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Abstract: Density-Based Spatial Clustering of Applications with Noise (DBSCAN) is a widely used
algorithm for exploratory clustering applications. Despite the DBSCAN algorithm being considered
an unsupervised pattern recognition method, it has two parameters that must be tuned prior to the
clustering process in order to reduce uncertainties, the minimum number of points in a clustering
segmentation MinPts, and the radii around selected points from a specific dataset Eps. This article
presents the performance of a clustering hybrid algorithm for automatically grouping datasets into
a two-dimensional space using the well-known algorithm DBSCAN. Here, the function nearest
neighbor and a genetic algorithm were used for the automation of parameters MinPts and Eps. Fur-
thermore, the Factor Analysis (FA) method was defined for pre-processing through a dimensionality
reduction of high-dimensional datasets with dimensions greater than two. Finally, the performance of
the clustering algorithm called FA+GA-DBSCAN was evaluated using artificial datasets. In addition,
the precision and Entropy of the clustering hybrid algorithm were measured, which showed there
was less probability of error in clustering the most condensed datasets.

Keywords: clustering; DBSCAN; factor analysis; genetic algorithm; pattern recognition; entropy

1. Introduction

Data classification has recently become an essential activity in solving and handling
problems in which large datasets are involved. When used as a tool for data classification,
pattern recognition algorithms may have a fundamental implication in the decision-making
process. There are two prominent methods defined for data classification: supervised
classification, where the number of groups has to be defined before classification, and un-
supervised classification, in which it is expected that the algorithm performs the clustering
analysis by itself without requiring a previous setup of the parameters. Density clustering
techniques are a subgroup of unsupervised pattern recognition algorithms. These algo-
rithms involve methodologies to identify a particular density in the space of points from a
specific dataset. Therefore, density interrelated elements will be included in a particular
cluster. As a result, density-based clustering algorithms can determine clusters with a
significant diversity of shapes and discriminate meaningful information from outliers [1,2].

Density-Based Spatial Clustering of Application with Noise (DBSCAN) is a density-
based unsupervised classification method developed by Easter et al. and presented in
1996 [3]; however, it is still recognized as a helpful method due to its simplicity and good
overall performance [4]. Density-based algorithms such as DBSCAN, Clustering Large
Applications based on Randomized Search (CLARANS) [5], and Ordering Points To Identify
Clustering Structure (OPTICS) [6], among others [7,8], are used for exploratory analysis,
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where classes belonging to a specific dataset D are not completely defined or the set is by
nature randomized. Furthermore, unlike popular clustering algorithms, such as K-means,
DBSCAN does not require limiting the number of clusters or classes previously.

The DBSCAN algorithm is not entirely automatized, and defining two input parame-
ters that depend on the analyzed dataset D is thus needed to perform the clustering process.
These input parameters are Eps and MinPts, which depend on the density and magnitude
of the specific dataset D being examined. Eps is the radius of an imaginary circumference
where a minimum set of points is reachable when using the Euclidean distance defined
by the parameter MinPts. Although DBSCAN was first introduced in 1996, the algorithm
is still widely used today, being awarded the SIGKDD Test-of-Time Award in 2014. Its
relevance is associated with its ease of implementation and reasonable computational
cost, O(n3), when used in large datasets [4]. Nevertheless, the algorithm may achieve an
acceptable computational cost, as well as its precision will vastly depend on the selection
of parameters Eps and MinPts, since these parameters must be adjusted according to the
specific dataset being analyzed.

The DBSCAN algorithm measures distance from point to point using the well-known
Euclidean distance, i.e., DBSCAN could perform a clustering analysis in dimensional
spaces greater than two. Even though the Euclidean distance can be measured in an n-
dimensional space, the clustering process entails a lower computational complexity cost
when performed in a two-dimensional space. Consequently, if the dataset being analyzed
has a dimension higher than two, it is deemed necessary to evaluate the use of a strategy
for dimensional reduction as part of pre-processing, such as Principal Component Analysis
(PCA) or the Factor Analysis (FA) method. Datasets can be handled before clustering using
a dimensionality reduction method. Although a fraction of information is lost, benefits can
be expected in the overall clustering process by reducing computational costs.

Many variations of the DBSCAN algorithm have been developed to obtain a highly
autonomous and precise algorithm with the lowest possible computational cost. In addition,
different performance metrics can be used as algorithm evaluation metrics to improve their
performance. BIRCHSCAN is an algorithm presented by de Moura [9], where the BIRCH
algorithm was merged with DBSCAN as a strategy for significant dataset clustering. The
CF-Three method and a threshold were determined for the Eps parameter selection. The
BIRCH algorithm is defined to evaluate the dataset to select a smaller representative biased
sub-dataset, which is evaluated using DBSCAN. The evaluation metrics selected for this
methodology are the Rand Index and the Adjusted Rand Index.

