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Abstract: Assembly theory (referred to in prior works as pathway assembly) has been developed
to explore the extrinsic information required to distinguish a given object from a random ensemble.
In prior work, we explored the key concepts relating to deconstructing an object into its irreducible
parts and then evaluating the minimum number of steps required to rebuild it, allowing for the reuse
of constructed sub-objects. We have also explored the application of this approach to molecules,
as molecular assembly, and how molecular assembly can be inferred experimentally and used for
life detection. In this article, we formalise the core assembly concepts mathematically in terms of
assembly spaces and related concepts and determine bounds on the assembly index. We explore
examples of constructing assembly spaces for mathematical and physical objects and propose that
objects with a high assembly index can be uniquely identified as those that must have been produced
using directed biological or technological processes rather than purely random processes, thereby
defining a new scale of aliveness. We think this approach is needed to help identify the new physical
and chemical laws needed to understand what life is, by quantifying what life does.

Keywords: complexity; information; graphs; biosignatures

1. Introduction

In the thought experiment known as the “infinite monkey theorem”, an infinite number
of monkeys, each having a typewriter, produce strings of text by hitting keys at random [1].
Given infinite resources, it can be deduced that the monkeys will produce all possible
strings, including the complete works of Shakespeare. However, when constrained to
the bounds of the physical universe, the likelihood that any particular text is produced
by a finite number of monkeys drops rapidly with the length of the text [2]. This can
also be extended to physical objects such as cars, planes, and computers, which must
be constructed from a finite set of objects—just as meaningful text is constructed from
a finite set of letters. Even if we were to convert nearly all matter in the universe to
object-constructing monkeys, and give them the age of the universe in which to work, the
probability that any monkey would construct any sufficiently complex physical object is
negligible [3]. This is an entropic argument—the number of possible arrangements of the
objects of a given composition increases exponentially with the object size. For example,
if the number of possible play-sized strings is sufficiently large, it would be practically
impossible to produce a predetermined Shakespearean string without the author. This
argument implies that information external to the object itself is necessary to construct
an object if it is of sufficiently high complexity [4,5]. In biology, the requisite information
partly comes from DNA, the sequence of which has been acquired through progressive
rounds of evolution. Although Shakespeare’s works are—in the absence of an appropriate
constructor [6] (an author)—as likely to be produced as any other string of the same length,
our knowledge of English grammar and syntax allows us to partition the set of possible
strings, distinguishing the very small proportion that contains meaningful information.
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Biological systems have access to a lot of information—genetically, epigenetically,
morphologically, and metabolically—and the acquisition of that information occurs via
evolutionary selection over successive cycles of replication and propagation [7]. One way
to look at such systems is by comparing the self-dissimilarity between different classes of a
complex system, allowing a model-free comparison [8]. However, it has also been suggested
that much of this information is effectively encrypted, with the heritable information being
encoded with random keys from the environment [9]. As such, these random keys are
recorded as frozen accidents and increase the operative information content, as well as
help direct the system during the process of evolution, producing objects that can construct
other objects [10]. This is significant since one important characteristic of objects produced
autonomously by machinery (such as life), which itself is instructed in some way, is their
relative complexity as compared to objects that require no information for their assembly,
beyond what chemistry and physics alone can provide. This means that for complex objects
there is “object-assembly” information that is generated by an evolutionary system and
is not just the product of laws of physics and chemistry alone. Biological systems are the
only known source of agency in the universe [11], and it has been suggested that new
physical laws are needed to understand the phenomenon of life [12]. The challenge is how
to explore the complexity of objects generated by evolutionary systems without a priori
having a model of the system.

Herein, we present the foundations of a new theoretical approach to agnostically
bound the amount of information required to construct an object, via an “assembly” process.
This is achieved by considering how the object can be deconstructed into its irreducible
parts and then evaluating the minimum number of steps necessary to reconstruct the object
along any pathway. The analysis of assembly is done by the recursive deconstruction
of a given object using the shortest paths, and this can be used to evaluate the effective
assembly index for that object [13]. In developing assembly theory, we have been motivated
to create an intrinsic measure of an object forming through random processes, where the
only knowledge required of the system is the basic building blocks and the permitted
ways of joining structures together. This allows us to determine when an extrinsic agent
or evolutionary system is necessary to construct the object, permitting the search for
complexity in the abstract, without any specific notions of what we are looking for. Thus,
we remove the requirement for an external imposition of meaning (see Figure 1).

Figure 1. The assembly process (centre) [13] is compared to the implementations of Shannon en-
tropy [14] (left) and Kolmogorov complexity [15] (right) for blue and white blocks. The Assembly
process leads to a measure of structural complexity that accounts for the structure of the object and
how it could have been constructed, which is in all cases computable and unambiguous.

The development of the assembly index [13] was motivated by the desire to define a
biological threshold, such that any object found in abundance with an assembly index above
the threshold would have required the intervention of one or more biological processes to
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form [16]. The assembly index of an object is the length of the shortest pathway to construct
the object starting from its basic building blocks. It should be noted that this approach
is entirely classical [17], allowing the quantification of pathways through assembly space
probabilistically as a way to understand what life does. We construct the object using
a sequence of joining operations, where at each step any structures already created are
available for use in subsequent steps; see Figure 2. The shortest pathway approach is in
some ways analogous to Kolmogorov complexity [15], which in the case of strings is the
shortest computer program that can output a given string. However, assembly differs in
that we only allow joining operations as defined in our model. This restriction is intended
to allow the assembly process to mimic the natural construction of objects through random
processes, and it also importantly allows the assembly index of an object to be computable
for all finite objects (see Theorem 4 in Section 3.5). Importantly, the assembly index is
measurable for molecules, which further sets assembly apart from Kolmogorov complexity
and other measures of algorithmic information. The assembly process can also be compared
to the concept of thermodynamic depth [18], which is defined as the amount of information
that is needed to specify which of the possible trajectories a system followed to reach a
given state.

Figure 2. The basic assembly concept is demonstrated here. Each of the final structures can be created
from white and blue basic objects in four joining operations, giving an assembly index of 4. Pathway
(a) shows the creation of a structure that can only be formed in four steps by adding one basic object
at a time, while pathway (c) represents the maximum increase in size per step, by combining the
largest object in the pathway with itself at each stage. Pathway (b) is an intermediate case.

