogram Analysis

A momentous index to appraise the performance of encryption scenarios is the his-
togram. Figure 5 displays the histogram of multiple plaintext images and ciphertext images.
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The histograms of the plaintext images were uneven, but those of the cipher im-
ages were similar to the uniform distribution, which illustrates that the scenario resisted
statistical attacks.

In addition, we utilized the histogram variance to survey the effectiveness of this algorithm.

Var(Z) =
1

2562

N−1

∑
i=0

N−1

∑
j=0

(zi − zj)
2

2
(34)

In Equation (34), zi and zj represent the number of pixel values corresponding to i and
j. The histogram variance of the plaintext images were very large, and the maximum could
reach 106, while those of the ciphertext images were small, only 102, and the minimum was
115.8203 in Table 6. This shows that the histogram of the ciphertext images was flatter.

Table 6. The histogram variance of multiple images.

Image Original Image Encrypted Image

Lena 1.0827 × 106 461.9766
Couple 1.1955 × 106 515.0078

Cameraman 1.6741 × 106 584.1484
Boat 1.5359 × 106 558.7188

Einstein 1.1987 × 106 455.4297
Cattle 7.5077 × 105 466.6719

Barbana 6.0765 × 105 136.4609
Peppers 3.6777 × 104 115.8203

Table 7 compares the histogram variance of “Lena” (256 × 256) with different al-
gorithms. The histogram variance of the new scenario was smaller, explaining that the
histogram was flatter. That is, the newly proposed algorithm was more resistant to statisti-
cal attacks.

Table 7. The histogram variance comparison of “Lena” (256 × 256) using different algorithms.

Plain Image Ref. [37] Ref. [50] Ours

3.0665 × 104 181.7109 121.4063 105.6328

To appraise the performance of the new scenario to resist statistical attacks, this paper
utilized the chi-square [53], the expression of which is

χ2 =
28−1

∑
i=0

(ui − u0)
2

u0
(35)

In Equation (35), ui is the frequency of value i. u0 = MN/28. Table 8 enumerates the
chi-square results of multiple images. The values for seven images were less than 293.2478
(255 degrees of freedom and 5% confidence), which shows that this algorithm has good
effects and can resist statistical attack. Table 9 compares the results of several scenarios for
“Lena” (256 × 256). The chi-square value of the newly proposed encryption scenario was
the smallest, which shows that this scenario was more resistant to statistical attacks.

Table 8. The chi-square values.

Image Lena Couple Einstein Cattle Boat Peppers Barbana

Chi-square 230.9883 257.5039 227.7148 233.3359 279.3594 231.6406 272.9219
270,681.8 298,865.2 299,672.0 187,692.2 383,969.7 106,323.0 1,248,061.3
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Table 9. The chi-square of “Lena” (256 × 256) using different algorithms.

Plain Image Ref. [37] Ref. [50] Ours

30,665.7 253.3125 242.8125 211.2656

5.5.2. Correlation Analysis

The encryption scenario is to break the correlation of the original image. The evaluation
index to assess the effectiveness of the scenario is the correlation coefficient, the expression
of which is

ρxy = cov(x,y)√
D(x)D(y)

cov(x, y) = 1
N

N
∑

i=1
(xi − 1

N

N
∑

i=1
xi)(yi − 1

N

N
∑

i=1
yi)

D(x) = 1
N

N
∑

i=1
(xi − 1

N

N
∑

i=1
xi)

2
(36)

In Equation (36), x and y are the image adjacent pixels. Table 10 enumerates the
correlation coefficients of different original images and ciphertext images. The comparison
values of “Lena” (256 × 256) with several encryption scenarios are enumerated in Table 11.

Table 10. The correlation coefficients for different images.

Image Horizontal Vertical Diagonal

Lena
0.9840 0.9835 0.9717
−0.0032 −0.0037 −0.00085

Cameraman
0.9853 0.9870 0.9765
−0.00014 −0.0017 0.0030

Boat
0.9833 0.9727 0.9617
−0.0015 0.0058 −0.0018

Couple 0.9624 0.9650 0.9386
0.0037 0.00045 0.0014

Einstein
0.9687 0.9644 0.9548
−0.0014 −0.00043 −0.00021

Cattle
0.8573 0.9103 0.8423
−0.0057 −0.0016 −0.0015

Peppers 0.9490 0.9452 0.9039
−0.0048 −0.0021 −0.0014

Barbana
0.9056 0.7542 0.7158
−0.00066 0.0057 0.0018

Table 11. The correlation coefficients of “Lena” (256 × 256) using different schemes.

Direction Horizontal Vertical Diagonal

Plain image 0.9746 0.9651 0.9539
Ref. [31] 0.0009 −0.0062 −0.0087
Ref. [37] −0.0160 −0.0044 −0.0052
Ref. [48] −0.0015 0.0041 0.0069
Ref. [50] 0.0076 −0.0066 −0.0035

Ours 0.0012 −0.0041 0.0032

The correlation coefficients of the plaintext images were close to 1, but those of the
ciphertext images were about 0 in Table 8, and that value in our scenario was smaller in
Table 11, which shows that the scenario had better resistance to statistical attacks.