Lai et al. [10] presented a method based on Multi-Verse Optimization (MVO) to
improve the selection of DBSCAN parameters Eps and MinPts using the r rates in the
Accuracy of artificial datasets. In the study proposed by Wang et al. [11], a method
for automatic estimation of the DBSCAN parameter Eps was defined for LiDAR data
segmentation clustering. The estimation of the parameter Eps was based on the average
value in the population defined by the nearest neighbor function. The accuracy of the
results was estimated using reference data.

The paper presented by Darong and Peng [12] combined a grid partition technique
with DBSCAN, calling the methodology GRPDBSCAN. The strategy implies partitioning
the information on grids and then finding the suitable DBSCAN parameters considering the
information contained in each partition. Although the authors emphasized the algorithm’s
precision, it was not clear how the clustering performance was measured in this work.
Ohadi et al. defined a new DBSCAN algorithm called SW-DBSCAN [13] formulated on the
sliding window grid-based model [14]. Nevertheless, in this paper, the evaluation of the al-
gorithm was measured using the Accuracy metric. The algorithm BDE-DBSCAN proposed
by Karami and Johansson [15] presents a methodology for automatic DBSCAN parameter
definition using a hybrid optimization method called Binary Differential Evolution. An
analytical process and the Tournament Selection (TS) technique were selected for Eps
estimation. The performance of the algorithm was defined using the effectiveness metric.
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The work presented by Kumar and Reddy [16] adopted a methodology based on
structures associated with specific groups that accelerate the neighborhood search queries.
As a result, the clustering technique increased DBSCAN’s clustering performance by 2.2.
This method is called G-DBSCAN, an accelerated DBSCAN algorithm that aims to find
the nearest neighbor with the help of group methods. In short, the algorithm works by
applying grouping partition methods to identify subgroups with similar patterns in a
specific dataset D, which is followed by a dimensional reduction method and the definition
of the parameter Eps for each group.

Zhu et al. [17] defined a methodology for an adaptive Eps parameter estimation
implementing a Gauss kernel density method considering the clustering of unbalanced
artificial datasets. Clustering performance was evaluated using the Rand Index and V-
measure. A novel algorithm was presented in [18]; this algorithm, called K-DBSCAN, is
considered as an optimization algorithm called Harmony Search (HS), which designates
the proper value of the clustering parameters. Here, the cluster number K is predefined
by a partition clustering approach. The HS algorithm defines the optimal value for the
DBSCAN parameters. The Rand Index and Jaccard coefficient are the evaluation metrics
selected to measure the algorithm’s effectiveness.

A parameter-free method called Dsets-DBSCAN was reported by Hou et al. [19]. A
histogram equalization transformation of similarity matrices was executed in this work to
create a dominant set of independent parameters. The quality of the results was estimated
using the F-measure metric. The results showed a remarkable performance of the parameter-
free algorithm. The methodology presented in [20,21] also used a parameter-free clustering
process for DBSCAN using the nearest neighbor function commonly denoted as k-dist. The
evaluation of the algorithm was performed by visual inspection of the results. Ozkok and
Celik [22] presented a novel algorithm called AE-DBSCAN, which included a method for
the automatic definition of parameters Eps and MinPts. They also considered the k-dist by
using the nearest neighbor function. Soni and Ganatra [23] proposed a new algorithm called
AGED. The methodology defines a group of densities extracted from the dataset clustered
using the well-known nearest neighbor function, specifically the k-dist plot. This work
evaluated a variety of performance metrics, including the Dunn Index, the Pearson Gamma
coefficient, and the Entropy. Other methodologies based on the DBSCAN algorithm were
presented in [24–28].

As shown above, a large variety of metrics have been employed. However, Entropy as
a metric has not been quite used for the performance evaluation of the DBSCAN algorithm
and its variants. Here lies the intention of using Entropy as an evaluation metric considering
the information given by DBSCAN after performing the clustering analysis. Entropy will
manifest the orderly clustering in which results with values close to 0 are considered and
grouped into datasets. In this work, the performance of a clustering hybrid algorithm
called FA+GA-DBSCAN is presented, taking into account the DBSCAN algorithm as its
core. This unsupervised pattern recognition algorithm was at first developed to identify
the operational conditions in a structure under a variety of loads [29]. Moreover, in order
to define adequate values for Eps and MinPts, a Genetic Algorithm (GA) was implemented.
The GA was based on a randomized population extracted from a particular dataset D using
distances selected by the nearest neighbor function and also included a set of points (x,y)
belonging to the dataset D being examined. Later, a radius that represents the parameter
Eps was found. In this work, the data preprocessing, including normalization and data
reduction, is shown in Section 2. The definition of the DBSCAN parameters is specified in
Section 3. The evaluation of FA+GA-DBSCAN is performed in Section 4. Two case studies
using FA+GA-DBSCAN are presented in Section 5. Conclusions are made in Section 6.