Given a system where objects interact randomly and with equal probability, it is
intuitively clear that the likelihood of an object being formed in n steps decreases rapidly
with n. However, it is also true that a highly contrived set of biases could guarantee the
formation of any object. For example, this could occur if we were to model the system such
that any interactions contributing to the formation of the object were certain to be successful,
while other interactions were prohibited. For complex objects, such a serendipitous set of
biases would seem unlikely in the absence of external information about the end products,
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but physical systems generally do have biases in their interactions, and we can explore
how these affect the likelihood of the formation of objects. However, we expect that for
any perceived “construction processes” that require a large enough set of highly contrived
biases, we can deduce that external information is required in the form of a “machine”
that is doing the construction. In our recent work on molecular complexity, this notion
was explored through the construction of a probabilistic model, in which steps through
an assembly pathway were modelled as choices on a decision tree (see the supplementary
information of [19]), with the probability of choices drawn from a random distribution.
By then adding different levels of bias to that distribution, we explored the change in
probability of the most probable pathway, as the path length increased. We found that even
in the case of fairly substantial bias, the highest path probability drops significantly with
path length. Therefore, an abundance of objects with high enough assembly indices would
need specific sequences of biases that are beyond what one would expect an abiotic system
that relies only on the information encoded by the laws of physics to provide. The location
of that threshold will be system-dependent, but we can be confident a threshold region
exists, above which objects in an assembly space require external processes to reach. The
processes that allow for the crossing of that threshold may be critical to study to determine
how life can happen.

Technological processes are bootstrapped to biological ones, and hence, by extension,
the production of technosignatures involves processes that necessarily have a biological ori-
gin. Examples of biosignatures and technosignatures include chemical products produced
by the action of complex molecular systems such as networks of enzymes [20] and objects
whose creation involved any biological organisms such as technological artefacts [21],
complex chemicals made in the laboratory [22], and the complete works of Shakespeare.
Finding the object in some abundance, or a single object with a large number of complex,
but precisely repeating features, is required in order to distinguish single random occur-
rences from deliberately generated objects. For example, a system which produces long
random strings will generate some that have a high assembly index, but not in abundance.
Finding the same long string more than once will tell us that there is a bias in the system
towards creating that string; thus, searching for signatures of life should involve looking
for objects with a high assembly index found in relatively high abundance. We can also
deduce biological origin from repeated structures with a high assembly index, found within
single objects—for example, repeated complex phrases within a long string. This approach
would allow us to determine the biological origin of a Shakespeare play without knowing
anything about language or grammar.

In this manuscript, we explore the foundations of assembly theory, as well as some of
its properties and variants, and determine bounds on the assembly index. We offer some
examples of the use of assembly theory in systems of varying dimensionality and describe
some potential real-world applications of this approach.

2. Results
2.1. Graph Theoretical Prerequisites

In constructing an assembly space, we consider a set of objects, possibly infinitely
many objects, which can be combined in various ways to produce others. If an object a
can be combined with some other object to yield an object b, we represent the relationship
between a and b by drawing a directed edge or arrow from a to b. Altogether, this structure
is a quiver, also called a directed multigraph, as we allow for the possibility that there is
more than one way to produce b from a; that is, there may be more than one edge from a
to b.

Definition 1. A quiver Γ consists of

1. A set of vertices V(Γ);
2. A set of edges E(Γ);
3. A pair of maps sΓ, tΓ : E(Γ)→ V(Γ) .
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For an edge e ∈ E(Γ), sΓ(e) is referred to as the source and tΓ(e) the target of the edge,
and we will often leave off the subscripts when the context is clear, e.g., s and t. We will
often describe an edge e ∈ E(Γ) with s(e) = a and t(e) = b as e ∼ [ba]. This does not mean
that e is a unique edge with endpoints a and b; it is possible that two edges e 6= f have the
same endpoints e ∼ f ∼ [ba].

From here, we consider paths—that is, sequences of edges—that describe the pro-
cess of sequentially combining objects to yield intermediate objects and ultimately some
terminal object.

Definition 2. If Γ is a quiver, a path γ = an . . . a1 in Γ of length n ≥ 1 is a sequence of edges,
such that t(ai) = s(ai+1) for 1 ≤ i ≤ n− 1 . The functions s and t can be extended to paths
as s(γ) = s(a1) and t(γ) = t(an) . We write |γ| to denote the length, or number of edges, in
the path. Additionally, for each vertex x ∈ Γ there is a zero path, denoted ex, with length 0 and
s(ex) = t(ex) = x.

A natural point is that combining two objects should never yield something that can
be used to create either of those objects. Essentially, there are no directed cycles—sequences
of edges that form a closed cycle—within the quiver.

Definition 3. A path γ in a quiver Γ is a directed cycle if |γ| ≥ 1 with t(γ) = s(γ).

Definition 4. A quiver Γ is acyclic if it has no directed cycles.

We can think of an object b as being reachable from an object a if there is a path from a
to b, and this relationship forms a partial ordering on the quiver if the quiver is acyclic.

Definition 5. Let Γ be an acyclic quiver and let x, y ∈ V(Γ). We say y is reachable from x if there
exists a path γ such that s(γ) = x and t(γ) = y, where |γ| ≥ 0.

Lemma 1. Let Γ be an acyclic quiver, and define a binary relation ≤ on the vertices of Γ such that
x ≤ y if and only if y is reachable from x. (V(Γ),≤) is a partially ordered set, and ≤ is referred to
as the reachability relation on Γ.

Proof. For≤ to be a partial ordering on V(Γ), we need to show that it is reflexive, transitive
and antisymmetric. Reflexivity follows directly from the definition of reachability as x is
reachable from itself via the zero path ex. To show transitivity, let a ≤ b and b ≤ c. If a = b
or b = c, then we are done. Otherwise, there are paths γba = um . . . u1 from a to b and
γcb = vn . . . v1 from b to c. The composite path γcb ◦ γba = vn . . . v1un . . . u1 is a path from
a to c; thus c is reachable from a so that a ≤ c. Now consider antisymmetry and suppose
that a ≤ b and b ≤ a. Then there exist paths γba and γab from a to b and b to a, respectively.
Then γab ◦ γba is a path from a to itself. Since Γ is acyclic, this implies that γab ◦ γba = ea,
and consequently that γab = γba = ea. Thus, a = b and ≤ is antisymmetric. �

The idea of reachability allows us to think of all objects that are reachable from (or
above) a given object x, the upper quiver of x. Similarly, we can think of all objects that can
reach x, the lower quiver.

