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Abstract: Thermodynamic uncertainty principles make up one of the few rare anchors in the largely
uncharted waters of nonequilibrium systems, the fluctuation theorems being the more familiar. In this
work we aim to trace the uncertainties of thermodynamic quantities in nonequilibrium systems to
their quantum origins, namely, to the quantum uncertainty principles. Our results enable us to make
this categorical statement: For Gaussian systems, thermodynamic functions are functionals of the
Robertson-Schrödinger uncertainty function, which is always non-negative for quantum systems, but
not necessarily so for classical systems. Here, quantum refers to noncommutativity of the canonical
operator pairs. From the nonequilibrium free energy, we succeeded in deriving several inequalities
between certain thermodynamic quantities. They assume the same forms as those in conventional
thermodynamics, but these are nonequilibrium in nature and they hold for all times and at strong
coupling. In addition we show that a fluctuation-dissipation inequality exists at all times in the
nonequilibrium dynamics of the system. For nonequilibrium systems which relax to an equilibrium
state at late times, this fluctuation-dissipation inequality leads to the Robertson-Schrödinger uncertainty
principle with the help of the Cauchy-Schwarz inequality. This work provides the microscopic quantum
basis to certain important thermodynamic properties of macroscopic nonequilibrium systems.

Keywords: quantum thermodynamic uncertainties; Robertson-Schrödinger uncertainty principle;
nonequilibrium quantum thermodynamics; nonequilibrium partition function

1. Introduction

Uncertainty in simultaneous measurements of canonical variables is one of the build-
ing blocks of modern quantum field theories. Already in the early days of quantum
mechanics, they found their formalization in, e.g., the Heisenberg Uncertainty principle [1]
for zero temperature systems, the Robertson-Schrödinger uncertainty function [2,3] for
fully nonequilibrium quantum systems or in more recently developed relations for Marko-
vian [4–6] and non-Markovian [7–10] open quantum systems (see also, e.g., Ref. [11] for
a generalization with non-zero minimal uncertainty in one variable). The uncertainty
principle at finite temperature has been shown (e.g., [7,9]) to be a useful indicator and
a valid alternative to decoherence criteria [12–14]) of quantum to classical transition, in
that a crossover temperature can be identified between a vacuum fluctuations-dominated
regime at very low temperatures to a thermal fluctuations-dominated high temperature
regime where conventional thermodynamics applies. Such relations are often motivated
by a microscopic perspective on the dynamical properties of the single quantum degrees
of freedom.
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While it might be no surprise that uncertainty relations will leave their marks on
macroscopic (thermodynamic) parameters of the system, general statements in nonequilib-
rium systems are scarce. Importantly, we should mention entropic uncertainty relations [15],
fluctuation theorems [16,17], and the recently developed thermodynamic uncertainty re-
lations [18]. Also, an extensive effort has been made to find generalizations (see, e.g., the
fluctuation-dissipation inequality [19]) as well as extensions (see, e.g., local thermal equilib-
rium [20,21]) of thermodynamic equilibrium results to nonequilibrium systems. The exact
lineage, however, from (microscopic) uncertainty relations to (macroscopic) quantum ther-
modynamic uncertainties in nonequilibrium situations is, to the best of our knowledge, not
completely transparent yet.

1.1. Our Intents, Modeling and Methodology

In our work, we intend to approach this issue in two stages. In this first paper, we do
not adhere to any specific formulation or particular interpretation of thermodynamic uncer-
tainties such as offered in the above references, but explore and strengthen their theoretical
foundations using the conceptual framework of open quantum systems (OQS) [22–24]
and the tools of nonequilibrium (NEq) quantum field theory [25–27]. Our goal is to make
explicit the mechanical and dynamical basis of all thermodynamic quantities or relations.
In concrete terms, for the purpose stated here, especially for quantum systems, this means
tracing the uncertainties of thermodynamic quantities all the way to their origins, to the
(microscopic) quantum uncertainty principles (QUP).

In future work [28], we shall formulate specific uncertainty relations for thermody-
namic quantities based on the results of this paper. Using the methodology of NEq quantum
dynamics, we thereby provide some notable formulations in the literature with the connec-
tion to their microscopic foundations. Our results will be of relevance for a number of active
areas of current research, such as exploring the existence of fluctuation-dissipation relations
(or inequalities) and thermodynamic uncertainty relations in quantum friction [29], the
dynamical Casimir effect [30] or quantum processes in the early universe [31].

Before describing our modeling and methodology, we wish to first mention the linkage
with some earlier works by two of us on this topic, which will serve as the theoretical basis
for the present work. In conventional thermodynamics, the fluctuation-dissipation relations
(FDR) [32–34] are usually derived and explained in the context of linear response theory
(LRT), where the behavior of linear perturbations to a system in equilibrium with a bath
is studied, the former manifesting as dissipative dynamics and the latter as noise. In the
context of fully nonequilibrium dynamics, except for very special situations where mathe-
matical theorems can be proven, one needs to know explicitly and follow the evolution of
the system while it interacts with its environment to late times, and examine if conditions
exist for the system to fully equilibrate. Only after this equilibrium condition is met can one
explore whether such relations exist or not. In the recent works by two of us [35–39], we
explicitly calculated the power balance between the system and its thermal bath(s) to show
that indeed the FDRs are in place.For other approaches to this theme, see, e.g., [21,40–46].
Moving away from the near-equilibrium conditions of LRT where FDRs are expected, to
the fully nonequilibrium conditions, where there are no FDRs a priori, it is natural to
speculate whether certain time-dependent fluctuation-dissipation inequalities may exist,
which tag along the system’s nonequilibrium evolution, changing over to bona fide FDRs
at late times, and, whether some bounds can be deduced which cover the whole course of
the system’s temporal development. In lieu of exact relations similar to the equilibrium
FDR, the present work will rely on two principles of linear open quantum systems. First,
imposing a few physical demands, i.e., that the interaction is causal and the respective oper-
ators describing system and environment are hermitian, a fluctuation-dissipation inequality
(FDI) can be constructed to hold for the full course of the interaction [19] (see Section 4 for
the connection between the FDI and the FDR and Ref. [47] for a useful application to the
nonequilibrium thermodynamics of quantum friction). Second, a quantum uncertainty
function can be identified for Gaussian open quantum systems that is related to the recently
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described nonequilibrium free energy density and the associated partition functions [48]
(see Sections 2 and 2.2).

The model we use is the generic quantum Brownian motion (QBM) model [49–54], with
a harmonic oscillator as the system and a finite temperature scalar field as its environment,
covering the full temperature range. Thus we have in mind using the Hu-Paz-Zhang (HPZ)
master equation [53,54] or its equivalent Fokker-Planck-Wigner [55] or the Langevin [56–58]
equations as templates, for the description of its non-Markovian (back-action incorporated,
self-consistent) dynamics. Alternatively we shall also use the covariant matrix elements [59]
derived from a set of Langevin equations to describe the nonequilibrium dynamics of the
reduced quantum system. The goal is to obtain uncertainty relations for quantum thermo-
dynamic quantities and FDIs for fully nonequilibrium dynamics. We note that, since many
popular approximations (such as the Born-Markov or the rotating wave approximation)
give incomplete or even wrong results in the full regimes we want to explore, and we
do not want the true nature of thermodynamic relations or bounds in inequalities to be
affected by them, we set forth to find exact solutions. This is why we prefer to work with
Gaussian open quantum systems in addressing basic theoretical issues.

1.2. Our Findings in Relation to Background Works

1. This work aims at exploring the relationship between thermodynamic and quantum
uncertainty principles, as well as the existence and meaning of fluctuation-dissipation
inequalities. Related to this work are two groups of our earlier papers:

(a) The uncertainty principle at finite temperature has been shown (e.g., [7,9]) to be a
useful indicator of quantum to classical transition, in that a crossover temper-
ature can be identified between a vacuum fluctuations-dominated regime at
very low temperatures to a thermal fluctuations-dominated high temperature
regime where conventional thermodynamics applies.

(b) A quantum fluctuation-dissipation inequality exists in a thermal quantum bath [19]:
quantum fluctuations are bounded below by quantum dissipation, whereas
classically the fluctuations vanish at zero temperature. The lower bound of
this inequality is exactly satisfied by (zero-temperature) quantum noise and
is in accord with the Heisenberg uncertainty principle. This inequality has
been applied to understand issues in quantum friction [47] (see, e.g., [29] for
background). A good summary of recent work on the relation of thermody-
namic uncertainty relations and non-equilibrium fluctuations can be found in,
e.g., [18] and references therein.

2. Toward our stated goals, as a preamble, we can make this categorical statement:
For Gaussian systems, thermodynamic functions are functionals of the Robertson-
Schrödinger uncertainty (RSU) function (11), which is always non-negative for quantum
systems, but not necessarily so for classical systems. Here, quantum refers to noncom-
mutativity of the canonical operator pairs.