2. Data Preprocessing

A large amount of information is collected from experiments related to knowledge
discovery problems. Therefore, it is expected that under a non-trivial process, novel
and potentially useful information is extracted using a data preprocessing technique.
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Preprocessing techniques include strategies to quantify the reduction of the computational
cost related to pattern recognition algorithms, such as cleansing data by removing noise
and inconsistent or redundant information. In addition, when considering the nature of
the DBSCAN algorithm, it is noted that the computational cost will decrease if the input
information is represented by a two-dimensional dataset, losing a small amount of the
original information. This dataset representation can be carried out using the factor analysis
dimensionality reduction algorithm [30]. The steps of dimensionality reduction using FA
are presented below.

2.1. Data Collection Method

The data collection method for a dataset D considers the operation of the DBSCAN
algorithm, which aims to create clusters in a two-dimensional space from said dataset D.
As presented by Mujica et al. [31], this dataset D is a matrix of size m× n, where m is the
number of row vectors xi, i.e., experimental trials defined by a set of variables of interest in
a time instant, and n is the number of column vectors νj of one variable of interest such as
the one extracted by a network of strain sensors or accelerometers.

The number of column vectors can also be assumed as the number of dimensions of
the dataset D, which is represented in matrix form as

Dn×m =


d11 d12 · · · d1j d1m
· · · · · · · · · · · · · · ·
di1 di2 · · · dij dim
· · · · · · · · · · · · · · ·
dn1 dn2 · · · dnj dmn

, (1)

2.2. Data Normalization

Normalization of the original database Dm×n allows the algorithm to process the
information using compatible magnitudes. This facilitates the correlation among variables,
which improves the precision of the clustering process. Normalization was carried out
using auto-scaling, which transformed each variable into an element with zero mean and
unity variance as

d̄ij =
dij − µvj

σvj

, (2)

where σ2
vj

is defined as the variance of vj, defined by:

σ2
vj
=

1
n− 1

i=1

∑
n
(dij − µvj)

2, (3)

where µvj is the mean of the variable of interest vj.

2.3. Dimensionality Reduction Technique

The process of dimensionality reduction was performed using the linear Factor Anal-
ysis (FA) method, which has similar characteristics to principal component analysis; as
FA, PCA is also a linear technique based on orthogonal projections [32]. PCA is a widely
known dimensionality reduction technique that reduces the size of the dataset based on the
co-variance of the original information. Nevertheless, FA reveals underlying information
hidden in the original dataset using a combination of linear variables m, with m < p, except
for an error term with a length size equal to the original dataset. The general form of the
FA method is presented using the notation presented by I. T. Jollife [33]:
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x1 = λ11 f1 + λ12 f2 + · · ·+ λ1m fm + ε1

x2 = λ21 f2 + λ22 f2 + · · ·+ λ2m fm + ε2

...

xp = λp1 fp + λp2 f2 + · · ·+ λpm fm + εp,

where x represents the attributes or original variables x1, x2, · · · , xp, λjk is the factor load-
ings: j = 1, 2, · · · , p, k = 1, 2, · · · , m, while f1, f2, · · · , fm represent the common factors and
ep is defined as a residual error vector of specific factors. In general, a matrix representation
of FA is given by:

X = ΛF + ε. (4)

In this case, the factor loading Λ and the common factors F remain unknown; thus, in
contrast with a standard regression model, the FA technique can lead to different solutions,
which means there will not be a single solution. FA may be represented in terms of
co-variances as follows:

∑ = ΛΛ′ + Ψ, (5)

where ∑ represents the covariance or correlation matrix and Ψ the covariance of the specific
factors εp using the maximum likelihood estimation, allowing finding more precise values
of Λ and Ψ.

In addition, a rotation matrix T can be included in order to define different solutions
for FA: Λ∗ = ΛT, which, after a mathematical process T, is included in the rotation as ΛΛ′.
Varimax [34], Quartimax [35], and Promax [36] are commonly used as factorial rotation
methods. The pseudo-code of FA is presented in Algorithm 1.

Algorithm 1: Dimensionality reduction using Factor Analysis.
Data: Dm×n, with m rows (time instants) and n columns (number of sensors)
Result: Dm×2, dimensionality reduced matrix
/* Determine the number of factors */
if Eigenvalues ≥ 1 then

Select the number of factors with eigenvalues greater than one
(number o f f actors < n);

else
Select the number of factors desired by user criteria;

end
/* Choose the ideal rotation matrix: varimax, promax, quartimax, or

none */
/* Select the number of common factors desired */
while Dm×n 6= Λ× F + ε do