Definition 6. Let Γ be an acyclic quiver and let ≤ be the reachability relation on it. The upper
quiver of x ∈ V(Γ) is x ↑ with vertices V(x ↑) = {y ∈ V(Γ)|x ≤ y}, edges
E(x ↑) = {e ∈ E(Γ)|sΓ(e), tΓ(e) ∈ V(x ↑)}, sx↑ = sΓ

∣∣
E(x↑), and tx↑ = tΓ

∣∣
E(x↑). The lower

quiver of x ∈ V(Γ) is x ↓ with vertices V(x ↓) = {y ∈ V(Γ)|y ≤ x}, edges
E(x ↓) = {e ∈ E(Γ) |sΓ(e), tΓ(e) ∈ V(x ↓)}, sx↓ = sΓ

∣∣
E(x↓), and tx↓ = tΓ

∣∣
E(x↓).
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Similarly, the upper quiver of a subset Q ⊆ V(Γ) in Γ is Q ↑ with vertices
V(Q ↑) = {y ∈ V(Γ)|(∃q ∈ Q)q ≤ y}, edges E(Q ↑) = {e ∈ E(Γ)|sΓ(e), tΓ(e) ∈ V(Q ↑)},
sQ↑ = sΓ

∣∣
E(Q↑), and tQ↑ = tΓ

∣∣
E(Q↑). The lower quiver of a subset is defined dually.

Going further, we can consider those objects that cannot be reached as minimal and
those that cannot reach anything as maximal. An object which can be reached by finitely
many objects is called finite.

Definition 7. Let Γ be an acyclic quiver, ≤ be the reachability relation on it, and x a vertex in Γ.
Then, x is said to be maximal in Γ if, whenever x ≤ y in Γ, we have x = y. Dually, x is maximal
in Γ if, whenever y ≤ x in Γ, we have x = y. The set of all maximal vertices of Γ is denoted max(Γ)
with min(Γ) defined dually.

Definition 8. A quiver Γ is said to be finite if its vertex and edge sets are both finite. Similarly, a
vertex x in a quiver Γ is said to be finite if x ↓ in Γ is a finite quiver.

With this idea of a quiver of objects defined, we can consider asking about subsets of
objects and relations between them in the context of the quiver as a whole.

Definition 9. Let Γ and Γ′ be quivers. Then Γ′ is a subquiver of Γ if V(Γ′) ⊆ V(Γ),
E(Γ′) ⊆ E(Γ), sΓ′ = sΓ|E(Γ′) and tΓ′ = tΓ|E(Γ′). We will denote this relationship as Γ′ ⊆ Γ.

Lemma 2. If X, Y, and Z are quivers, such that X ⊆ Y and Y ⊆ Z, then X ⊆ Z. That is, the
binary relation ⊆ on quivers is transitive.

Proof. Suppose X, Y, and Z are quivers with X ⊆ Y and Y ⊆ Z. Then,
V(X) ⊆ V(Y) ⊆ V(Z), so that V(X) ⊆ V(Z). Similarly, E(X) ⊆ E(Z). Next, since
sX = sY|E(X), sY = sZ|E(Y) and E(X) ⊆ E(Y), sX = sZ|E(X). The same argument applies
to show that tX = tZ|E(X). Thus X ⊆ Z, so that ⊆ is transitive. �

Finally, we will need to consider how to map one quiver to another in a consistent
fashion, maintaining the basic relational structure of the original quiver.

Definition 10. Let Γ and Γ′ be quivers. A quiver morphism, denoted m : Γ→ Γ′ , consists
of a pair m = (mv, me) of functions mv : V(Γ)→ V(Γ′) and me : E(Γ)→ E(Γ′) such that
mv ◦ sΓ = sΓ′ ◦me and mv ◦ tΓ = tΓ′ ◦me. That is, the following diagrams commute:
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2.2. Assembly Spaces

The assembly process is the process of constructing some object, which can be decom-
posed into a finite set of basic objects, through a sequence of joining operations. During this
process, objects already constructed can be used in subsequent steps. We formally define
this in the context of an assembly space (see Figure 3), as follows:

Definition 11. An assembly space is an acyclic quiver Γ together with an edge-labelling map
φ : E(Γ)→ V(Γ) which satisfies the following axioms:

1. min(Γ) is finite and non-empty;
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2. Γ = min(Γ) ↑ ;
3. I f a is an edge from x to z in Γ with φ(a) = y, then there exists an edge b from y to z with

φ(b) = x.

Definition 12. The set of minimal vertices of an assembly space Γ is referred to as the basis of Γ and
is denoted BΓ. Elements of the basis are referred to as basic objects, basic vertices, or basic elements.

An assembly space as in definition 11 is denoted (Γ, φ), or simply Γ where appropriate.
x ∈ Γ is taken to mean that x is a vertex of the quiver. Within the assembly space, we can
think of the vertices as objects and traversal along the directed edge as the construction of
the target object from the source object, with the edge label determining the object that is
combined with the source to construct the target. The assembly process starts from a set of
basic objects (axiom 1) from which all other objects can be constructed (axiom 2). Axiom 3
requires that a symmetric edge exists for every edge within the assembly space wherein
the roles of source and edge label are reversed. Intuitively, this can be thought of as saying:
if you can combine x with y to construct z, then you can also combine y with x to construct
z. Axiom 3 also formalises the requirement that both items in the construction lie below
the target in the assembly tree, i.e., only objects already assembled can be used in further
assembly steps (see Lemma 3).

Lemma 3. Let (Γ, φ) be an assembly space and let x ∈ Γ. If e ∼ [ba] is an edge in Γ with
a, b ∈ x ↓ , then φ(e) ∈ x ↓ .