3. The expectation value of the nonequilibrium Hamiltonian of mean force [48] gives the
nonequilibrium internal energy of the system, and is bounded from above by the
expectation value of the system’s Hamiltonian.

4. The nonequilibrium heat capacity, derived from taking the derivative of the nonequilib-
rium internal energy with respect to the nonequilibrium effective temperature, remains
proportional to the fluctuations of nonequilibrium Hamiltonian of mean force, with a
proportionality constant given by the nonequilibrium effective temperature, not the
bath temperature. These results apply for all times and at strong coupling.

5. From the nonequilibrium free energy [48], we succeeded in deriving several inequal-
ities ((25) and (27)) between certain thermodynamic quantities. They assume the
same forms as those in conventional thermodynamics, but emphatically, these are
nonequilibrium in nature and they hold for all times and at strong coupling.

6. Fluctuation-dissipation inequalities (FDI) and relation with fluctuation-dissipation
relation (FDR)



Entropy 2022, 24, 870 4 of 25

(a) For those systems that can reach stationary states at late times, it was shown
earlier [32–39] that they possess a fluctuation-dissipation relation.

(b) We have shown that a fluctuation-dissipation inequality exists at all times in
the nonequilibrium dynamics of the system.

(c) At late times in the nonequilibrium relaxation of the reduced system, this
fluctuation-dissipation inequality leads to the Robertson-Schrödinger uncer-
tainty principle with the help of the Cauchy-Schwarz inequality.

7. While the mathematical expressions of FDI have been found (6-b), we want to further
understand their physical meanings. While the relation between FDI and RSU has
been found (6-c) in the stage when the reduced system are closely approaching
equilibrium, we want to find out whether there is a connection between the FDIs
and the FDRs. This will provide a useful linkage between the more challenging
nonequilibrium dynamics and the more familiar equilibrium states.

The paper is structured as follows. In Section 2, we derive the dynamical behavior
of the covariance matrix and review the formalism of the nonequilibirum free energy.
We further highlight the special role of the Robertson-Schrödinger uncertainty function for
Gaussian systems. In Section 3, we establish a connection between the system’s internal
energy and the expectation value of the system’s Hamiltonian. We derive the fluctuation-
dissipation inequality and explore its connection to the Robertson-Schrödinger uncertatinty
function as well as its dynamical behavior when approaching equilibrium in Section 4.
We conclude our work with a discussion in Section 5.

2. Nonequilibrium Dynamics of Gaussian Open Quantum Systems

We begin our discussion, for the convenience of the reader, by summarizing the key
features of the nonequilibrium dynamics of Gaussian open quantum systems and recapitu-
late the method of the nonequilibrium free energy introduced in Ref. [48]. Throughout the
manuscript, we use units such that h̄ = kB = 1.

The specific system under consider is a point-like object, with internal degrees of
freedom modeled by a quantum harmonic oscillator. This could, for example, correspond
to the physical systems of an Unruh-deWitt detector [60] or the (electric) dipole resonance
of a neutral atom [61]. The external (spatial) degrees of freedom of the system, for simplicity,
are assumed to be fixed at the origin of space. We use a massless quantum scalar field that
is initially in its thermal state to act as a thermal bath. We further assume the coupling
between the system and the bath to be linear with respect to the oscillator’s displacement
and the field variables. The coupling strength between system and bath, however, is left
arbitrarily strong.

If the initial state of the system is Gaussian, the reduced state of the system is guar-
anteed to remain Gaussian. At any moment, the Gaussian state in general can be decom-
posed as

ρ̂ = D̂(α)Ŝ(ζ)R̂(θ) ρ̂ϑ R̂†(θ)Ŝ†(ζ)D̂†(α) , (1)

where we defined the squeeze operator Ŝ(ζ), the displacement operator D̂(α), and the
rotation operator R̂(θ). Here, ρ̂ϑ is a Gibbs state of the form

ρ̂ϑ =
1
Zϑ

exp
[
−ϑ
(
â† â +

1
2
)]

, Zϑ = Tr exp
[
−ϑ
(
â† â +

1
2
)]

, ϑ ≥ 0 , (2)

in which the Gibbs parameter ϑ = ϑ(TB) depends on the initial bath temperature TB, and â
(â†) is the creation (annihilation) operator associated with the quantum harmonic oscillator,
satisfying the standard commutation relation [â, â†] = 1. The squeeze operator Ŝ(ζ) takes
the form

Ŝ(ζ) = exp
[

1
2

ζ∗a2 − 1
2

ζ a† 2
]

, ζ ∈ C , (3)
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with the squeeze parameter ζ = η eiφ (0 ≤ η < ∞ and 0 ≤ θ < 2π). For simplicity, we are
interested in a situation where the harmonic quantum system is initially in its ground state
such that the displacement operator vanishes for our configuration. Further, as the rotation
operator describes a global phase only, it can be ignored by simply setting θ = 0 without
loss of generality. Squeezing here is the consequence of finite coupling between system and
bath [48,62,63].

Due to the choice for the system’s initial state, the first moments of the canonical
variable operators vanish. The initial state of the combined system is in general not
an eigenstate of the total Hamiltonian, which comprises the system, the bath and the
interaction Hamiltonian. While the state of the combined systems will unitarily evolve with
time, the reduced state of the system [Equation (1)], in turn, will evolve non-unitarily with
time. This implies that the parameters in (1), in particular the squeeze parameter ζ and the
Gibbs parameter ϑ, are functions of time. Even though this can lead to a quite involved
form of the density matrix at arbitrary times, a convenient feature of the decomposition
in (1) is the invariance of the trace with respect to squeezing, i.e.,

Tr
{

Ŝ(ζ) exp
[
−ϑ
(
â† â +

1
2
)]

Ŝ†(ζ)
}
= Tr exp

[
−ϑ
(
â† â +

1
2
)]

= Zϑ . (4)

This suggests that Zϑ can serve as a (nonequilibrium) partition function associated
with the state (1). It is uniquely fixed by the parameter ϑ. A keen reader may wonder
why the partition function does not depend on the squeeze parameter ζ, which carries the
dynamics of the reduced system. We will justify it later in Section 3.1 when we discuss the
role of the Robertson-Schrödinger inequality in quantum thermodynamics. Hereafter we
will assign Zϑ as the nonequilibrium partition function ZS of the reduced system, from
which the nonequilibrium free energy, and in turn, various thermodynamic functions can
be introduced. We will now connect the nonequilibrium dynamics with the nonequilibrium
thermodynamics of the reduced system.

2.1. Dynamical Behavior of The Covariance Matrix

Due to our choice of the initial states of the reduced system (vanishing first moments
of the canonical variable’s operators), we have seen in the previous section that only a
set of three parameters is needed to characterize the complete dynamics of the reduced
system. Although {ϑ, η, φ} is a convenient choice to construct the nonequilibrium partition
function, another, perhaps more frequently used, set of parameters is encoded in the
elements of the covariance matrix C(t) = 1

2 〈{R̂, R̂T}〉, with R̂T = (Q̂, P̂) in which P̂ is
the momentum conjugated to the displacement Q̂ of the quantum harmonic oscillator
(Note that the covariance matrix C more generally is defined in terms of its variance
∆R̂ ≡ R̂− 〈R̂〉, instead of R̂. However, for our purposes with vanishing first moments, this
makes no difference). The expectation value 〈· · · 〉 is defined with respect to the density
matrix operator (1), and {· · · } is the anti-commutator. The covariance matrix contains
three linearly independent functions of time which serve as alternative set of parameters
{a, b, c}, i.e.,

a(t) = 〈P̂2(t)〉 , b(t) = 〈Q̂2(t)〉 , c(t) =
1
2
〈
{

Q̂(t), P̂(t)
}
〉 . (5)

For the exact mapping between the sets {ϑ, η, φ} → {a, b, c}, we refer, e.g., to Ref. [48]
(see also Section 3). Both sets are equivalent and can be interchanged for convenience.
The determinant of the covariance matrix elements can be used to express the Robertson-
Schrödinger uncertainty principle,

ab− c2 = 〈Q̂2(t)〉〈P̂2(t)〉 − 1
4
〈
{

Q̂(t), P̂(t)
}
〉2 ≥ 1

4
. (6)

In principle we may always re-define the canonical variables to make c vanish. How-
ever, in the context of nonequilibrium evolution of the reduced open system, this re-
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definition is time-dependent, so we will simply fix the choice of canonical variables. In this
way, c = 0 has the special physical significance of indicating the equilibration between
system and environment (see, e.g., Refs. [64,65] and also below).