Estimate factor loadings λ ;
Generate the common factor predictions f ;
Define the specific variances or specific factors e;
Rotate factors until the equality is achieved;

end

The desired rotating factors will reduce the original dimension of a dataset correlated to
several specific eigenvalues that can describe the retained information. Several techniques
are used to quantify the information retained after the dimensionality reduction. These
techniques include the “eigenvalues greater than one” rule, the definition of the cumulative
variance over 80%, and the scree-plot rule, which is a graphic method where the breaking
point of a curve of factors against eigenvalues is identified as the point related to the
number of appropriate eigenvalues.
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In short, as common factors, fm will preserve hidden relationships among variables,
and the DBSCAN algorithm performs its clustering process in a two-dimensional space; a
strategic approach is to preserve the first two common factors from the original dataset,
which can be represented and plotted in a two-dimensional space. It is also expected that
different magnitudes related to specific values inside the dataset remain preserved after
the dimensionality reduction process, allowing DBSCAN to identify well-defined clusters.
In other words, the original dataset of dimension Dm×n of m variables and n sensors or
dimensions can be represented in a lower dimension using the FA’s first two common
factors as a Dm×2 dataset. Moreover, the new reduced dataset can now be graphically
represented in a Cartesian coordinate system, in which every row from dataset Dm×2
represents an x, y point in space. An example of the dimensionality reduction of a dataset
of six-column vectors containing two classes is presented in Figure 1, in which the first
three dimensions are plotted. After performing a dimensionality reduction using the first
two common factors, the projection of these two classes is observable. Figure 1a presents
a graphic representation of an artificial dataset with D1000×6. Figure 1b illustrates the
projection of the first two common factors of the artificial dataset with D1000×2.

(a)
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(b)
Figure 1. Example of a dimensionality reduction of a dataset D. (a) Three-dimensional scatter-plot
of dataset D1000×6. (b) Scatter-plot of artificial dataset projection D1000×2.

3. Dbscan Algorithm

As previously mentioned, DBSCAN is an unsupervised density-based algorithm.
It was designed to define specific clusters from a particular dataset, usually in a two-
dimensional space Dm×2, without the need for predefined class labels. However, the
algorithm is not fully automatized, thus the necessity to define two entry parameters Eps
and MinPts. Nonetheless, the DBSCAN algorithm is still relevant due to its exploratory
characteristics and its acceptable computational cost O(n log n), for large datasets [37].

These initial parameters allow the algorithm to define a specific group of correlated
points depending on their Euclidean distance defined by a circle with radii Eps and a mini-
mum specified number of correlated elements MinPts. Moreover, these entry parameters
define a group of points that may have no correlation with any of the discovered clusters
and will be treated as noise. The pseudo-code of the DBSCAN algorithm is presented in
Algorithm 2.

The DBSCAN algorithm follows a series of rules to define clusters from a specific
dataset D, considering two arbitrary points p and q from D. These rules are defined
as follows:

• Eps-neighborhood of point: The Eps-neighborhood of a point p, denoted by NEps(p),
is defined by NEps(p) = {q ∈ D|distp, q ≤ Eps}.

• Directly density-reachable: A point p is directly density-reachable from a point q if:

– p ∈ NEps(q).
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– The core point condition is reached, i.e., NEps(q) ≥ MinPts.

• Density-reachable: A point p is density-reachable from a point q if there is a set of
points p1, . . . , pn, with p1 = q and pn = p, such that pi+1 is directly density-reachable
from pi.

• Density-connected: A point p is density-connected to a point q if there is a point o
such that p and q are density-reachable from o.

• Cluster: Let D be a specific dataset. A cluster is a non-empty subgroup from dataset
D that meets the following criteria:

– Maximality ∀p, q: if p ∈ C and q is density-reachable from p, then q ∈ C.
– Connectivity ∀p, q ∈ C, then p is density-connected to q.

• Noise: Let C1, . . . , Ck be the clusters of dataset D. Noise is defined as the set of points
in the dataset D not belonging to any cluster Ci, that is p ∈ D|∀i : p /∈ Ci.

Algorithm 2: Clustering using DBSCAN algorithm.
Data: Dm,2 and Eps
Result: A number N of clusters CN and noise
/* Determine the value of MinPts */
MinPts = 1

n ∑ di;
/* Let Xun be a set of unvisited points from Dm,2 */
Set C = 0;
Set ∅ =Empty Set;
while Xun 6= ∅ do

Randomly select a point pi,j ∈ Xun;
if pi,j is a noncore point then

Mark pi,j as noise;
Xun = Xun − pi,j;

else
N = N + 1;
Determine all density-reachable points from pi,j;
Assign pi,j and previous points to a cluster CN ;
Xun = Xun − CN ;

end
Points marked as noise are also assigned to a special cluster CN ;

end
/* Tag each generated cluster CN with a natural number; tag noise

with 0 */
/* plot the clusters with a specific color */

As mentioned before, the selection of the initial parameters will impact the algorithm’s
overall clustering precision and computational complexity. Therefore, a strategy is needed
to define the parameters MinPts and Eps seeking to remove human handling and improve
the precision in the overall process. Another important characteristic of the DBSCAN
algorithm is its ability to automatically define outliers as noise, excluding undesired or
redundant information.