Proof. Since Γ is an assembly space, we have φ(e) ≤ b where ≤ is the reachability relation
on Γ, since there is an arrow from φ(e) to b by point 3 of Definition 11. By construction,
b ≤ x so that φ(e) ≤ x. Therefore, φ(e) ∈ x ↓ . �

Within an assembly space, an assembly pathway is a sequence that respects the order
of the reachability relation. We can think of an assembly pathway as being an order of
construction for all the objects within the space, ensuring that the objects required for each
step are available earlier in the sequence.

Definition 13. An assembly pathway of an assembly space Γ is any topological ordering of the
vertices of Γ with respect to the reachability relation.

Definition 14. An assembly space Γ with reachability relation ≤ is said to be split-branched if
for all x, y ∈ Γ, x ≤ y or y ≤ x whenever V(x ↓) ∩V(y ↓) 6= ∅.

In a split-branch assembly space, other than basic objects, when combining two
different objects, neither of them can have an assembly pathway that uses objects created
in the construction of the other. They may use objects that are considered identical (e.g.,
the same string) but these are separate objects within the space. Since we can define an
assembly map to a new space where these separate but identical objects are mapped to
the same object, the split-branched assembly index for a system is an upper bound for
the assembly index on that system (see Section 3.4). Calculations of the assembly index
in a split-branch space can be less computationally intensive than in the corresponding
non-split-branch space. A split-branch algorithm was used in our recent work on molecular
assembly [19].

2.3. Assembly Subspaces and the Assembly Index

We define an assembly subspace, and the rooted property, as follows:
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Definition 15. Let (Γ, φ) and (Γ′, ψ) be assembly spaces. Then (Γ′, ψ) is an assembly sub-
space of (Γ, φ) if Γ′ is a subquiver of Γ and ψ = φ | E(Γ′). This relationship is denoted as
(Γ′, ψ) ⊆ (Γ, φ), or simply Γ′ ⊆ Γ, when there is no ambiguity.

Definition 16. Let Γ′ be an assembly subspace of Γ. Then Γ′ is rooted in Γ if BΓ is non-empty,
and BΓ′ ⊆ BΓ as sets.

An assembly subspace of Γ is simply an assembly space that contains a subset of the
objects in Γ and the relationships between them. It is rooted if its set of basic objects is a
nonempty subset of the basic objects of Γ. The assembly subspace relationship is transitive
(see Lemma 4).

Lemma 4. Let U, V, and W be assembly spaces with U ⊆ V and V ⊆W, then U ⊆W. Further,
if U is rooted in V and V is rooted in W, then U is rooted in W.

Proof. Let (U, φU), (V, φV), and (W, φW) be assembly spaces such that
(U, φU) ⊆ (V, φV) and (V, φV) ⊆ (W, φW). Since U, V and W are quivers, U ⊆ W
by the transitivity of ⊆ on quivers. Further, since φU = φV | E(U), φV = φW | E(V), and
E(U) ⊆ E(W), we have φU = φW | E(W). Thus, (U, φU) ⊆ (W, φW). That is, ⊆ is transitive
on assembly spaces. If U is rooted in V and V is rooted in W, then BU ⊆ Bv ⊆ BW . That is,
U is rooted in W. �

We can also show that for any object x in an assembly space Γ, the objects and relation-
ships that lie below x are a rooted assembly subspace of Γ.

Lemma 5. Let (Γ, φ) be an assembly space and let x ∈ Γ. Then,
(

x ↓, φ|x↓
)

is a rooted assembly
subspace of Γ.

Proof. We first show that
(

x ↓, φ|x↓
)

is an assembly space. Since (Γ, φ) is an assembly
space, it is the upper set of its basis, BΓ. As such, min(x ↓) is a non-empty subset of BΓ and
x ↓= min(x ↓) ↑ , giving us axiom 1. The remaining axiom follows directly from Lemma 6.
Additionally, we already have that min(x ↓) = Bx↓ ⊆ BΓ, so x ↓ is rooted in Γ. �

We now move on to the assembly index, which is a measure of how directly an object
can be constructed from basic objects.

Definition 17. The cardinality of an assembly space (Γ, φ) is the cardinality of the underlying
quiver’s vertex set, |V(Γ)|. The augmented cardinality of an assembly space (Γ, φ) with basis BΓ is
|V(Γ)\BΓ|= |V(Γ)|−|BΓ|.

Definition 18. The assembly index cΓ(x) of a finite object x ∈ Γ is the minimal augmented
cardinality of all rooted assembly subspaces containing x. This can be written c(x) when the
relevant assembly space Γ is clear from the context.

The cardinality is the number of objects within the assembly space, and the augmented
cardinality is the number of objects excluding basic objects. Thus, the assembly index of x
is the number of objects within the smallest rooted assembly subspace containing x, not
including the basic objects. We require the subspaces to be rooted, as otherwise, a space
containing only x would fit this criterion.
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Figure 3. An assembly space comprised of objects formed by joining together white and blue blocks.
Some of the arrows have been omitted for clarity. The dotted region is an assembly subspace, and the
topological ordering of the objects in the subspace represents a minimal assembly pathway for any
subspace containing the sequence of four blue boxes.

The assembly index can be thought of as how many construction steps we need to
take at a minimum to create x, starting from our set of basic objects. This is a key concept in
assembly theory, as it allows us to place a lower bound on the number of joining operations
required to make an object. The augmented cardinality is used as defining the assembly
index without including basic objects in accord with this physical interpretation of joining
objects in steps; however, the cardinality could instead be used if desired, and the difference
in the measures for any structures with shared basic objects would be a constant.

2.4. Assembly Maps

An assembly map is defined as follows:

Definition 19. Let (Γ, φ) and (∆, ψ) be assembly spaces. An assembly map is a quiver morphism
f : Γ→ ∆ such that ψ ◦ fe = fv ◦ φ. That is, the following diagram commutes:
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assembly space to the space of integers under addition, in which each object maps to an
integer representing the number of basic objects it is comprised of.

Figure 4. An assembly map that maps an assembly space of white and blue blocks onto integers
representing the object size.

Assembly maps can be useful for finding a lower bound to the assembly index (see
Section 3.4), which can allow for mapping to systems that may be more computationally
tractable than the main system of interest. The following theorem provides a basis for
the lower bounds, the essential point being that the image of an assembly space under an
assembly map is an assembly space.

