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Abstract: Describing the permanence of cultural objects is an important step in understanding societal
trends. A relatively novel cultural object is the video game, which is an interactive media, that is,
the player is an active contributor to the overall experience. This article aims to investigate video
game permanence in collective memory using their popularity as a proxy, employing data based
on the Steam platform from July 2012 to December 2020. The objectives include characterizing the
database; studying the growth of players, games, and game categories; providing a model for the
relative popularity distribution; and applying this model in three strata, global, major categories, and
among categories. We detected linear growth trends in the number of players and the number of
categories, and an exponential trend in the number of games released. Furthermore, we verified that
lognormal distributions, emerging from multiplicative processes, provide a first approximation for
the popularity in all strata. In addition, we proposed an improvement via Box-Cox transformations
with similar parameters (from —0.12 (95% CI: —0.18, —0.07) to —0.04 (95% CI: —0.08, 0)). We were
able to justify this improved model by interpreting the magnitude of each Box-Cox parameter as a
measure of memory effects.
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The concept of memory is ubiquitous both in everyday conversations and in scientific
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investigations. Our identities, personal, familial, and national, are molded from memories
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rooted in interpersonal interactions, top-down discourses (e.g., if a nation decides to
celebrate one political holiday but not another), and self-reflection. In terms of cultural
objects, their popularity at the time when they are made public and in the following years
can be seen as a proxy to gauge long-term permanence in collective memory. Thus, one

could assume that if a new cultural object was met with a significant and positive reception,
it is plausible that such an object will remain longer in collective memory.

This work is dedicated to investigating video game popularity via lognormal distri-
butions and their deformations by Box-Cox transformations. This study is inserted in the
broad context of collective and, more specifically, cultural memory. The latter can be charac-
terized, as completed by Assmann [1], as “[...] a form of collective memory in that a number
of people share cultural memory and in that it conveys to them a collective (i.e., cultural)
identity”. Usually, studies on memory and forgetting of products analyze data stemming
from the consumption of books, movies, etc. [2]. This work presents two novelties in this
debate. The first is the focus on the popularity of video games over time as indicative of
their permanence in collective memory. Multiplicative processes (lognormal distributions)
are associated with a memoryless player distribution and deformations of such processes
(Box—Cox transformations) with memory effects. The main metrics employed here to
Attribution (CC BY) license (https://  quantify how popular video games are is the average number of players of each game per
creativecommons.org/ licenses /by / month from July 2012 to December 2020. Other metrics employed as well are the release
40/). date and categories of each video game.
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The second novelty is associated with the choice of memory studies as a framework
for interpreting our quantitative model. While memory studies were already employed
in the investigation of the forgetting process for cultural objects [3], this article is the
first, to the best of our knowledge, in the context of video game popularity. A valid
consideration is in regard to the time frame studied, since cultural memory is usually
concerned with intergenerational continuity and longer time intervals. However, in this
digital age, new cultural trends are created, appropriated, resignified, and discarded in
an almost continuous manner, processes influenced by interpersonal interactions, social
networks, and the presence (even pervasiveness) of online advertisement. Thus, in an ever-
accelerating society, it seems plausible to discuss cultural objects and memories over shorter
time frames and this discussion becomes more relevant in a cultural context dominated by
younger people [4,5].

At this point, an objection may be raised: why study video game popularity? To
respond to this objection, it should be noted that the socioeconomic role of digital games
has been growing, which is reflected in the increased scientific interest from diverse
research areas such as education/training [6-11], computer/network science [12-16],
psychology [17-19], and human health/neurology [20-23]. Of particular interest for the
present work, it is worth mentioning that studies are investigating the popularity of video
game categories [24,25] and which factors are responsible for keeping players invested in
this hobby, the main ones being online play with friends (social factor), intrinsic fun of the
game (immersive factor), and achievements (individual factor) [26-29]. In addition to the
increased scientific interest, video games have a value of their own as a cultural object since,
unlike most other objects, they are an interactive media, which means that the players are
active contributors to the overall experience. In other words, only by understanding user
preferences can one fully comprehend video games as cultural phenomena.

The article starts with a data analysis to better understand the dataset, where the
growth of the players and games over time was characterized. A model for the relative pop-
ularity of video games is proposed, with the simplistic assumption of no prior knowledge
of the video game before its release. Afterward, a model that refines this initial assump-
tion is advanced, one that depends on the Box—Cox transformation. Given the natural
classification of video games into categories and the existent interest in the literature, the
investigation proceeds to consider the relative popularity in the most popular categories
using the same models, with the underlying assumption that a model that accurately
describes the global layer will be able to reasonably describe its parts. Finally, this work
examines the temporal evolution of the number of distinct categories and the probability
distribution of all categories according to the number of games in each of them. This
examination was guided by the two conjectures. The first is that, while a new video game
may grow and decline in popularity over months, it is reasonable to assume that categories
are more resilient since they represent the preferences and sensibilities of a fraction of the
population. The second is whether the more popular categories are the ones with more
options to choose from, i.e., the ones with more games.