The correlation of “Lena” is presented in Figure 6 for clear observation. The correlation
of the plaintext image in three directions was diagonal, but those of the ciphertext image
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were interspersed over the whole range. This shows that the encryption scenario effectively
abated the correlation.
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5.5.3. Information Entropy (IE)

The quota to assess the overall randomness of images is the IE and its expression is

H(s) = −
M

∑
i=0

p(si) log2 p(si) (37)

In Equation (37), M = 255. p(si) is the probability of si. The closer the IE is to 8, the
better the algorithm [54].

Table 12 lists the IE of several original and ciphertext images. Table 13 lists the
comparison value of “Lena” (256 × 256) using different algorithms.

The IE of the ciphertext image was extremely close to 8 in Table 12. The IE of the newly
encryption algorithm was higher than the other algorithms in Table 13. Therefore, this
algorithm had very good results. The encrypted image had stronger randomness and was
resistant to statistical attacks.
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Table 12. The IE of several images.

Image Original Image Encryption Image

Lena 7.3920 7.9987
Couple 7.2010 7.9986

Cameraman 7.0480 7.9987
Boat 7.1914 7.9985

Einstein 7.2655 7.9987
Cattle 7.3579 7.9987

Peppers 7.5327 7.9949
Barbana 5.0030 7.9940

Table 13. The information entropy of “Lena” (256 × 256) using different algorithms.

Plain Image Ref. [37] Ref. [48] Ref. [50] Ours

7.5683 7.9944 7.9935 7.9946 7.9954

5.5.4. Local Information Entropy (LIE)

A momentous metric for analyzing the randomness of the local image is the LIE.
Some non-overlapping image blocks are randomly selected and the LIE can be obtained by
calculating the IE of each block and then taking the average value. The expression is

LHk,TB(P) =
k

∑
i=1

H(Si)

k
(38)

where H(Si) is the IE of sub-block Si. Let k = 30, TB = 1936 for calculation. When the
confidence level is 0.05, the range of LIE is [7.901901305, 7.903037329] [32]. Table 14 lists
the LIE of different images (512 × 512). The LIE of all test images passed the experiment,
which shows that the local image had good randomness.

Table 14. The LIE (512 × 512).

Image LIE Result

Lena 7.902316286 Pass
Cameraman 7.902787296 Pass

Boat 7.902113612 Pass
Cattle 7.902520981 Pass

Einstein 7.902336151 Pass
Couple 7.902842150 Pass

5.6. Differential Attack Analysis

An excellent encryption scenario is sensitive to the plaintext image, in other words,
even though the original image has very small changes, the encrypted image can be
completely different.

The NPCR and UACI are indicators used to measure whether the algorithm can resist
differential attacks. When the NPCR > NPCR*α, the NPCR passes the test. When the UACI
is between [UACI*−α, UACI*+

α], the UACI passes the test [55]. The NPCR and UACI
statistical tests are shown in Tables 15 and 16.

The NPCR and UACI of all test images were very close to the ideal values, and
all passed the NPCR and UACI tests. Therefore, the algorithm could effectively resist
differential attacks.
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Table 15. The NPCR statistical test.

Image NPCR Theoretical NPCR Critical Value

512 × 512
N*0.001 = 99.5717% N*0.01 = 99.5810% N*0.05 = 99.5893%

0.001-level 0.01-level 0.05-level

Lena 99.5941% Pass Pass Pass

Einstein 99.6460% Pass Pass Pass

Couple 99.5987% Pass Pass Pass

Cattle 99.6185% Pass Pass Pass

Boat 99.6185% Pass Pass Pass

Cameraman 99.6048% Pass Pass Pass

Image NPCR Theoretical NPCR Critical Value

256 × 256
N*0.001 = 99.5341% N*0.01 = 99.5527% N*0.05 = 99.5693%

0.001-level 0.01-level 0.05-level

Lena 996368% Pass Pass Pass

Barbana 996368% Pass Pass Pass

Peppers 996154% Pass Pass Pass

Table 16. The UACI statistical test.

Image UACI Theoretical UACI Critical Value

512 × 512

N*−0.001 = 33.3115% N*−0.01 = 33.3445% N*−0.05 = 33.3730%

N*+
0.001 = 33.6156% N*+

0.01 = 33.5826% N*+
0.05 = 33.5541%

0.001-level 0.01-level 0.05-level

Lena 33.4078% Pass Pass Pass

Einstein 33.5236% Pass Pass Pass

Couple 33.4989% Pass Pass Pass

Cattle 33.5140% Pass Pass Pass

Boat 33.4173% Pass Pass Pass

Cameraman 33.4373% Pass Pass Pass

Image UACI Theoretical UACI Critical Value

256 × 256

N*−0.001 = 33.1594% N*−0.01 = 33.2255% N*−0.05 = 33.2824%

N*+
0.001 = 33.7677% N*+

0.01 = 33.7016% N*+
0.05 = 33.6447%

0.001-level 0.01-level 0.05-level

Lena 33.4428% Pass Pass Pass

Barbana 33.4929% Pass Pass Pass

Peppers 33.5082% Pass Pass Pass

5.7. NIST SP 800-22 Analysis

The NIST SP 800-22 statistical test suite is published by the National Institute of
Standards and Technology for testing sequences for randomness [56]. Therefore, we set the
confidence level to 0.01 to evaluate the randomness of the ciphertext image. The results
are listed in Table 17. All data passed the test, indicating that the ciphertext image had
good randomness.
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Table 17. The NIST SP 800-22 test.