Theorem 1. If f : Γ→ ∆ is an assembly map between assembly spaces (Γ, φ) and (∆, ψ), then
( f (Γ), ϕ) with ϕ = ψ|E( f (Γ)) as an assembly subspace of ∆.

Proof. See Appendix B. �

2.5. Bounds on the Assembly Index

In this section, we look at some bounds on the assembly index. First, the assembly
index of an object x in an assembly space Γ is always less than or equal to the assembly
index of x in any rooted assembly subspace of Γ that contains x. Essentially, since the
assembly subspace may have fewer edges, and cannot have more edges, there are fewer
“shortcuts” for assembling a given object.

Lemma 6. Let X be an assembly space and Y a rooted assembly subspace of X. For every finite
y ∈ Y, the assembly index of y in Y is greater than or equal to the assembly index of y in X. That
is, cY(y) ≥ cX(y) for all y ∈ Y.

Proof . Let y ∈ Y and suppose cY(y) < cX(y). Then, there exists a rooted assembly
subspace Z ⊆ Y containing y, such that |Z\BZ| = cY(y). However, by the transitivity of
rooted assembly subspaces (Lemma 4), Z is a rooted assembly subspace of X —but if that
is the case, there exists a rooted assembly subspace of X with augmented cardinality less
than cX(y), namely Z; a contradiction. �
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Since the lower quiver of an object x is a rooted assembly subspace, we know the
assembly index of the object in x ↓ bounds the real assembly index of the object from above.
However, we can show that these assembly indices are equal, i.e., cΓ (x) = cx↓(x). This
result allows any computational approaches aiming to compute c(x) to focus only on the
objects below x.

Theorem 2. Let Γ be an assembly space and let x ∈ Γ be finite. Then cΓ(x) = cx↓(x).

Proof. Since x ↓ is finite, we need only consider finite, rooted assembly subspaces of Γ. Let
∆ ⊆ Γ be such a subspace containing x, and suppose that ∆ * x ↓ . Let y ∈ ∆ such that
y /∈ x ↓ , then (∆\y ↑) is a rooted assembly subspace of Γ containing x with augmented
cardinality strictly less than ∆. As such |∆\B∆| 6= cΓ(x). �

In other words, if ∆ is not a subspace of x ↓ , then it cannot have the augmented
cardinality cΓ(x). Thus, by contrapositive if |∆\B∆| = cΓ(x), then ∆ ⊆ x ↓ . Since ∆ is
rooted in Γ, it must also be rooted in x ↓ .

Therefore, if a rooted subspace of Γ has the minimal augmented cardinality in Γ, it
must be a rooted assembly subspace of x ↓ . This implies that cΓ(x) ≥ cx↓(x). Additionally,
by Lemma 6, cΓ(x) ≤ cx↓(x). Then, cΓ(x) = cx↓(x). �

Finally, assembly maps allow us to place lower bounds on the assembly index – the
assembly index of the image of an object bounds the object’s actual assembly index below.
In other words, we can place lower bounds on the assembly index of an object by mapping
the assembly space into a simpler space and computing the assembly index there.

Theorem 3. If f : Γ→ ∆ is an assembly map, then c f (Γ)( f (x)) ≤ cΓ(x) for all finite x ∈ Γ.

Proof. See Appendix B. �

2.6. Computability

The determination of the assembly index can be computationally challenging for more
complex objects. However, importantly, the assembly index is computable, as shown below.

Theorem 4. If Γ is an assembly space and x ∈ Γ is finite, with x ↓ finite, then c(x) is computable.

Proof. As shown in the proof of theorem 2, every rooted assembly subspace with minimal
augmented cardinality and containing x is a minimal rooted assembly subspace of x ↓ .
Since x ↓ is finite, the set of assembly subspace of x ↓ is finite, and each such subspace
is finite. Consequently, the basis of each subspace is computable. As such, the set of all
rooted subspaces is computable. The cardinality of each subspace is computable, so the set
of cardinalities of all rooted subspaces is computable. Finally, the minimum of a finite set
of natural numbers is computable. Therefore, cΓ(x) is computable. �

Example algorithms for determining the assembly index can be found in Appendix B.

3. Discussion

The application of assembly spaces allows us to consider paths through the space
of possible objects that could be created through a model of joining through random
interactions. We can find the shortest possible path to create an object, in the context of
other possible objects that could have been created at each step, and come to a judgement
on whether a random system (even a biased one) could have selected for a population of
that object without additional information. Additional information here refers to more than
is contained within our system of starting objects and joining rules.

The assembly approach does not perfectly model the workings of physical systems. It
is a necessarily simplified model. For example, in our recent work on molecules [19], we
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assumed that any structure could be created by joining two others, not considering chemical
feasibility (other than following valence rules) or modelling steps where molecules partly
fall apart. What we can do, however, is use the assembly process as a structural complexity
model in our much simpler and generally more permissive system. We can say, for a
particular molecule, that even if we were to discard the regular restrictions of synthetic
chemistry, it would be impossible to make this molecule in fewer than n steps, and then
judge how much more difficult it would be if we were to reinstate those restrictions. For
example, if we were to amend the molecular model by removing unrealistic chemicals from
our assembly space, the resulting space would be an assembly subspace with an assembly
index equal to or higher than the original (see Lemma 6 in Section 2.5). Still, that model
would not be a perfect synthetic assembly space, but it highlights the principle that adding
more restrictions tends to make assembly more difficult.

The assembly index can be used to determine a rough threshold above which the
biases required to create an object are beyond what can be accounted for by the model.
Objects significantly above that threshold can be considered biosignatures. It is important
to stress that we are not arguing that the threshold cannot be crossed without biology, since
a biological system developing from purely abiotic ones has clearly happened at least once.
However, this would require systems outside of our model, such as replication, duplication,
and evolution. The exploration of the objects and processes that cross this threshold will be
of key importance to our understanding of life.

In the following sections, we discuss how the formalisation of assembly spaces could
be used to explore a variety of systems of varying dimensionality; see Figure 5.

Figure 5. Example assembly pathways for systems of varying dimensionality.