3.1. Definition of Parameter MinPts

The function nearest neighbor is considered to define the parameter MinPts. The
function nearest neighbor defines specific distances in the proximity of an element belong-
ing to a dataset Dm×n using the Euclidean distance among variables. These distances can
be assumed as particular densities in the cloud of points. As presented by Gaonkar and
Sawant Gaonkar and Sawant [38], the parameter MinPts can be defined using the function
sample mean of the particular densities from a specific dataset Dm×n:
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MinPts =
1
n

n

∑
i=1

di, (6)

where di is every value of density assessed by the function nearest neighbor in a specific
dataset Dm×2 with m number of samples.

3.2. Definition of Parameter Eps Using a Fitness Proportionate Selection

As presented in the previous section, the parameter Eps can be interpreted as an
imaginary radius of a circumference inscribed around an arbitrary point included in a
specific dataset of dimension two Dm×2. It is necessary to find an adequate Eps value since
this parameter affects the overall clustering process of the hybrid algorithm in terms of
computational cost and precision. According to the previous statement, the algorithm may
lose its clustering capacity if the parameter Eps is selected arbitrarily as the user disregards
the magnitude and density of the specific dataset being analyzed. As a solution, a Genetic
Algorithm (GA) based on a fitness function is considered to define a particular Eps for a
dataset Dm×2. The GA is defined using the model presented by [39].

Typical distances or densities are determined using the function nearest neighbor for
a specific dataset Dm×2 to define the initial population of the selected GA model. These
distances are defined as the standard radii from the specific dataset. The initial density
population is defined in 50 elements with magnitudes between the average radius ravg
and the maximum radius rmax. Points with coordinates belonging to the dimensionality-
reduced dataset px,y ∈ Dm×2 are selected as additional alleles in the chromosome associated
with the initial population to be optimized via the GA. These points are considered the
center of the possible radii. Therefore, the chromosome could have the following structure
presented in Table 1.

Table 1. A scheme of a chromosome belonging to the initial population with two alleles; one is the
point p, and the other is the radius r.

Allele 1 Allele 2

x y Radius r

51.606 12.783 1.036

Furthermore, the fitness function f f to be optimized will have the following outline:

f f =
CR× SD

DR
, (7)

where CR is considered as the coverage ratio and is calculated as follows:

CR =
|Sp1,r1 ∪ Sp2,r2 · · · ∪ Spn ,rn |

|D| , (8)

SD being defined the Sum of Density and evaluated as follows:

SD =
n

∑
i=1

|Spi ,ri |
|r2

i |
, (9)

while DR is established as the Duplicate Ratio and is calculated as follows:

DR =
∑n

i=1 |Spi ,ri |
|Sp1,r1 ∪ Sp2,r2 · · · ∪ Spn ,rn |

; (10)

in general, Spi ,ri can defined as the chromosome of center pi and radius ri.
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The crossover process was performed by selecting radii from the initial population
and rearranging their position while points (x,y) remained in the same initial position.
These new configurations are the offspring and are defined for a tournament selection by
evaluating the fitness function. The definitions of parameters Eps and MinPts are described
in Algorithm 3.

Algorithm 3: Selection of DBSCAN parameters using a genetic algorithm.
Data: Dm×,2
Result: Eps
/* Nearest neighbor densities */
for i← 1 to m do

Choose a random point pi,j belonging to the dataset Dm×2;
end
Make a measure of nearest neighbor densities from pi,j;
foreach density measure di do determine the mean density and the maximum density ;
/* Create initial population */
for mean density to max density do

Randomly generate an initial population;
end
while number of iterations desired do

/* Call the fitness function f f */
f f = coverage ratio/(sum o f density× duplicate ratio);
/* Evaluate the initial population with f f */
Preserve the better population→ parents;
/* Crossover */
for i← 1 to number o f parents do

Vary a desired number of density measures in random positions;
end
/* Mutation */
for i← 1 to number o f parents do

replace a desired number of new random density measures in random
positions;

end
/* Evaluate the new population with the f f */

end
Select the minimum density value di from the new population dmin;
Set dmin = Eps;

4. Results
4.1. Performance Evaluation Metrics
4.1.1. Precision

The precision metric of a classifier is an evaluation parameter that is primarily used
for classification performance [40]. Precision is a direct measurement of the quality of the
information obtained by a clustering algorithm. For example, the precision of a classifier
can be measured using the propositions presented by [41]:

precision =
tp

tp + fp
, (11)

where tp is defined as the true positive rate, hit rate, or recall of the clustering algorithm
and is defined by:

tp =
positives correctly classified

total positives
, (12)
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and fp is defined as the false positive rate of the clustering algorithm:

fp =
negative incorrectly classified

total negatives
. (13)