The dynamics of the covariance matrix elements have been extensively discussed in
the literature. Here we will cite a few essential properties. Recall that the field is evaluated
at spatial origin, where the oscillator is located, so we suppress the corresponding spatial
dependencies in the quantities. The covariance elements are then given by the response to
the free field’s (Hadamard) Green function G(φ)

H , i.e.,

a(t) = m2ḋ2
1(t) 〈Q̂2(0)〉+ ḋ2

2(t) 〈P̂2(0)〉+ e2
∫ t

0
dsds′ ḋ2(t− s)ḋ2(t− s′) G(φ)

H (s, s′) , (7a)

b(t) = d2
1(t) 〈Q̂2(0)〉+

d2
2(t)
m2 〈P̂

2(0)〉+ e2

m2

∫ t

0
dsds′ d2(t− s)d2(t− s′) G(φ)

H (s, s′) , (7b)

c(t) = m d1(t)ḋ1(t) 〈Q̂2(0)〉+ d2(t)ḋ2(t)
m

〈P̂2(0)〉+ e2

m

∫ t

0
dsds′ d2(t− s)ḋ2(t− s′) G(φ)

H (s, s′) , (7c)

where d1(t), d2(t), satisfying

d1(0) = 1 , ḋ1(0) = 0 , d2(0) = 0 , ḋ2(0) = 1 , (8)

are a special set of homogeneous solutions to the quantum Langevin equation

¨̂Q(t) + 2γ ˙̂Q(t) + ω2
RQ̂(t) =

e
m

φ̂(t) . (9)

Also, m is the mass of the quantum harmonic oscillator, e is the coupling strength
between the system (oscillator) and the bath (free scalar field φ̂), ωR is the physical frequency
of the oscillator, and γ = e2/(8πm) is the damping constant. The nonlocal version of
the Langevin equation (9) can be obtained by solving a simultaneous set of Heisenberg
equations for the oscillator and the field, respectively. It reduces to the local form (9) for the
massless quantum field we choose (Details can be found in Appendix A of [36]. Simply put,
before we arrive at (49), a divergent contribution has been absorbed into the frequency
parameter to form the physical frequency ωR in (9) and (49). The remaining kernel function
Γ(φ)(τ) in (49) becomes proportional to δ(τ) when the oscillator is bilinearly coupled to
a free massless scalar field. It is then straightforward to see that the nonlocal expression
in (49) gives a local damping term in (9)). We note that, if the state of the system at initial
time t = 0 has a nonvanishing correlation between the pair of canonical operators, then
the expressions (7a)–(7c) for the covariance matrix elements will have an additional term
depending on this initial correlation.

The effects of the environment (bath) are embedded in the Hadamard function G(φ)
H ,

which describes the fluctuations of the scalar field. It is defined as (at x = x′ = 0)

G(φ)
H (t, t′) =

1
2

Tr
(

ρ̂B

{
φ̂(t), φ̂(t′)

})
(10)

and hence depends on the initial state ρ̂B of the environment. It quantifies the influence
of quantum field fluctuations on the reduced system. This can be seen from the Langevin
equation in Equation (9): φ̂ serves as a quantum noise force, driving the dynamics of the
reduced system via Q̂. Accompanying this noise force, owing to the system-bath interaction,
dissipative effects show up in the reduced system dynamics. It is concealed in d1(t) and
d2(t) which decay exponentially with time.

At equilibrium, the fluctuations and the dissipation effects of the environment are
related by a fluctuation-dissipation relation. This relation gauges precisely the energy
exchange between the system and the environment if the dynamics of the reduced system
can come to equilibration at late times. In the special case of vanishingly weak system-
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bath interaction, the equilibration becomes thermalization in the context of open systems.
Otherwise, in general, the final equilibrium state of the reduced system does not have
a Gibbs form. From this perspective, the possibility of equilibration of the reduced sys-
tem as a result of its nonequilibrium evolution can be paraphrased as the existence of
the fluctuation-dissipation relation of the system. Before the system comes to equilib-
rium, although there is no fluctuation-dissipation relation, we can nevertheless derive a
fluctuation-dissipation inequality (FDI). This, and the role the FDI plays in the thermody-
namic inequalities/uncertainties, will be the main theme of the remainder of this and our
subsequent paper.

As the structures of the covariance matrix elements is important, we make a few
observations on their generic behavior:

1. Each element can be divided into an active and a passive component. The active
component depends on the initial state of the system and represents the intrinsic
quantum nature of the system. The passive component relies on the initial state of the
environment and represents the induced quantum effects of the environment [26].

2. Since d1(t), d2(t) decay with time, the active component will diminish at late times.
The behavior of the covariance matrix elements at late times are essentially gov-
erned by the environment. In this way, the statistical and causality properties of the
environment will eventually be passed on to the reduced system.

3. The damping term in Equation (9) is proportional to the “velocity” of Q̂, i.e., the
canonical momentum. Hence, if the reduced system has a small initial momentum
uncertainty, then we expect that damping plays a minor role compared to the noise
force at the early stage of the nonequilibrium evolution. Accordingly, the elements
a, b will increase with time, mainly driven by the fluctuation force. In due course,
the momentum uncertainty will grow sufficiently large such that the damping effect
gradually catches up with the noise effect.

4. In contrast, if the reduced system has a large initial momentum uncertainty, the damp-
ing effect will start off strongly, and the noise effect is subdominant. The elements
a, b decrease with time until the damping effect is small enough to match up with the
effect of the noise force.

5. The element c does not have a definite sign, but oscillates with time. However, from
parity consideration, when equilibrium is reached, the time- translational invariance
of the state requires that c should vanish. Thus, c = 0 may serve as an indicator
of the existence of an asymptotic equilibrium state. In the final equilibrium state,
both a and b are constant in time.

6. The Hadamard function of the bath G(φ)
H can be decomposed into two contributions in

the current setting: One results from vacuum fluctuations of the field, the other from
thermal fluctuations. We note that additional terms would appear if macroscopic
bodies were present in the surroundings of the particle, which would carry their own
(material-modified) quantum and thermal fluctuations [66]. At low bath temperatures
βBωR & 1, the vacuum fluctuation effects dominate, while at higher bath temperatures,
they become insignificant. The vacuum fluctuations of the massless field are scaleless,
such that the Hadamard function has a rather long range effect at the order of the
squared inverse distance from the source. Again, if additionally material bodies were
present, the situation can be different in the vicinity of surfaces where, depending on
the structure of the material [67,68], often higher-order inverse polynonmials [61,69,70]
or even non-algebraic functions [71,72] for the distance-dependence occur.

7. The previous discussions and formalism are not restricted to weak coupling. They also
apply to the case of strong coupling γ/ωR ∼ O(1), as long as the dynamics is stable.
For strong coupling, since the scales of the reduced system like γ, ωR, and the bath
temperature β−1

B can become comparable in magnitude, the curves for the temporal
evolution of the covariance elements of the reduced system can show a rich structure
during the nonequilibrium evolution (see, e.g., Figure 1).
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Figure 1. The time dependence of the uncertainty function S(t) is plotted for three different bath
temperatures. From the left to the right, the inverse bath temperature βB is 10, 1, 0.1, normalized
with respect to ω−1

R . The damping constant γ is 0.3× ωR and the oscillator mass m is m = 1× ωR.
In the low temperature regime βBωR > 1, the finite temperature contribution is subdominant, and
the effects due to vacuum fluctuations of the bath and its cutoff are more prominent.

2.2. Robertson-Schrödinger Uncertainty Principle

Since the Robertson-Schrödinger uncertainty principle can be expressed in terms of
the covariance matrix elements, as shown in (6), we expect that its generic behavior during
the nonequilibrium dynamics will be passed on to the uncertainty principle, revealing finer
details about the uncertainty principle rather than a monotonous inequality. To this end, it
is convenient to introduce the uncertainty function

S(t) = a(t)b(t)− c2(t)− 1
4

, (11)

which is positive semi-definite if the Robertson-Schrödinger uncertainty principle is satis-
fied. However, for quantum open systems with the quantum field as one of the subsystems,
it can be nontrivial to realize the positive semi-definiteness due to the presence of the
cutoff and the implementation of the renormalization schemes. For instance, the term
a = 〈P̂2〉, when compared to the autocorrelation of the position operator, carries extra
time derivatives and the corresponding extra factor of ω2 in the high-frequency domain
requires a proper regularization to tame the UV-divergence. Hence, simply dropping the
cutoff-dependent expressions in the covariance matrix elements, in particular a = 〈P̂2〉,
may result in serious inconsistencies such as the uncertainty function becoming negative.
For the present case, in the numerical calculations, we have inserted a convergence factor
of the form e−κε in the integrands whenever it is necessary to make the integrals over
the frequency κ well defined. We typically choose ε to be ωR/20. We will postpone the
discussion about the consequence of the cutoff scale to Section 3.1 in the context of the
effective temperature.