3.1. Addition Chains

One of the simplest assembly spaces is the space of positive integers under addition.
This is a space (Γ, φ) where V(Γ) = N\{0} = {1, 2, 3, . . .}, the set of positive integers,
and for each edge e ∼ [zx], if φ(e) = y, then x + y = z. In other words, in traversing the
assembly space along an edge, the target vertex is the source vertex plus the edge label.

An assembly pathway within some finite rooted assembly subspace of Γ is equiva-
lent to an addition chain, which is defined [23] as “a finite sequence of positive integers
1 = a0 ≤ a1 . . . ≤ ar = n with the property that for all i > 0 there exists j, k with ai = aj + ak
and r ≥ i > j ≥ k ≥ 0”. In other words, an addition chain is a sequence of integers,
starting with 1, in which each integer is the sum of two integers (not necessarily unique)
that appear previously in the sequence. A minimal, or optimal, addition chain for an integer
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is an addition chain of the shortest possible length terminating in that integer. An example
of an optimal addition chain for n = 123 is

{1, 2, 3, 5, 10, 15, 30, 60, 63, 123}

The length of the minimal addition chain (subtracting 1 to account for the single
basic object) is equivalent to the assembly index of that integer in Γ. Assembly spaces can
generally be mapped to the space of integers through an assembly map by mapping each
object to an integer representing its size (i.e., the number of basic objects contained within
it), see Figure 4. This allows us to determine a lower bound for the assembly index for
complex spaces, although the lower bound may be substantially lower than the actual
assembly index, in which case, other assembly maps may be more suitable.

3.2. Vectorial Addition Chains

Addition chains can be further generalised to vectorial addition chains [24]. We define
a vectorial addition chain for a k-dimensional vector of natural numbers n ∈ Nk/{0}
(excluding the zero vector) as a sequence of ai ∈ Nk/{0} such that for −k + 1 ≤ i ≤ 0, ai
are the standard basis of unit vectors {(1, 0, . . . , 0), (0, 1, . . . , 0), . . . , (0, 0, . . . , 1)} and
for each i > 0 there exists a j, k with ai = aj + ak and i > j ≥ k. An example of a vectorial
addition chain for {8, 8, 10} is

{{1, 0, 0}, {0, 1, 0}, {0, 0, 1}, {1, 1, 0}, {1, 1, 1}, {2, 2, 2}, {4, 4, 4}, {8, 8, 8}, {8, 8, 9}, {8, 8, 10}}

As with the addition chain assembly space Γ, we can define an assembly space ∆ based
on vectorial addition chains. An assembly map exists from ∆ to Γ, involving summing each
of the vectors, and thus the assembly index in Γ is a lower bound for the assembly index in
∆ by Theorem 3. ∆ can also provide a useful lower bound to other assembly spaces, which
have basis B, such that |B| > 1, where the vectors comprising the vertices of ∆ represent
a count of each of the different basic objects within the corresponding vertex of Γ. For
example, in the case of shapes constructed from red and blue blocks, all shapes made of
3 red and 4 blue blocks would map to the vector {3, 4}.

3.3. Strings

In one-dimensional strings, we can define an assembly space (Γ, φ) of strings, where
each s ∈ V(Γ) is a string and if a string z can be produced by concatenating strings x and y,
then there exists an edge e ∼ [zx ] with φ(e) = y (see Figure 6). There are multiple systems
that have string representations, including text strings, binary signals and polymers.

Figure 6. Examples of text assembly pathways for 16-character strings. The first example demon-
strates the shortest possible assembly index of any such string. The second example has a nontrivial
assembly pathway, while the third example is a string without any shorter pathway than adding one
character at a time. This model assumes that text fragments cannot be reversed when concatenating.
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Alternative methods for analysing the complexity/information content of strings are
the Shannon information [14] and Kolmogorov complexity [15]. For a string S that can be
in N possible states {s1 . . . sN}, according to an observer, the Shannon entropy is a measure
of the uncertainty of which state S is in according to the observer. If the states of the string
have probabilities {p1 . . . pN}, then the Shannon entropy of S is given by

H(S) = −
N

∑
i=1

pi log pi

where a suitable base of the logarithm is selected depending on the desired units (e.g.,
base 2 for bits). Shannon information is the reduction in entropy on being provided with
additional information about the probability distribution of the possible states. Entropy
is maximum when all states are equally likely (p = 1/N and H(S) = log N) and has a
minimum H(S) = 0 when pi = 1 for an i, i.e., the state of S is known.

The Kolmogorov complexity [15] of an object is the length of the shortest program
that outputs that object, in a given Turing-complete language. Although Kolmogorov
Complexity is dependent on the language used, it can be shown that the Kolmogorov
complexity C in any language φ can be related to the Kolmogorov complexity in a universal
language U by Cu(c) ≤ Cφ(x) + c for a constant c [15]. If a string cannot be expressed in a
universal language by a program shorter than its length, it is considered random. It has
been shown that the Kolmogorov complexity is not computable, whereas the assembly
index is computable (see Theorem 4).

3.4. Pixels and Voxels

We can extend the assembly process to two dimensions by considering a grid of pixels,
or coloured boxes, for example, a digital image. For simplicity, we will consider images
with black and white basic objects, although this could be simply extended to greyscale
images or colour images (e.g., greyscale images could have 256 basic objects representing
different pixel intensities, as in an 8-bit greyscale image). We can define an assembly space
with assemblages of black and white pixels as objects. In this space, two assemblages a and
x are connected by an edge e ∼ [xa] if a is a substructure of x. The edge e is labelled as
(e) = b with b the complement of a in x. In other words, you can connect a and b together
to get x. A choice can be made about whether to enforce the preservation of orientation,
or whether to consider substructures rotated by 90 degrees to be equivalent, and the latter
choice can be related to the former by way of an assembly map. An illustration of an
assembly pathway in this space can be seen in Figure 7.

Figure 7. Illustrative assembly pathway of a two-dimensional image. This does not necessarily
represent the minimal assembly pathway for this shape. Here, images that are rotated or reflected are
considered equivalent.