4.1.2. Entropy

Currently, the evaluation of Entropy has been extended as a popular metric, consider-
ing the homogeneity of a pattern recognition algorithm [42,43]. In the machine learning
context, Entropy can be measured in the output parameters of the classifier as a way to
define the disorder of the information processed by the algorithm. For example, the Entropy,
H(S), is measured as follows:

H(S) = pi log2 pi, (14)

where pi is defined as the probability of an ith element belonging to a specific class.
The Entropy indicates the degree of randomness in the data set when used as a metric

to estimate the data set’s uncertainty. In this regard, when applying a recognition algorithm
to a specific data set, it is expected that the classified data presents a reduction in its Entropy.
The Entropy difference between unclassified and classified data represents the amount of
information gained after applying a classification method. This difference or information
gain, IG(A, S), also indicates the uncertainty reduction after splitting the data on a feature
(i.e., the more significant the information gained, the greater the decrease in Entropy or
uncertainty). The information gained is given as follows:

IG(A, S) = H(S)−
m

∑
j=1

nj

n
· H(S, A), (15)

nj being the number of instances with a j value of an attribute A, n the total number of
instances in the dataset, m the set of distinct values of an attribute A, H

(
Sj
)

the Entropy
of the subset of instances for attribute A, and H(S, A) the Entropy of an attribute A. In
the context of the DBSCAN algorithm, these futures or partitions include data in either of
the following attributes: correctly classified (tp), negative incorrectly classified (fp), and
noise data.

4.1.3. Calinski–Harabasz Clustering Evaluation Method

Calinski and Harabasz [44] presented a clustering evaluation technique that suggests a
suitable number of clusters of a specific dataset being analyzed. This exploratory technique,
also named the CH Index, evaluates the cohesion or dispersion among elements considering
a variance index. Following the notation of the CH Index, the technique is defined by:

CH(K) =
B(K)(N − K)
W(K)(K− 1)

, (16)

considering B(K) as the inter-cluster covariance or divergence:

B(K) =
K

∑
k=1

ak||x̄k − x̄||2; (17)

furthermore, W(K) is considered as the intra-cluster covariance and is defined as:

W(K) =
K

∑
k=1

∑ c(j) = k||di − x̄k||2 (18)

where K represents the number of clusters, di is the ith defined cluster, and N represents
the number of elements or samples.
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4.2. Clustering Performance Analysis

The unsupervised classification methodology included the preliminary processing,
processing, and postprocessing of dataset Dn×m. The classification was performed using
the MATLAB R2021b numerical programming software for Windows 11 with an Intel Core
i7, 2.11 GHz processor, 8 GB of RAM, and 1 TB hard drive PC. The hybrid algorithm was
created by using a combination of pre-established MATLAB functions, scripts created from
the beginning, and a modified script based on the DBSCAN algorithm developed by [45].
The selection of parameters for DBSCAN was defined as proposed in Sections 3.1 and 3.2.
Finally, the FA algorithm was executed using the MATLAB built-in function Factoran,
which includes the rotation method and the auto-scaling process.

To evaluate the classification performance of the hybrid algorithm FA+GA-DBSCAN,
six artificial datasets were selected. The results of the different datasets classified with the
FA+GA-DBSCAN algorithm are observed in Figure 2. DBSCAN parameters were defined
automatically using a genetic algorithm for each dataset as presented in Section 3; however,
the GA method employed a randomized basis; therefore, in order to have control over
the selection of parameters Eps and MinPts, each clustering experiment was executed
30 times, and then, the standard deviation was measured for each case. The results of the
obtained values for the mentioned parameters are presented in Table 2. Moreover, the well-
known pattern recognition algorithm K-means was selected as a comparison benchmark.
Although K-means is considered an unsupervised clustering method, it correlates elements
taking into account a number of centroids selected a priori by the user. The clustering
performance of K-means is illustrated in Figure 3. The results of K-means were also used for
a comparative study of FA+GA-DBSCAN’s performance employing the Calinski–Harabasz
clustering evaluation method. Information related to the comparative study is presented
in Table 3.

(a) Jain (b) Aggregation (c) Compound

(d) MDCgen (e) Dim064 (f) Wine

Figure 2. Clustering results using the FA+GA-DBSCAN algorithm with artificial datasets. Noise
points are marked by “+”.

A two-dimensional dataset called Half-ring (Jain) was proposed by Jain and Fred [46];
this dataset is composed of two classes with uneven densities between clusters. Each
cluster is well separated, and the top one is made up of 97 elements and the bottom one of
276 elements. As presented in Figure 2a, the algorithm was able to identify two groups;
however, certain elements were defined as noise, and the precision was reduced as some
elements from the top cluster were placed in the group belonging to the bottom cluster.
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Table 2. Automatic definition of FA+GA-DBSCAN’s parameters Eps and MinPts; values are repre-
sented using their mean and standard deviation after 30 runs of the algorithm.