Test Items p-Value Results

Frequency test 0.332829 Pass
Block frequency test 0.589821 Pass
Cusum-forward test 0.577516 Pass
Cusum-reverse test 0.201550 Pass

Runs test 0.315933 Pass
Longest run test 0.471291 Pass

Rank test 0.452825 Pass
FFT test 0.510298 Pass

Non-overlapping template test 0.510816 Pass
Overlapping template test 0.387884 Pass

Universal test 0.545638 Pass
Approximate entropy test 0.463226 Pass

Random-excursions test (x = −1) 0.159822 Pass
Random-excursions variant test (x = 1) 0.124450 Pass

Serial1 test 0.550327 Pass
Serial2 test 0.584547 Pass

Linear complexity test 0.403982 Pass

5.8. Time Complexity

Time complexity is an important quantitative criterion to evaluate the feasibility of an
encryption algorithm, and it requires the algorithm to be easy to execute. If the running
time of the algorithm is too long, it does not meet the requirements of real-time performance.
This paper tested the encryption time of multiple images, which are presented in Table 18.
The time of all 256 × 256 images was less than 1 s, and the time of 512 × 512 images was
less than 3 s, which greatly proves that the algorithm is real-time.

Table 18. The encryption runtime (Unit: s).

Image Lena Couple Einstein Cattle Boat Lena Peppers Barbana

Time 2.8783 2.9142 2.8466 2.9652 2.8521 0.9598 0.9463 0.9421

5.9. Anti-Noise Attack Analysis

As it is subject to various noise interference during transmission, an excellent encryp-
tion scenario should resist noise attacks. The salt and pepper noise is tested at intensities of
0.005%, 0.05%, and 0.1% in “Lena”, as shown in Figure 7.
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Even though the added noise intensity was 0.1%, the cipher image could be decrypted
and information could be viewed. This shows that the scenario resisted noise attacks.

In order to measure the anti-noise ability of the encryption algorithm more accurately,
this paper tested the PSNR. For three different noise intensities, their corresponding PSNR
are presented in Table 19. When the noise intensity was 0.005%, the PSNR was 33.2311,
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even if the noise intensity increased to 0.1%, the PSNR was greater than 29, which shows
that the algorithm had a strong resistance to noise.

Table 19. The PSNR test for noise resistance.

Noise 0.005% 0.05% 0.1%

PSNR 33.2311 29.5916 29.1613

6. Discussion

The encryption algorithm based on the chaotic system and compressed sensing pro-
posed in this paper could resist various attacks, and had security and timeliness. However,
it also has certain limitations. The measurement matrix is generated by the universal
method, that is, the chaotic sequence generated by the chaotic system constitutes the mea-
surement matrix. We should conduct further research in the future to make better use of
the chaotic characteristics of the chaotic system to construct a better measurement matrix
to make the compression and encryption more convenient and obtain better compression
and encryption effects.

7. Conclusions

The paper proposed a new image compression and encryption scenario based on
CS and two chaotic maps. The pixel transform operation was performed before the com-
pressed sensing first, which is beneficial to increase the image reconstruction quality. In
the quantization process, we made full use of the performance of the sigmoid function to
quantize the matrix to the interval [0, 255]. In the scrambling process, we combined rotation
with row and column scrambling, which tremendously reduced the correlation. Finally, the
cipher image was created by double XOR after the bit-cycle operation.

After a series of tests and experimental analysis, the new scenario had a huge key space
and was sensitive to keys. In addition, various experiments against statistical analysis
attacks were carried out in this paper such as histograms and their statistical analysis,
information entropy, correlation, and local information entropy. The information entropy
was very close to 8, and the correlation coefficient was close to 0. Subsequently, the
algorithm was also resistant to differential attacks, brute force attacks, and noise attacks.
All of the test images were close to the standard values of the NPCR and UACI and passed
the statistical analysis test, and their PSNR exceeded 29 for 0.1% intensity noise. The bit
sequence of the ciphertext image passed the NIST randomness test.

The significance of this paper was to combine the two chaotic systems with compressed
sensing, which can not only fully utilize the practicability of chaos theory for image
encryption, but can also compress ciphertext images to meet the needs of the transmission
bandwidth. The encryption algorithm proposed in this paper is not only resistant to various
attacks, but also has real-time performance and is a secure encryption scheme.

In the future, we should focus on the further combination of the chaotic system and
compressed sensing and its application in medicine or larger fields.
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