The assembly index can be mapped to the space of addition chains as normal and to a
reduced representation of the image such as those generated by pooling operations used in
convolutional neural networks, or quantisation matrices used in jpeg compression.
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To extend assembly to three dimensions, we can consider structures created out of
cubic building blocks, or voxels, as a natural extension of the two-dimensional model.
Assembly theory does not need to be applied to objects as a whole, but can be applied to
shared motifs or networks found within the objects [13], which can in some cases map to
the problem of cubic building blocks. Assembly theory as described here currently has no
simple extension to continuous objects; however, we can use an assembly map to define a
function that consistently maps similar features to larger block structures, and can calculate
the assembly index of that structural motif to explore whether it is over the biological
threshold, if found in some abundance.

3.5. Graphs

An undirected graph G(V, E) is defined by a set of vertices V and a set of edges
E ⊆ V × V. An assembly space for connected graphs (directed or undirected) can be
defined where Γ is the space of all connected graphs, with the basis set B consisting of a
single node. The reachability relationship ≤ is defined on Γ such that φ([Gx, Ga]) = Gb if
VX = Va ∪Vb and Ex = Ea ∪ Eb ∪ Eab where Eab ⊆ Va ×Vb and Eab 6= ∅ . In other words,
Gx contains all vertices and edges of Ga and Gb and also at least one edge between them.
Similar spaces can be defined for graphs that are not necessarily connected by removing
the requirement that Eab 6= ∅. Vertex colours can be incorporated by expanding the basis
set B. A graph assembly space can also be defined with edges as the basic objects, instead
of vertices. Additional constraints allow for the study of spaces of other useful graph
structures—for example, the restriction of vertex degree allows for the study of the space
of molecular graphs [19]. As in the block structures, the assembly space of graphs can be
used to analyse objects that have identical network motifs in them while not being identical
in other ways. Assembly maps can be defined from the space of graphs to the space of
addition chains, as a count of the number of vertices, and also to vectorial addition chains
if the vertices are coloured.

3.6. Other Applications

There are various other examples where the assembly approach could be used to pro-
vide a useful analysis of objects. One example is in audio/electromagnetic signals—music.
By utilising notes and silences as basic objects, possibly incorporating frequency/pitch, we
could use assembly theory to distinguish natural signals such as those from a pulsar, or
the sound of wind moving through a complex landscape, from sounds such as birdsong
or structured communications. In such a system, abundance could be the same signal
from multiple locations or from the same location but repeated. We can also consider the
morphology of apparent geological formations to look for evidence of biological influence
in the form of duplicated complex patterns.

Assembly theory can also be used to define a compression algorithm, such as the
widely known Lempel–Ziv–Welch (LZW) algorithm [25]. In the LZW algorithm, repeated
portions of text are represented by additional symbols in an expanded character set, and the
need for a separate dictionary is removed by building the dictionary in such a way that it can
be reconstructed during decompression. In an assembly-based implementation, we could
initially calculate an assembly pathway for the string and then use the additional character
set to indicate points at which substrings are duplicated or stored for re-use. It is unlikely
that such a compression algorithm would be commercially useful due to the computational
complexity of finding a minimal assembly pathway, but analysing compressibility in this
way could provide further insights regarding the information content of string-like objects
from an assembly space perspective.

4. Conclusions

Assembly theory can be used to explore the possible ways an object could have formed
from its building blocks through random interactions, and we have now built on our prior
work [13,19] by establishing a robust mathematical formalism. Through this, we can define
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a threshold above which extrinsic information from a biological source would have been
required to create an observable abundance of an object because it is too improbable to
have formed in abundance otherwise. The assembly index of an object, when above the
threshold, can be used as an agnostic biosignature, giving a clear indication of the influence
of information in constructing objects (e.g., via biological processes) without knowledge
of the system that produced the end product. In other words, it can be used to detect
biological influence even when we do not know what we are looking for [19]. Of interest
is the ability to search for new types of life forms in the lab, alien life on other worlds, as
well as identifying the conditions under which the random world embarks on the path
towards life, as characterised by the emergence of physical systems that produce objects
with a high assembly index. As such, assembly theory might enable us to not only look
for the abiotic-to-living transition, identifying the emergence of life, but also to identify
technosignatures associated with intelligent life with even higher assembly indices within
a unified quantitative framework. We, therefore, feel that the concepts of assembly theory
can be used to help us explore the universe for structures that must have been produced
using an information-driven construction process; in fact, we could go as far as to suggest
that any such process requiring information is a biological or technological process. This
also means that assembly theory provides a new window on the problem of understanding
the physics of life simply because the physics of information is the physics of life. We
believe that such an approach might help us reframe the question from the philosophy of
what life is [26] to a physics of what life does.
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Appendix A. Algorithms

The following algorithm for the assembly index is a simple illustrative algorithm for
the computation of the assembly index of an object within an assembly subspace. Since
calculating the assembly index can be computationally challenging, algorithms used in
practice are more complex and efficient.

The following returns the assembly index in assembly space Γ ≡ (Γ, φ) of a target
object t ∈ Γ, with basic objects B ⊆ Γ.
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Algorithms A1: Basic Assembly Index Algorithm

Function Main (B, t)
Global Variable A // the pathway assembly index
Set A = upper bound of assembly index + |B|
AssemblyIndex (B, t)
Return A− |B|

End Function
Function AssemblyIndex (S, t)

For each pair of objects s1, s2 ∈ S
If there exists an edge e ∼ [ts1] with φ(e) = s2 and A > |S∪ t|

A = |S∪ T|
Else if there exists an edge e ∼ [us1] with φ(e) = s2 for some u ∈ Γ

AssemblyIndex (S∪ u, t)
End If

End For
End Function

The following is a more practical algorithm for general graphs, which is the basis for
calculating the assembly index in our current research, with target graph t. The pseudocode
below illustrates the basic approach, although there are some branch and bound methods
that can be implemented to reduce the search space, for example checking if it is possible
for a pathway being explored to result in a smaller assembly index than the best found
so far.

Algorithms A2: Practical Assembly Index Algorithm

Function Main (t)
Global Variable A // the best assembly index
Set A = upper bound of assembly index
AssemblyIndex({t})
Return A

End Function
Function AssemblyIndex(P)

remnant = last element of P
For each substructure subLeft in remnant

For each substructure subRight in remnant\subLeft
If subRight = subLeft

newP = append subLeft to P
newRemnant = remnant\subLeft with subRight split out as a separate

connected component
CurrentPathwayIndex = CalculateIndex(newP)
If CurrentPathwayIndex < A

A = CurrentPathwayIndex
newP = append newRemnant to newP
AssemblyIndex(newP)

We have also defined, above, the split-branched assembly index. The calculation of
this index can be more computationally tractable than the assembly index, as often a lower
number of pathways will need to be enumerated. An algorithm to calculate this index is
shown below.