Dataset Name Eps MinPts

Aggregation 1.130± 2.52× 10−5 5.498± 0.00
Compound 2.413± 2.60× 10−4 7.710± 0.00

Jain 2.550± 3.89× 10−4 5.228± 0.00
Dim064 0.142± 1.95× 10−6 5.898± 0.00

Wine 0.694± 9.90× 10−6 23.042± 0.00
MDCgen 0.872± 3.71× 10−5 26.055± 0.00

Table 3. A comparative study of clustering performance using the Calinski–Harabasz clustering
evaluation method and FA+GA-DBSCAN; C refers to cluster.

Dataset Name Classes Calinski–Harabasz Optimal C C Defined by
FA+GA-DBSCAN

Jain 2 9 2
Aggregation 7 6 7
Compound 2 2 3

MDCgen 3 5 3
dim064 16 16 16
Wine 3 3 3

(a) Jain (b) Aggregation (c) Compound

(d) MDCgen (e) Dim064 (f) Wine

Figure 3. Clustering results of artificial datasets using K-means algorithm with artificial datasets.

Another dataset named Aggregation is a two-dimensional, heterogeneous synthetic
distributed dataset of seven classes and 788 elements, proposed by [47]. As a result, the
FA+GA-DBSCAN detected eight clusters, and some elements were considered as noise, as
presented in Figure 2b; nevertheless, the precision of the algorithm was not quite affected.

The artificial dataset Compound was presented in 1971 by Zahn C. [48]. This two-
dimensional dataset presents six groups with different densities and shapes and is one
of the most-common datasets for clustering validation. It was evident that the hybrid
algorithm was not plausible in terms of a correct grouping in most of the presented clusters,
as shown in Figure 2c. Its precision was low considering that the DBSCAN parameters
were defined to cover an overall density. In general, three clusters were determined. The
evaluation of precision is presented in Figure 4.
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Figure 4. Clustering results, precision, Entropy, and information gain using the hybrid algorithm
FA+GA-DBSCAN.

MDCgen is a synthetic multidimensional dataset produced by the algorithm developed
by Iglesias et al. [49]. The dataset generator is capable of producing artificial n-dimensional
datasets including outliers or noise. For this study, a three-class dataset with six dimensions
was generated; furthermore, it possesses 2000 observations and 100 outlier points. The di-
mensionality reduction process proposes that two common factors are enough to represent
77.810 % of the original variability. Clustering performance is presented in Figure 2d.

The high-dimensional dataset, Dim064, reported by [50], was also considered for a
clustering analysis. The relevance of this dataset relies on the need to evaluate the clustering
algorithm in a high-dimensional instance. The dimensionality reduction process suggests
that 15 common factors are needed to represent 99.890 % of the original variability. Never-
theless, the fist two common factors were selected for the clustering process. The synthetic
Gaussian clusters are well separated even for this higher-dimensional case. In terms of
precision, the clustering results of FA+GA-DBSCAN were satisfactory. As presented in
Figure 2e, the algorithm was able to group almost all clusters represented by the common
factors from the FA dimensionality reduction process.

Finally, the multivariate dataset called Wine [51] was considered for validation pur-
poses. This dataset presents 13 attributes, which belong to wine characteristics such as
color intensity, alcohol, and minerals, among others, and three classes related to three
different cultivars. A dimensionality reduction was performed considering the study of
cumulative variance. As a result, three common factors are recommended to be retained,
as they represent 66.530% of the original variability. Nonetheless, the first two common
factors were selected for the clustering process. The algorithm’s precision was acceptable,
as presented in Figure 4; the evaluated dataset was grouped into three different clusters, as
indicated in Figure 2f.

As previously mentioned, the clustering performance was measured using the exter-
nal clustering evaluation metrics Entropy and precision and a comparative study using
the Calinski–Harabasz clustering evaluation method. As shown in Figure 4, the cluster-
ing algorithm is capable of grouping well-condensed datasets with significant precision;
nevertheless, the Entropy of the resulting clusters on these types of datasets is almost
invariant. On the other hand, the information gain is relatively low in condensed datasets.
Furthermore, it is evident that the automatic grouping process held by FA+GA-DBSCAN
can perform clustering with similar characteristics as those presented by K-means, consid-
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ering the Calinski–Harabasz clustering estimation technique. However, FA+GA-DBSCAN
presents an advantage when evaluating datasets with an unknown number of classes,
taking into consideration that the number of centroids or classes is not previously needed; this
ensures a decent level of reliability of the results in an exploratory analysis performed by the
presented methodology. The Entropy and precision of K-means are also reported in Figure 5.
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Figure 5. Clustering results, precision, Entropy, and information gain using K-means.