We report on a numerical evaluation of the uncertainty function in Figure 1. As ex-
pected, the uncertainty function is always non-negative. Since we choose the initial state of
the system to be the ground state of the oscillator, the uncertainty function always arises
from zero but gradually saturates to a constant at late times, due to the equilibration of
the reduced dynamics. At lower temperatures β−1

B < ωR (left plot of Figure 1), a “bump”
appears at times before relaxation. This results from two factors: First, in this regime, the
thermal fluctuations of the bath give a minor contribution, compared to the corresponding
vacuum fluctuations. Thus the cutoff-dependent contribution from the quantum field bath
stands out. Second, it in turn contributes to rapid rising of momentum, and hence the
uncertainty function overshoots its late-time value. It then quickly decays to a constant due
to the relaxation process caused by the damping in the reduced dynamics. At sufficiently
high bath temperatures (right plot of Figure 1), the thermal fluctuations dominate the
interaction, as seen by the absolute magnitude of the uncertainty function at late times.
The complicated behavior seen in the low-temperature situation (left plot of Figure 1)
is overshadowed by the thermal dynamics. For comparison, we show the intermediate
regime where β−1

B = ωR (center plot of Figure 1). The detailed analytical treatment of the
uncertainty function can be found in Refs. [7–10].
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In Figure 2, we show the uncertainty function as a function of the bath temperature
at late times. It is clearly seen that at sufficiently high temperatures,

√
S grows linearly

with the bath temperature TB = β−1
B . This can be understood from the equipartition

theorem, namely

a
2m

=
〈P̂2〉
2m
∼ TB

2
,

mω2
R

2
b =

mω2
R

2
〈Q̂2〉 ∼ TB

2
, c→ 0 , ⇒ S ∼ ω2

RT2
B . (12)

2 4 6 8 10

2

4
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8

Figure 2. The dependence of the uncertainty function
√

S(t) at late times on the bath temperatures.
We choose the time t to be t = 10ω−1

R so that γt = 3, i.e., the regime where the relaxation is almost
complete. We take the square root of the uncertainty function to reveal the linear trend at sufficiently
high bath temperature where the equipartition theorem applies. We choose the same values for the
other parameters used in Figure 1.

On the other hand, at very low temperatures, where quantum effects become impor-
tant, we notice that the curve flattens. This is a special feature we will see in the context of
the effective temperature, discussed in the next section.

3. Nonequilibrium Quantum Thermodynamics and Uncertainty Relations

The Robertson-Schrödinger uncertainty principle plays a distinguished role in nonequi-
librium quantum thermodynamics of Gaussian open systems, because the corresponding
Gaussian state can be uniquely defined by the second moments of the canonical variables,
i.e., the building blocks of the uncertainty principle. In fact, in the following, we will see
how the uncertainty principle shows naturally in the reduced system’s density matrix
and can be used to define an effective temperature β−1

eff of the system that includes the
effects of the nonequilibrium evolution at strong coupling. Using these building blocks, we
will continue to show how the uncertainty function is adopted by various definitions for
the nonequilibrium thermodynamic functions. We will conclude this section by relating
the uncertainty function to another nonequilibrium principle, the fluctuation-dissipation
inequality, and comment on the transition to equilibrium and the emergence of a fluctuation-
dissipation theorem.

3.1. Nonequilibrium Partition Function and Effective Temperature

Following Ref. [48], the density matrix operator of the reduced system at any time
takes the form

ρ̂S(Q̂, P̂, t) = 2 sinh
ϑ(t)

2
exp

{
−ϑ(t) tanh

ϑ(t)
2

[
a Q̂2 + b P̂2 − c

{
Q̂, P̂

}]}
=

1
ZS

exp
[
−βeff(t)Ĥeff(t)

]
, (13)
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where the nonequilibrium partition function ZS(t) has been given by (4),

ZS(t) =
1

2 sinh ϑ(t)
2

, with coth2 ϑ(t)
2

= 4
[
a(t)b(t)− c2(t)

]
. (14)

We observe that the nonequilibrium partition function (14) has the same functional
form as the one for the quantum harmonic oscillator in conventional thermodynamics. This
implies that we may introduce an inverse effective temperature of the reduced system by

βeff(t) =
ϑ(t)
ωR

. (15)

In addition, we find that this partition function is related to the Robertson-Schrödinger
uncertainty principle by

ZS(t) =
√

S(t) , (16)

and thus
βeff(t) =

2
ωR

sinh−1 1
2
√

S(t)
. (17)

This provides a bridge between the quantum uncertainty principle and nonequilib-
rium quantum thermodynamic relations. It may not be too unexpected that the effective
temperature Teff(t) = β−1

eff (t) is independent of the squeeze parameter ζ, even though
squeezing accounts for parts of the dynamical features of the reduced system. In a sense,
the uncertainty function, which is a manifestation of the uncertainty principle attributed
to the noncommutativity in quantum physics, can be viewed as a measure of the overall
quantum fluctuations, originated from the conjugated pair of operators minus their correla-
tion. From a phase space description in terms of the Wigner functions, we know that the
squeezing may distort the quadratures that contribute to the uncertainty function, but it
does not change its value. The dependence of the nonequilibrium partition function, and
the effective temperature alike, on the uncertainty function seems to pinpoint the central
role of fluctuations in quantum thermodynamics, at least for Gaussian open systems as
demonstrated here. Thus the effective temperature is more associated with the overall
fluctuations, described by the uncertainty function, rather than the fluctuations encoded in
only one of the canonical variables of the system, such as the momentum fluctuations in
the form of the mean kinetic energy. In mathematical terms, from the perspective of the
nonequilibrium partition function Zs, it is the product of the correlations that counts, not
their weighted sum.

Effective Temperature in a Dynamical Setting

The effective temperature we introduced has more dynamical connotations than sta-
tistical ones. For the initial state of the system we adopted, that is, the ground state of the
harmonic oscillator, we easily find that the corresponding effective temperature vanishes,
i.e., from taking the limit in Equation (17) we obtain lim

t→0
β−1

eff (t) = lim
x→0+

[
−ωR/ log(x)

]
= 0

since S → 0 for a(0) = b(0) = 1/2. As the interaction between the system and the bath
proceeds, this effective temperature changes with time in a way similar to the uncertainty
function because the former is a monotonic function of the latter. Following the itemized
discussions in the context of the covariance matrix elements (see discussions at the end of
Section 2.1), we note that, as the system approaches relaxation, the effective temperature
gradually loses its dependence on the initial state, and it eventually inherits the statistical
nature of the thermal bath distorted by finite coupling strength. When equilibration is
reached, the effective temperature will asymptotically saturate to a time-independent con-
stant. This constant in general is not equal to the bath temperature, except for the limiting
case of vanishing system-bath coupling, where at late times S ∼ [coth2(βBωR/2)− 1]/4
such that we have Teff = TB. The similar situation is achieved at very high tempera-
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tures βBωR � 1, where S ∼ (βBωR)−2 − 1/4 is independent of the coupling strength
(see also Section 4).

The temporal behavior of the effective temperatures for different damping constants
and bath temperatures are shown in Figure 3. As expected, the effective temperature shows
a more dramatic difference from the bath temperature in the low bath temperature TB limit
(top row of Figure 3), in combination with strong system-bath coupling (increasing from
left to right in Figure 3). For comparison, the difference becomes marginal at high bath
temperatures (bottom row of Figure 3), and weak coupling (decreasing coupling from right
to left in Figure 3). Perhaps the most interesting regime is low bath temperatures and
strong system+bath coupling (top right plot in Figure 3). As has been pointed out in [48],
the fact that the curve of the effective temperature in the limit of zero bath temperature
flattens out to a nonzero, positive value, is a consequence of finite coupling and evidence
of nonvanishing quantum entanglement between the system and the bath.
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Figure 3. We show the time dependence of the effective temperature, and the bath temperature
is drawn as the reference. The top row corresponds to the low bath temperature cases, and the
bottom row to the high bath temperature. Here the temperature is normalized to the oscillator
frequency. The three columns represent γ = 0.05, γ = 0.3 and γ = 0.6 from left to right. The cutoff
parameter ε is ε = 0.05. We observe that the gap between the effective temperature Teff and the
bath temperature TB at late times decreases with weaker system-bath coupling. Thus they are best
matched in the limits of high bath temperature and vanishing coupling strength, the common setting
in the traditional thermodynamics.