The split-branched assembly index in the assembly space Γ ≡ (Γ, φ) of a target object
t ∈ Γ with basic objects B ⊆ V(Γ) can be determined with the following algorithm.
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Algorithms A3: Split-Branched Assembly Index Algorithm

Function SplitBranchedAssemblyIndex(Γ, B, t, I)
Set A = upper bound of assembly index for t
For each partition of U into connected sub-objects ΓP = {Γ1 . . . Γn}

Set PartitionIndex = 0
Partition UP into K =

{
{Γ11, . . . , Γ1i},

{
Γ21, . . . , Γ2j

}
, . . . , {Γm1 . . . Γmk}

}
Where for each Kn, the Γnx are identical for all x
For each Ki ∈ K

If Ki1 ∈ B
PartitionIndex + = 1

Else
PartitionIndex + = SplitBranchedAssemblyIndex(Γ, B, Ki1)

+|Ki| − 1
End If

End For
A = min(PartitionIndex, PA)

End For
Return A

End Function

Appendix B. Proofs

This appendix contains proofs that are too long to comfortably fit in the main text.

Proof of Theorem 1. Since f is a quiver morphism and ∆ is acyclic, f (Γ) is an acyclic
subquiver of ∆. By construction, ϕ = ψ|E( f (Γ)). What remains is to prove the three assembly
space axioms. Let fv and fe be the vertex and edge maps comprising f .

Axiom 1. We must show that min( f (Γ)) is finite and non-empty.

We start by showing that min( f (Γ)) 6= ∅. To see this, consider an element
b ∈ fv(min(Γ)) and suppose there exists a path from an element x ∈ f (Γ) to b. Then
let v ∈ f−1

v (x) and let γ be a path from a basic element u ∈ min(Γ) to v—which must exist
since Γ is an assembly space. The image of this path is a path in f (Γ) from fv(u) to x, and
consequently a path from fv(u) to b. Since fv(min(Γ)) is finite, we can repeat this process
beginning with the newly identified element of fv(min(Γ)) only finitely many times before
a cycle is formed. However, that cycle must have a length of zero since ∆ contains no cycles
of greater length. As such, the final element of fv(u) produced is in min( f (Γ)) since there
is nothing below it in f (Γ). Thus, min( f (Γ)) is non-empty.

We now show that min( f (Γ)) is in fact finite. In particular, min( f (Γ)) is a subset of
a finite set, namely fv(min(Γ)), so it too is finite. Let x ∈ min( f (Γ)). Then, there exists
an element b ∈ f−1

v (x) and at least one path γ from a basic element a ∈ min(Γ) to b. The
image of γ under f is a path in f (Γ) from fv(b) to x. Since x is minimal in f (Γ), the only
paths that terminate at x are zero paths. Thus fv(b) = x. Since x was a generic element
of min( f (Γ)), every element of min( f (Γ)) is the image of a basic element of Γ. That is,
min( f (Γ)) ⊆ fv(min(Γ)), so it is finite.

Axiom 2. Next, we prove that f (Γ) = min( f (Γ)) ↑ . Let x be an element of f (Γ). We aim to
show that there exists a path from a basic element of f (Γ) to x. Let b be an element of Γ which
maps to x under the application of f . Then, since Γ is an assembly space, we know there exists
at least one path, γ, from a basic element of Γ, say a ∈ min(Γ), to b. The image of this path in
f (Γ) is itself a path from fv(a) to x, namely fe(γ). If fv(a) is a basic element of f (Γ) then we are
done. Otherwise, we can use the processes described in the proof of Axiom 1 to construct a path
from fv(a) through basic and non-basic elements which will ultimately terminate at a basic element.
Composing this path with fe(γ) then yields a path from a basic element to x. As such, every element
of f (Γ) is above at least one basic element of f (Γ), i.e., f (Γ) = min( f (Γ)) ↑ .
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Axiom 3. We now must show that for every edge a ∈ E( f (Γ)) with a ∼ [zx] and ϕ(a) = y, there
exists an edge b ∈ E( f (Γ)) with b ∼ [zy] and ϕ(b) = x. To see that this is the case, take a as
described. Then, there exists an edge u ∈ f−1

e (a) in Γ with u ∼ [rq], fv(r) = z, fv(q) = y and
φ(u) = p. Since Γ is an assembly space, there exists an edge v ∈ E(Γ) with v ∼ [rp] and φ(v) = q.
The commutativity property of assembly maps then gives us ϕ( fe(v)) = fv(φ(v)) = fv(q) = y.
Calling fv(p) = x we then have an edge in f (Γ), namely fe(v), which terminates at z and is
labelled as y. This satisfies Axiom 3. �

Proof of Theorem 3. Let Σ ⊆ Γ be an assembly subspace containing x with |Σ\BΣ| = cΓ(x).
The restriction of f to Σ is an assembly map f ∗ : Σ→ f (Γ) . Then we have

|Σ\BΣ| ≥ | f ∗(Σ\BΣ)|
=

∣∣∣ f ∗(Σ\BΣ) ∩
(

f ∗(Σ)\B f ∗(Σ)

)
|+ | f ∗(Σ\BΣ) ∩ B f ∗(Σ)

∣∣∣
≥

∣∣∣ f ∗(Σ\BΣ) ∩
(

f ∗(Σ)\B f ∗(Σ)

)∣∣∣.
As an assembly map, f ∗ maps basis elements of Σ onto basis elements of f ∗(Σ). So for

every u ∈ f ∗(Σ)\B f ∗(Σ), there exists a v ∈ Σ\BΣ, such that f ∗(v) = u. This gives us

cΓ = |Σ\BΣ|
≥

∣∣∣ f ∗(Σ\BΣ) ∩
(

f ∗(Σ)\B f ∗(Σ)

)∣∣∣
=

∣∣∣ f ∗(Σ)\B f ∗(Σ)

∣∣∣
≥ c f (Γ)( f (x)).

�
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