5. Case Studies
5.1. Aircraft Engine Degradation

The work developed by Saxena et al. [52] presented a group of datasets of an aircraft’s
engine thermodynamic model simulation using the Commercial Modular Aero-Propulsion
System Simulation (C-MAPSS) software. Simulations were carried out under various
operational conditions with induced damage propagation. The free access engine dataset
is available in the Prognostics Data Repository from the National Aeronautics and Space
Administration (NASA) [53]. The study included four different output cases with different
altitude, Mach number, and temperature conditions. Each output case behaves differently
and includes a specific number of operational conditions and degradation, where outputs
are gathered in a dataset matrix.

Considering the analysis proposed in Section 2.1, the dataset collection configura-
tion consists of 21 sensors taking into account the low and high compressor and turbine
temperature, pressure, flow speed, and fuel flow, and rows are defined as time instants.
Hence, the dataset has a size of engine33991×21. The operational conditions and degradation
of the engine are sorted in a way that is not directly quantifiable. The selected dataset
includes six operational conditions and one fault mode belonging to the degradation of the
high-pressure compressor.

The performed analysis began with a dimensional reduction using FA. Then, the factor
selection was analyzed by the “eigenvalues greater than one” method; this suggests that the
first two common factors represent 97.550 % of the variability of the original information.
Finally, the scree-plot, as presented in Figure 6, represents the eigenvalue of each factor
belonging to the considered dataset; it clarifies the FA and illustrates FA’s capacity to retain
a large amount of information in a lower dimension.
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Figure 6. Scree-plot from the aircraft engine operational conditions and degradation dataset. Two
common factors are sufficient to represent a large quantity of the original information.

Furthermore, to perform this exploratory analysis, a matrix of engine33991×2 was ob-
tained. The two first common factors were considered as points in a two-dimensional space
and then automatically grouped by the hybrid algorithm. Parameters MinPts = 6.480± 0
and Eps = 0.010± 0 were defined, and the standard deviation of both parameters was
measured after 30 equal runs. As a result, six well-condensed clusters were found. One of
them is mainly traced out from the other five as presented in Figure 7. This may indicate a
set of parameters related to engine degradation.
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Figure 7. Clustering analysis of an aircraft engine considering different operational conditions and
one mode of degradation.

5.2. Lidar Dataset

The Lidar dataset is a free access dataset available in Matlab R2021b [54] for clustering
analysis. Lidar is a mapping system that employs laser energy for high-resolution spatial
sensing. This laser technology has been widely used for digital cartography, military
applications, cellphones, and autonomous mobility. In this study, the linear dataset presents
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a spatial overview of a street with a vehicle and various objects such as trees and buildings.
This dataset can be assumed as a two-dimensional top base view from a surveillance
unmanned aerial vehicle; a contextualization image is presented in Figure 8.

Figure 8. Contextualization picture considering a similar point of view to the Lidar dataset.

The information from the Lidar dataset can be used for an exploratory analysis using
clustering in order to identify possible objects in an unsupervised manner. In this two-
dimensional spatial dataset, the space is limited to a range of 20 m × 20 m. The matrix
considered for this study is a two-dimensional set of points of size lidar19070×2, and the
scatter plot of this dataset is presented in Figure 9a. This set was therefore analyzed
automatically by GA-DBSCAN. Parameters MinPts = 0.207± 0 and Eps = 3.228± 0.011
were defined after ten equal runs. The algorithm was capable of determining 13 different
clusters, using a mean neighbor circumference value of 3.22 m approximately. This allows
for the identification of elements such as the car in the center of the figure and the other
one in front of it. Similarly, the algorithm was able to identify other obstacles, such as trees
and borders belonging to the sidewalk. The exploratory result is presented in Figure 9b.
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Figure 9. Results of the exploratory analysis using the hybrid algorithm from the Lidar dataset.

6. Conclusions

In summary, the evaluation of a clustering hybrid algorithm called FA+GA-DBSCAN
was presented using Entropy and precision performance metrics and a comparative study
employing the Calinski–Harabasz clustering evaluation method on different artificial
datasets. This unsupervised pattern recognition algorithm was first developed to identify
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the operational conditions in a structure under various loads. The dimensionality reduction
technique Factor Analysis described the information from the dataset as a combination
of specific factors that could be clustered later using DBSCAN. However, DBSCAN on
its own cannot automatically define clusters in a particular dataset as the parameters Eps
and MinPts need to be selected before the recognition of patterns. A large number of
variations of DBSCAN are still being proposed since the clustering algorithm operates
according to the parameters Eps and MinPts. These parameters can be defined using many
deterministic techniques, including density studies, genetic algorithms, and evaluations
made by “hand” iterations, among others. As the algorithm is implemented using various
parameter definition techniques, many variations of the clustering results are presented.
The performance of FA+GA-DBSCAN clustering was defined using Entropy, precision, and
a comparative study, which included the well-known clustering algorithm K-means. The
hybrid algorithm automatically clustered datasets with condensed and scattered groups
with notable precision; however, the information gained in this type of dataset was almost
null as the variation of the Entropy did not change significantly.
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