In the high-bath-temperature regime, the late-time values of the effective temperature
do not differ much from the value of the bath temperature, because the damping constant
plays a subdominant role, compared to the bath temperature. This leads to an intriguing
phenomenon connected to the regularization scheme. As we pointed out earlier, the
effective temperature is a function of the covariance matrix elements. Due to the system-
field interaction, the element describing the momentum uncertainty is not well defined
and needs to be regularized. When we evaluate (7a), we will end up with an integral
over the frequency variable κ. This integral is logarithmically divergent, so we insert a
convergent factor of the form e−κε with ε−1 playing the role of the regularization scale,
i.e., the cutoff frequency. Alternatively, among various regularization schemes, we may
implement regularization by setting the upper limit of the κ integral to ε−1. To be more
specific, the momentum uncertainty at late times is given by

〈P̂2(∞)〉 = γm
π

ln
[

1 +
ε−2

4γ2

]
+ · · · , (18)
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where · · · account for the cutoff-independent terms and the finite-temperature contribu-
tions. Thus, the momentum uncertainty has a term proportional to the logarithm of the
cutoff frequency. Similarly, different regularization schemes typically generate a propor-
tionality constant of the same order of magnitude, but not the same numerically value.
In addition, from the theoretical consideration, the choice of the regularization scale may
not be explicit. The configuration at hand may not have a suitable candidate on the scale of
our interest, or may have more than one possibilities. Thus, it leaves room for ambiguity
in the choice of the regularization, in this case, for the numerical value of the momentum
uncertainty, and in turn the effective temperature. This ambiguity sometimes does not
pose an issue due to its logarithmic dependence on the cutoff scale, but in the high-bath-
temperature regime, the value of the effective temperature at late times, though close to
the bath temperature, can be greater or less than it, as shown in Figure 4 or the lower
row of Figure 3. In particular, we note that this occurs for a cutoff that is coming closer
to ωR (right panel in Figure 4). For an increasing frequency-cutoff (decreasing ε), the
effect disappears and one once again enters the regime Teff > TB. We further note that the
cutoff dependence of the system quantities, resulting from interaction with the field, does
not render them unphysical (Here we follow the philosophy of effective field theory as
advocated by Weinberg [73]). The scale ultimately will be fixed by the energy scale or other
scales in experiments. Finally, the presence of the cutoff scale is physically necessary to
enforce the weaker form (including the quantum average) of the equal-time commutation
relation for the canonical variables of the reduced system. As shown in Appendix B, the
weaker form (A5) depends on the unitarity of the reduced density matrix ρ̂S, i.e., TrS ρ̂S = 1.
Since for a Gaussian state, the covariance matrix elements are the constituents of the density
matrix elements, dropping the cutoff-dependent terms in the covariance matrix elements
will violate the unitarity, and thus, following in the derivation in Appendix B, impairs
the Robertson-Schrödinger uncertainty principle. Still, since we model the thermal bath
by a massless quantum scalar field, we may find Teff < TB or Teff > TB at the high TB

regime. It depends on the choice of regularization scheme and the cutoff parameter. This
phenomenon would serve as a reminder that when one would like to interpret the relation
between the effective temperature and the bath temperature, one needs to heed the physical
range of the system parameters and the implementation of regularization.
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Figure 4. We show the cutoff dependence of the effective temperature at late times, with the bath
temperature as the reference. Its numerical value depends on the frequency cutoff and the regu-
larization scheme. Here we choose TB = 10 ωR, and pick the soft cutoff scheme, that is, inserting a
convergent factor of the form e−κε in the frequency integral over κ. The cutoff frequency is of the
order ε−1. The effective temperature can be smaller than the bath’s initial temperature if we choose a
smaller cutoff frequency.
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3.2. Hamiltonian of Mean Force and Internal Energy

The density matrix (13) allows us to define [48] a nonequilibrium Hamiltonian of mean
force Ĥeff(t),

Ĥeff(t) = ωR tanh
βeffωR

2

[
a(t) Q̂2 + b(t) P̂2 − c(t)

{
Q̂, P̂

}]
. (19)

In order to extract its physical meaning, it is interesting to compare Equation (19) to
other often used expressions. One obvious choice would be the system’s Hamiltonian that
is connected to its mechanical energy, i.e.,

ĤS =
mω2

R

2
Q̂2 +

1
2m

P̂2 . (20)

The relation between Ĥeff and ĤS is established by means of a time-dependent squeez-
ing transformation,

Ĥeff(t) = Ŝ(ζ(t)) ĤS Ŝ†(ζ(t)) . (21)

Although the squeeze operator Ŝ(ζ) is unitary, it does not imply that the nonequi-
librium Hamiltonian of mean force describes a unitary dynamics, because it does not
correspond to the time evolution of the complete reduced dynamics. The nonequilibrium
Hamiltonian of mean force in Equation (21) also differs from the conventional Hamiltonian
of mean force ĤMF, which is defined with respect to the bath temperature in the context
of equilibrium quantum thermodynamics [36,74–76]. The relationship between these two
Hamiltonians of mean force is subtler and is not possible to establish until the reduced
dynamics is fully relaxed: The idea is that the late-time dynamics of the linear reduced
system is independent of its initial state, so we will have the same density matrix operator
in the final equilibrium state. This implies that the operator βeffĤeff will be equal to βB ĤMF

in this asymptotic regime. Recalling that the covariance matrix element c(t) will vanish in
the limit t→ ∞, we find that the equilibrium Hamiltonian of mean force ĤMF is given by

ĤMF =
βeff(∞)

βB
ωR tanh

βeff(∞)ωR

2

[
a(∞) Q̂2 + b(∞) P̂2

]
. (22)

In contrast to the system’s Hamiltonian ĤS, both Hamiltonians of mean force contain
contributions due to the system-bath interaction [77]. In the limit of vanishing system-bath
coupling, it can be shown that both Hamiltonians of mean force will approach the system’s
Hamiltonian. Later we will see it may be futile to identify the contributions from the
system, the bath or interaction, separately. These uncommon features may be attributable
to unseparable entanglement between the system and the bath.

By implication, the equilibrium state of the system after relaxation is not necessarily
a Gibbs state, so the system does not inherit the bath temperature, and does not enjoy
a universal temperature independence of the details of the system. A more unsettling
consequence of the above discussion indicates that we are now confronted with ambigu-
ous definitions of the internal energy. For example, 〈ĤS〉 and US = ∂

∂βeff

(
βeffFS

)
, with

the nonequilibrium free energy FS(t) = −β−1
eff (t) lnZS(t), give distinct results at strong

coupling [36,77]. Another example is the entropy S . At strong coupling the following two
definitions of the entropy, −Tr ρ̂S ln ρ̂S and β2

B ∂FS/∂βB, are not equivalent.

3.2.1. Internal Energy

In order to assess these discrepancies, we will have a closer look at the systems’s
internal energy. We first note that the internal energy US is connected to the effective
Hamiltonian per definition via

US(t) = 〈Ĥeff〉 =
ωR

2
coth

βeffωR

2
=

ωR

2

√
1 + 4S = ωR

√
ab− c2 , (23)
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where we explicitly show the different parametrization of the expression of internal energy.
For comparison, we find that the system’s “mechanical energy” can be written as

〈ĤS〉 =
a

2m
+

mω2
R

2
b = US cosh 2η (24)

and we recall that η is the modulus of the squeeze parameter. Importantly, we recognize
that, while the internal energy US depends explicitly on the uncertainty function, i.e., a
multiplication of the covariance matrix elements (ab− c2), the average mechanical energy
〈ĤS〉 is given by a weighted sum of the covariance matrix elements [see discussion at the
beginning of Section 3.1]. By the inequality between the arithmetic and the geometric
mean, we further find

〈ĤS〉 ≥ ωR

√
ab ≥ ωR

√
ab− c2 = US ≥

ωR

2
. (25)

Hence US is bounded from above by 〈ĤS〉, and has a lower bound ωR/2, a consistent
consequence of the vacuum fluctuations. The first equality applies when

a
2m

=
mω2

R

2
b, (26)

that is, when the virial theorem applies. In the context of open systems, it refers to van-
ishingly weak system-bath coupling. The last equality is saturated in the limit of zero
temperature and extremely weak coupling with the bath. This simple analysis shows that
the equivalence between 〈ĤS〉 and US is established when the system-bath coupling is weak
and the system has equilibrated. These are the typical settings in conventional thermody-
namics.

In the high-temperature limit βeffωR � 1, we have

US =
ωR

2
coth

βeffωR

2
≥ 1

βeff
. (27)

This inequality results from the functional behavior of the coth-function, and the
equality is asymptotically satisfied when βeff → 0.

3.2.2. Nonequilibrium Thermodynamic Inequalities

The inequalities (25) and (27), though identical in appearance to the familiar inequali-
ties in traditional thermodynamics, are nonequilibrium by nature. They hold at all times,
irrespective of the coupling strength between the system and the bath. In particular,
〈ĤS〉 ≥ 〈Ĥeff〉 = US at every moment during the nonequilibrium evolution. The inequality
between 〈ĤS〉 and 〈Ĥeff〉 is rather tight for the current setting because the correlation c
between the canonical pair is typically much smaller than the uncertainty of the canonical
variables. This is clearly seen in Figure 5, where we show the time evolution of three
candidates of the internal energy, 〈ĤS〉, 〈Ĥeff〉 and 〈ĤMF〉. To avoid misinterpretations, a
few comments are in place. The traditional Hamiltonian of mean force ĤMF is defined and
discussed in the realm of equilibrium thermodynamics at strong coupling, so in principle its
expectation value is not time-dependent. The apparent time-dependence here comes from
the density matrix operator used to evaluate the expectation value. Thus, when making
contact with quantities defined in the traditional setting, only the late-time values are
needed. Secondly, the nonequilibrium Hamiltonian of mean force Ĥeff itself is a function of
time, but this results purely from time evolution, not from the action of an external agent.
Hence a decomposition like

d
dt
US(t) = Tr

{
˙̂ρS(t)Ĥeff(t)

}
+ Tr

{
ρ̂S(t) ˙̂Heff(t)

}
?
= Q̇ + Ẇ . (28)
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can be misleading. It may not be correct to identify the first term on the righthand side
as the time rate of heat flow and the second term as the time rate of work done, and
interpret this equation as the first law. For comparison, using the mechanical energy, we
can show that

d
dt
〈ĤS(t)〉 = Pξ(t) + Pγ(t) (29)

irrespective of the coupling strength, at any moment during the evolution. The quantities
Pξ(t) and Pγ(t) are, respectively, the powers delivered by the quantum fluctuations from
the quantum-field bath and the frictional force, reaction of the quantum radiation field
due to the oscillator-field coupling. The righthand side accounts for the energy exchange
between the system and the field bath during the nonequilibrium evolution. In particular, it
can be shown that when the system reaches the equilibrium state, the righthand side ceases.
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Figure 5. The time dependence of various candidates of internal energy. The top row corresponds
to the case γ = 0.3, and the bottom row for γ = 0.6. Here the temperature is normalized to the
oscillator frequency. The three columns represent βB = 10, βB = 1 and βB = 0.11 from left to right,
respectively corresponding to the high-, medium-, and low-temperature regime. Observe that 〈ĤS〉 is
always greater or equal to US = 〈Ĥeff〉 and the difference between them is smaller with higher bath
temperature or weak system-bath coupling. By contrast, 〈ĤMF〉 is not grouped well together with the
other two internal energies. This is related to the behavior of βeff/βS shown in Figure 3.

Moreover, from Figure 5, we observe that the behavior of 〈ĤMF〉 is quite detached from
〈ĤS〉 and 〈Ĥeff〉. The discrepancy is particularly severe at lower temperatures and stronger
coupling. This is related to the behavior of the ratio βeff/βS because the bath temperature
β−1

B does not faithfully reflect the fluctuation phenomena in the system convened by the
system-bath coupling, especially before equilibration. On the other hand, at higher bath
temperatures, these three internal energies approach each other, so there is no difference in
the weak-coupling, high-temperature thermodynamics. Incidentally, in the middle plot of
the top row in Figure 5, the curve of 〈ĤMF〉 seems to merge closer with the other two than
in the high temperature case to the right. This is an artifact of the crossover between βB

and βeff at the medium bath temperature as can be seen from Figure 3.

3.2.3. Heat Capacity

From the internal energy we may introduce the corresponding heat capacity by [48]

CS = −β2
eff

∂US

∂βeff
=

β2
effω

2
R

4
csch2 βeffωR

2
≥ 0 . (30)

It takes the same form as the one in traditional thermodynamics, except that the bath
temperature is replaced by the system’s effective temperature and that this heat capacity is
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time-dependent. We aim to express the (dynamical) heat capacity in terms of the dispersion
of Ĥeff. We first recall that ρ̂S = Ŝ(ζ)ρ̂ϑŜ†(ζ) such that we obtain by (21) that

〈Ĥ2
eff〉 = Tr

{
ρ̂S Ĥ2

eff

}
= Tr

{
ρ̂ϑŜ†(ζ)Ĥ2

effŜ(ζ)
}
= Tr

{
ρ̂ϑ Ĥ2

S

}
= 〈Ĥ2

S 〉βeff
, (31)

where we defined the average 〈· · · 〉βeff
= Tr{ρ̂ϑ · · · }. Next, since ρ̂ϑ is given by (2) with

the help of (15), that is,

ρ̂ϑ =
1
ZS

e−βeff ĤS (32)

and ĤS is independent of βeff, we readily find that

∂US

∂βeff
=

∂

∂βeff
Tr
{

ρ̂ϑ ĤS

}
= −〈Ĥ2

S 〉β + 〈ĤS〉2β , (33)

where

∂ZS

∂βeff
=

∂

∂βeff
Tr
{

e−βeff ĤS

}
= −Tr

{
e−βeff ĤS ĤS

}
= −ZS US . (34)

We thus arrive at
CS(t) = β2

eff〈∆Ĥ2
S 〉β = β2

eff〈∆Ĥ2
eff〉 , (35)

via the same familiar manipulations used in the traditional thermodynamics. Thus this
nonequilibrium heat capacity is still proportional to the internal energy fluctuations, now
defined by the nonequilibrium Hamiltonian of mean force (23). It thereby provides a physi-
cal link between ĤS and Ĥeff, where, again, the fundamental core is the uncertainty function.

4. Fluctuation-Dissipation Inequality and Robertson-Schrödinger Uncertainty

Until now, we have elaborated on the special role of the Robertson-Schrödinger uncer-
tainty principle in Gaussian open systems from the perspective of quantum thermodynamic
quantities. We will now continue to explore the role of the uncertainty function in the
equilibration process by exploring its connection to the fluctuation-dissipation theorem.
The connecting principle will be given by the so-called fluctuation-dissipation inequality
which is valid over the full course of the equilibrium evolution. Interestingly, we will see
that at least one additional assumption is needed for providing the full link between the
uncertainty function, over the fluctuation-dissipation inequality, all the way down to the
fluctuation-dissipation theorem at late times. It will become necessary to specify the bath
Hamiltonian and define its concrete statistical properties which are then inherited by the
system dynamics.

We begin with a brief derivation of the fluctuation-dissipation inequality in a setting
slightly more general than used in [19].

Given an operator Ô which is not necessarily Hermitian, we can always form a non-
negative operator Ô†Ô such that

〈Ô†Ô〉 ≥ 0 , (36)

as long as the expectation value is well-defined. For instance, this immediately implies [19,56]∫ t

t′
dsds′ f ∗(s) 〈ô†(s)ô(s′)〉 f (s′) ≥ 0 , (37)

if we assign

Ô(t) =
∫ t

t′
ds ô(s) f (s) (38)

for any well-behaved complex function f (s). In fact, we also readily have∫ t

t′
dsds′ f ∗(s) 〈

{
ô†(s), ô(s′)

}
〉 f (s′) ≥ 0 . (39)
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because 〈Ô†Ô〉 ≥ 0 implies 〈ÔÔ†〉 ≥ 0. It turns out useful to decompose the product
ô†(s)ô(s′) into the sum of the commutator and anti-commutator of ô(s) and ô(s′), and to
write (37) into

1
2

∫ t

t′
dsds′ f ∗(s) 〈

{
ô†(s), ô(s′)

}
〉 f (s′) +

1
2

∫ t

t′
dsds′ f ∗(s) 〈

[
ô†(s), ô(s′)

]
〉 f (s′) ≥ 0 . (40)

Now we introduce the Hadamard, the Pauli-Jordan and the retarded Green’s functions
of the operator ô, i.e.,

G(o)
H (s, s′) ≡ 1

2
〈
{

ô†(s), ô(s′)
}
〉 , G(o)

P (s, s′) ≡ i 〈
[
ô†(s), ô(s′)

]
〉 , (41)

G(o)
R (s, s′) ≡ i θ(s− s′) 〈

[
{ô†(s), ô(s′)

]
〉 , (42)

and rewrite Equation (40) as∫ t

t′
ds
∫ t

t′
ds′ f ∗(s) G(o)

H (s, s′) f (s′) ≥ i
2

∫ t

t′
ds
∫ t

t′
ds′ f ∗(s) G(o)

P (s, s′) f (s′) . (43)

This is a general case of the fluctuation-dissipation inequality put forward in Ref. [19].
Next we observe that if ô(s) is Hermitian and f is a real function of s, then the integrand

on the righthand side of (43) is odd in exchange of s and s′, so the corresponding double
integrals vanish, and we end up with∫ t

t′
ds
∫ t

t′
ds′ f (s) G(o)

H (s, s′) f (s′) ≥ 0 . (44)

This is the special case of (39). Thus we would like to at least require f to be a complex
function, or ô to be non-Hermitian, or both. Otherwise the inequality (43) is quite general,
regardless of whether the dynamics associated with ô or f has an equilibrium state or not.

In the limiting case t → +∞, t′ → −∞, and supposing that the Green functions
G(o)(s, s′) = G(o)(s− s′) is stationary, the previous result in (43) simplifies to∫ ∞

−∞

dκ

2π
| f̃ (κ)|2 G̃(o)

H (κ) ≥ i
2

∫ ∞

−∞

dκ

2π
| f̃ (κ)|2 G̃(o)

P (κ) , (45)

where the Fourier transform of a function f (t) is defined by

f̃ (κ) =
∫ ∞

−∞
dt eiκt f (t) . (46)

Thus, symbolically, we have

G̃(o)
H (κ) ≥ i

2
G̃(o)

P (κ) = Im G̃(o)
R (κ) > 0 , (47)

for κ > 0. Here, the last equality follows from the Kramers-Kronig relations for the causal
Green’s function (see Ref. [78] and Appendix A). To extract the physical meaning for our
case, we set ô = φ̂h(t) and define

G(φ)
P (τ) = − ∂

∂τ
Γ(φ)(τ) , G̃(φ)

P (κ) = i κ Γ̃(φ)(κ) = −2i Im G̃(φ)
R (κ) . (48)

Applying it to the Langevin equation of the internal dynamics of the harmonic system
coupled to the field [Equation (9)], we find

¨̂Q(t) + ω2
RQ̂(t) +

e2

m
Γ(φ)(t) Q̂(0) =

e
m

φ̂h(t)−
e2

m

∫ t

0
ds Γ(φ)(t− s) ˙̂Q(s) . (49)
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Then Equation (47) takes the form G̃(φ)
H (κ) ≥ | κ2 Γ̃(φ)(κ)|, which represents the fact that

as soon as there is any damping in the environment, that will cause fluctuations exceeding
the ∝ Γ̃ in their spectral magnitude.

An exact relation solely based on the fluctuation-dissipation inequality even at late
times is not at hand. Instead, after the system equilibrated, one finds a fluctuation-
dissipation equality [33]. It is interesting to note that, despite the similar nomenclature, the
FDI does not generally evolve to an FDR at late times. Indeed, in our case, the FDR reads
G̃(φ)

H (κ) = coth[βBκ/2](κ/2)Γ̃(φ)(κ). Only in the limit of zero bath temperature (βB → ∞),
will the FDI saturate its equality at late times and coincide with the FDR. In any other more
general case, the fluctuation-dissipation inequality serves as a lower bound for the bath
fluctuations. In that sense, the fluctuation-dissipation inequality can be understood as the
absolute quantum limit of the fluctuations in the system. Mathematically, this means that
substituting hermitian operators with the bath degrees of freedom, Equation (37), merely
sets the playground for the system to evolve, but the specific thermodynamic behavior
remains a prerogative of the statistical details of the bath. Naively, this might be surpris-
ing, as one would probably assign the role of describing the minimal uncertainty to the
Robertson-Schrödinger inequality. Hence, it is interesting to explore the relation between
the two inequalities.

To this end, we resume our discussion in Equation (43). We specify f (s) = θ(t −
s) d2(t− s) and assume a stationary Green’s function of φ̂. Without loss of generality, we
let t′ = 0, and then Equation (43) gives∫ t

−∞
ds
∫ t

−∞
ds′ θ(s) d2(s) G(φ)

H (s− s′) θ(s′) d2(s′)

≥ i
2

∫ t

−∞
ds
∫ t

−∞
ds′ θ(s) d2(s) G(φ)

P (s− s′) θ(s′) d2(s′) ,

⇒
∫ ∞

−∞

dκ

2π
G̃(φ)

H (κ) |bκ(t)|2 ≥
i
2

∫ ∞

−∞

dκ

2π
G̃(φ)

P (κ) |bκ(t)|2 . (50)

Here, we introduce the shorthand notations

bκ(t) =
∫ t

−∞
ds θ(s)d2(s) e−iκs , aκ(t) =

∫ t

−∞
ds θ(s)ḋ2(s) e−iκs , (51)

By choosing f (s) accordingly, Equation (50) would similarly apply for bκ → aκ . This is
the generalization of Equation (47) to arbitrary times. We aim to relate (50) with the
uncertainty function. For simplicity, we ignore the initial dynamics of the system and focus
on the situation when the dynamics is about to enter the relaxation regime (t ≥ γ−1). We
can then conveniently ignore the contributions from the initial conditions which gradually
become exponentially small without introducing much error. Then the covariance matrix
elements will be approximately given by

〈Q̂2(t)〉∼ e2

m2

∫ ∞

−∞

dκ

2π
G̃(φ)

H (κ) |bκ(t)|2 , (52a)

〈P̂2(t)〉∼e2
∫ ∞

−∞

dκ

2π
G̃(φ)

H (κ) |aκ(t)|2, (52b)

1
2
〈
{

Q̂(t), P̂(t)
}
〉∼ e2

m

∫ ∞

−∞

dκ

2π
G̃(φ)

H (κ) bκ(t)a
∗
κ(t) , (52c)

〈
[
Q̂(t), P̂(t)

]
〉∼ − i

e2

m

∫ ∞

−∞

dκ

2π
G̃(φ)

P (κ) bκ(t)a
∗
κ(t) . (52d)
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Here it is understood that these expressions have been implicitly regularized follow-
ing the discussions in Section 3.1. We note that, applying the Cauchy-Schwarz inequal-
ity [79] implies

〈Q̂2(t)〉〈P̂2(t)〉 ≥
[

1
2
〈
{

Q̂(t), P̂(t)
}
〉
]2

, (53)

explicitly showing that the covariance matrix is positive semi-definite. More interestingly,
successively applying to 〈Q̂2(t)〉〈P̂2(t)〉 the fluctuation-dissipation inequality Equation (50)
and the Cauchy-Schwarz inequality, we we can restore the Robertson-Schrödinger inequal-
ity, i.e.,

〈Q̂2(t)〉〈P̂2(t)〉 = e4

m2

∫ ∞

−∞

dκ

2π
G̃(φ)

H (κ) |bκ(t)|2
∫ ∞

−∞

dκ′

2π
G̃(φ)

H (κ′) |aκ′(t)|2

FDI
≥ 1

4
e4

m2

∫ ∞

−∞

dκ

2π
G̃(φ)

P (κ) |bκ(t)|2
∫ ∞

−∞

dκ′

2π
G̃(φ)

P (κ′) |aκ′(t)|2

CS
≥ 1

4

∣∣∣∣ e2

m

∫ ∞

−∞

dκ

2π
G̃(φ)

P (κ) bκ(t)a
∗
κ(t)

∣∣∣∣2 . (54)

=
1
4

∣∣〈[Q̂(t), P̂(t)]〉
∣∣2 ,

for t ≥ γ−1. Hence, we find that the fluctuation-dissipation inequality provides a po-
tentially sharper bound to the uncertainty of the canonical variables than the Robertson-
Schrödinger inequality as long as the last inequality in Equation (54) is not saturated.
In fact, the Robertson-Schrödinger inequality, for the canonical variables Q̂ and P̂, is given
by the trivial form 〈[Q̂(t), P̂(t)]〉 = i over the full course of the nonequilibrium evolution,
as one would expect from traditional quantum mechanical considerations (see Appendix B).
Since this might not be obvious from the evolved expression in Equation (52d), let us
consider the case of late times explicitly.

We return to Equation (52) and examine the t → ∞ limit. The solutions to Equa-
tion (49) are

Q̂(t) = d1(t) Q̂(0) +
d2(t)

m
P̂(0) +

e2

m

∫ t

0
ds d2(t− s) φ̂h(s) , (55a)

P̂(t) = m ḋ1(t) Q̂(0) + ḋ2(t) P̂(0) + e2
∫ t

0
ds′

∂

∂t
d2(t− s′) φ̂h(s′) . (55b)

We hence obtain for the average of the commutator

〈
[
Q̂(t), P̂(t)

]
〉 =

[
d1(t)ḋ2(t)− ḋ1(t)d2(t)

]
〈
[
Q̂(0), P̂(0)

]
〉

− i
e2

m

∫ t

0
ds
∫ t

0
ds′ d2(t− s)

∂

∂t
d2(t− s′) G(φ)

P (s− s′) . (56)

Next we make a change of variables y = t− s, and then, defining d2(y) = θ(y)d2(y),
we may extend the lower limit of the y-integral to −∞. Equation (56) then becomes

〈
[
Q̂(t), P̂(t)

]
〉 = i e−2γt − i

e2

m

∫ t

−∞
dy
∫ t

−∞
dy′ d2(y) ḋ2(y′) G(φ)

P (y− y′) . (57)

The first term on the righthand side comes from the contributions of the initial condi-
tions, and thus is negligible as t→ ∞. When t goes to infinity, we arrive at

〈
[
Q̂(∞), P̂(∞)

]
〉 = −i

e2

m

∫ ∞

−∞
dy
∫ ∞

−∞
dy′ d2(y) ḋ2(y′) G(φ)

P (y− y′)

= −i
e2

m

∫ ∞

−∞

dκ

2π
(−iκ) G̃(φ)

P (κ) |d̃2(κ)|2 . (58)
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Now since
d̃2(κ) =

1

−κ2 + ω2
R − e2

m G̃(φ)
R (κ)

, (59)

we can show that

d̃2(κ)− d̃∗2(κ) = i
2e2

m
Im G̃(o)

R (κ) |d̃2(κ)|2 . (60)

Thus with the help of (48), Equation (58) reduces to

〈
[
Q̂(∞), P̂(∞)

]
〉 = 2i

∫ ∞

−∞

dκ

2π
κ Im d̃2(κ) = 2i Im

∫ ∞

−∞

dκ

2π
κ d̃θ

2(κ) = 2i Im
{

i θ(0) d2(0)
}

. (61)

Now observe that d2(0) = 1 and θ(0) = 1/2, and we finally find

〈
[
Q̂(∞), P̂(∞)

]
〉 = i . (62)

We would have obtained the same result by inserting Equation (59) and evaluating
the first integral in Equation (61) directly. The given derivation, however, is more general
as it relies on the functional properties of the Green tensor only and can hence be applied
to any non-Markovian damping kernel.

5. Conclusions

Thermodynamic uncertainty relations (TUR) make up one of the few rare anchors in
the largely uncharted waters of nonequilibrium systems. Our goal in this work, as stated in
the beginning, is to trace the uncertainties of thermodynamic quantities in nonequilibrium
systems all the way to their quantum origins, namely, to the (microscopic) quantum
uncertainty principles (QUP).

The baseline of (quantum) thermodynamic inequalities is deeply rooted in the quantum-
mechanical properties such as non-commutativity, interference and entanglement. Only on
top of that come additional statistical effects of various sources. In this paper we have
focused on the significance of non-commutativity in the form of the Robertson-Schrödinger
uncertainty principle. This principle is of particular significance in a Gaussian system,
because it can be expressed by the elements of the covariance matrix, which fully and
uniquely determine the state of the thermodynamic open system. On the basis of previous
work [48], we highlight the role of the Robertson-Schrödinger uncertainty principle in the
system’s density matrix and the subsequently defined thermodynamic quantities such as
the effective temperature.

During the course of the system’s evolution, the effective temperature reflects the
quantum-fluctuation dynamics of the system. When the system-bath interaction is not weak,
the interaction between system and bath will leave the imprint on the system dynamics.
Noticeably, after the system comes to equilibrium, the effective temperature of the system
is not equal to the bath temperature, and the disparity increases with stronger interaction
strength. Furthermore, the equilibrium state of the system deviates from the Gibbs form.
This necessarily implies that whatever effective temperature the system assumes, it is
destined to be non-universal and leaves room for specificity in the precise physical meaning
of its definition.

Only in the case of the Gaussian open systems, however, where the trace of the
density matrix is fixed by some form of a Gibbs state [see Equation (2)], would a judicious
definition of the partition function appear rather naturally, which mitigates ambiguities
in introducing the effective temperature. Unique to Gaussian systems interacting with a
passive environment is that the resulting thermodynamic quantities are solely dependent
on the uncertainty function. The approach based on the nonequilibrium partition function
then leads to a notion of the system’s internal energy and evokes an effective Hamiltonian
Ĥeff with respect to the effective temperature of the system β−1

eff , rather than with respect to
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the bath temperature β−1
B . This internal energy is shown to coincide with the expectation

value of Ĥeff.
With this condition we then compare the result of the internal energy with two dif-

ferent, but equally plausible definitions of internal energies in the nonequilibrium setting
at strong coupling. On one hand, a customary example is the expectation value of the
system Hamiltonian ĤS, which—in the classical mind—would correspond to the system’s
mechanical energy. On the other hand, we have the expectation value of the Hamiltonian
of mean force ĤMF with respect to the bath temperature β−1

B . Interestingly, we observe that
the internal energy US = 〈Ĥeff〉 is always bounded from above by the expectation value of
the system Hamiltonian ĤS. Since the derivative with respect to time of 〈ĤS〉 is the rate of
energy exchanged between the system and the bath, the difference from the bound seems
to be related to the energy cost when the system-bath entanglement is established due to
the interaction. We also find that in this nonequilibrium formulation, the heat capacity
remains proportional to the uncertainty of the Hamiltonian Ĥeff, and the proportionality
factor is given by the effective temperature of the system.

Returning to the equilibration process of the system, we find that the fluctuation-
dissipation inequality, i.e., a nonequilibrium inequality on the magnitude of the respective
fluctuation and dissipation kernels in the system, can lead to a fluctuation-dissipation
equality in the zero-temperature limit at late times. However, it turns out that, in general, the
fluctuation-dissipation inequality cannot by itself resolve into the fluctuation-dissipation
equality at late times, but this is the case only for the absolute zero-temperature quantum
bound. Only with additional information on the bath spectral density can one deduce
the famous spectral coth(βω)/2 behavior. More interestingly, the fluctuation-dissipation
inequality reproduces the Robertson-Schrödinger inequality at all times and can even serve
as an upper, more precise bound. Especially the RSI could provide viable information for
fluctuation-limited experimental investigations.

Lastly, looking at the big picture, we comment on two aspects extending what we
have done here: (1) TURs in terms of currents: Many thermodynamic uncertainty relations
are expressed in terms of thermodynamic quantities such as energy flux and entropy pro-
duction in multiple-bath scenarios. In our next paper on this topic [28], the centerpiece is
indeed TURs expressed in terms of heat flux. There, we need to evaluate the fluctuations of
generalized currents which involve 4-point functions of the fields, causal Wick’s theorem,
etc. We have calculated the current fluctuations in open quantum systems interacting with
two baths at different temperatures under nonequilibrium steady state, using the functional
method constructed in [35]. (2) Quantum origin of TURs for nonlinear systems. Short of
finding the results from explicit calculations on some representative nonlinear quantum
systems we can only provide some speculative thoughts for now, one is at a fundamental
theoretical level, by necessity, the other at a practical case-study level, by manifestation.
At the theoretical level, thermodynamics is a theory describing the macroscopic phenomena
with well-established microscopic basis. Since we know quantum theory is the microscopic
theory there should be a linkage between the TUR and the quantum uncertainty principles.
This micro-macro linkage cannot just be restricted to linear systems. In terms of actual
case-studies, we have done perturbative calculations of weakly nonlinear systems [54,80]
and proven the existence of sets of fluctuation-dissipation relations (FDR) [39,54]. These
FDRs governing macroscopic thermodynamic quantities are derived from microphysics
models, namely, the quantum Brownian motion. Since these relations are of a categori-
cal nature we can project that TUR for nonlinear systems should also have quantum origins.
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Appendix A. Kramers-Kronig Relation for the Green’S Function

From the definition of G(o)
H (s, s′) and G(o)

P (s, s′) of a non-Hermitian operator ô in (41),
we obtain

G(o)†
H (s, s′) = G(o)

H (s′, s) = G(o)
H (s, s′) , G(o)†

P (s, s′) = −G(o)
P (s′, s) , (A1)

which in turn implies that if the Green’s functions are stationary, then

G̃(o)†
H (κ) = G̃(o)

H (κ) , G̃(o)†
P (κ) = −G̃(o)

P (κ) . (A2)

Thus G̃(o)
H (κ) is real, but G̃(o)

P (κ) is imaginary. Next consider G̃(o)
R (κ), and we have

G̃(o)
R (κ) =

∫ ∞

−∞
dτ eiκτ θ(τ) G(o)

P (τ) (A3)

= i
∫ ∞

−∞

dω

2π

G̃(o)
P (ω)

ω− κ + i ε

=
∫ ∞

−∞

dω

2π
G̃(o)

P (ω)
[
iP
( 1

ω− κ

)
− π δ(κ −ω)

]
.

where we have added a convergent factor to make the integration well defined, and P(· · · )
represents the principal value. This implies

Im G̃(o)
R (κ) =

i
2

G̃(o)
P (κ) . (A4)

Appendix B. The Robertson-Schrödinger Uncertainty Principle

The weaker commutation relation 〈[Q̂(t), P̂(t)]〉 = i still hold at an arbitrary t for the
open systems. Let ρ̂S(t) be the reduced density matrix of the system. Then

〈[Q̂(t), P̂(t)]〉 = TrS

{[
Q̂, P̂

]
ρ̂S(t)

}
=
∫

dQdQ′ δ(Q−Q′)
{

Q
[
−i

∂

∂Q
ρS(Q, Q′, t)

]}
−
{
−i

∂

∂Q

[
Q ρS(Q, Q′, t)

]}
= i

∫
dQdQ′ δ(Q−Q′)ρS(Q, Q′, t)

= i . (A5)
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Thus from the Schwarz inequality we find

〈Q̂2(t)〉〈P̂2(t)〉 = TrS

{
Q̂2ρ̂S(t)

}
× TrS

{
P̂2ρ̂S(t)

}
≥ |TrS

{
Q̂P̂ ρ̂S(t)

}
|2

= |TrS

{1
2
{

Q̂, P̂
}

ρ̂S(t)
}
+ TrS

{1
2
[
Q̂, P̂

]
ρ̂S(t)

}
|2 . (A6)

Since the first term is real but the second term is imaginary, we note from

z = x + i y , with x ∈ R , y ∈ R , ⇒ |z|2 = x2 + y2 , (A7)

and then we conclude the RS uncertainty relation

〈Q̂2(t)〉〈P̂2(t)〉 ≥ 1
4
〈
{

Q̂(t), P̂(t)
}
〉2 + 1

4
. (A8)
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