From the above discussion, the following conjectures will be explored and investigated
in this work:

e The number of video games and of players are growing either linearly or exponentially
over time;

¢ The relative popularity among games is described by a distribution that resembles
the lognormal one, a hypothesis which was driven by the fact that this distribu-
tion has been employed and studied in the context of econophysics [30], quan-
titative linguistics [31], and in the popularity analysis of other cultural products,
such as patent citation, scientific citation, Wikipedia entries, and memes in social
networks [32-35];

¢  The distributions are stable over time;

¢ The popularity distributions for the major categories will be similar to each other and
to the global one;
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¢ The number of categories will grow more slowly compared to the number of games
and players.

2. Materials and Methods

In our investigation about video game popularity, we employed data from a digital
platform, Steam. This platform is a digital media distribution developed by Valve Corpo-
ration and an online game store responsible for managing the copyrights of the games
in its database [36]. Steam currently has more than ninety million users [37], reaching
more than twenty million users simultaneously online [38]. Unfortunately, due to user
anonymity, we cannot determine users’ countries and, therefore, we are unable to provide
player population by country. Nevertheless, the data is a representative sample of the
global player population because network usage data by country is made available and
one can see that there is network usage in all five continents, with China and the United
States having the largest shares. It should also be noted that Steam was already the largest
digital distribution platform for PC gaming in 2013 [39] in terms of users. Today, in Steam,
there are more than fifty thousand video games [40].

Regarding user data, they are anonymous and unidentifiable. For example, we do
not know who is playing, we only have information on how many users are playing each
game in each hour. Eventually, the same user can play more than one game at a time. For
example, if a user is playing two games simultaneously, he or she will be counted as a
separate user in each of the two games. From the number of users per game per hour, one
can obtain derived data such as the average number of users per hour in each month, as
presented in the steamcharts website [41]. Because our analysis is limited to games indexed
in steamcharts, we considered approximately twenty-two thousand games. Since the Steam
data used here are not reported by the users, a reduction in subjective aspects of the analysis
can be expected. Another type of data employed in our analysis is the meta information of
each game (its release date, categories, etc.) on Steam [36]. From these data, we obtained
the number of games released each month and the number of distinct games per category
over time.

All data described above correspond to the period from July 2012 to December 2020,
where games released prior to 2012 and games without time series were excluded. For user
data per game per hour, Steam freely provides only from the current hour. Therefore, for
creating a larger database, there needs to be a systematic accumulation of data over a given
period. Although the Steam platform started in September 2003, this data storage process
has only been freely made available by steamcharts from 2012 to the present day, justifying
the starting date for the data used in our study. In turn, the data were downloaded and
analyzed using Python scripts and the Steam API. These data are provided in .csv format as
a dataset and can also be obtained in https:/ /gitlab.com/tdfb/steam-data-2020/ (accessed
on 16 June 2022). We note that the data collection method complied with the terms and
conditions of the website. In addition, the sharing of the data also complies with the terms
and conditions. To summarize, an outline of the data employed in this work is given in
Table 1, where pgjop, is the sum of the average concurrent players for all games and all
months, while py,4;, is the same sum but only for games in the largest category, Indie.

Table 1. A summary of the data utilized in this work.

Total of games: 21,752 Number of tags: 1044
At: 8.5 years t;: July 2012 tr: December 2020
Oglobal: 1.78 x 10° Olndie: 2-46 x 107
3. Results

Our investigation on the popularity of video games initially focused on fairly general
features of the dataset, which are exhibited in Figure 1. Figure 1A represents the time
evolution of the average number of players per hour in each month in Steam. In an hour
of December 2019, for instance, a few million users connected to Steam were in-game.
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Figure 1B presents the number of games released monthly in Steam, e.g., seven hundred
and twenty-seven games were released in our dataset in December 2020. The data range
from July 2012 to December 2020 and are organized in such a way that the first month
(Month 1) represents July 2012, the second month (Month 2) represents August 2012, and
so on. From Figure 1A we can note a mean linear growth tendency, with a growth rate
of approximately thirty-seven thousand players per hour per month. On the other hand,
Figure 1B shows a crude exponential growth trend of the games released on Steam, with an
intrinsic growth rate close to 0.01/month.
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Figure 1. Number of players in and of games released on Steam. (A) The average number of players
by hour in each month (discs) and a linear adjustment (straight line) along 111 months, where the
first one is July 2012 and the last one is December 2020. (B) During these same months, growth of the
number of games (discs) released and an exponential fit (straight line).

One way of further investigating video game popularity is made possible by dividing
the data by release trimester (e.g., games released in January, February, or March of the
same year would belong to one set). This data collation criterion coincides with the game
releases by seasons. These sampling periods also correspond with quarterly reports to
investors and shareholders. If we had chosen a monthly grouping window, we would have
few games per window, especially in the first months of our database. For each trimester
dataset, we analyzed the temporal evolution of popularity aspects in the subsequent
months. Figure 2A,B show the time evolution of the means and standard deviations, where
each color corresponds to a distinct trimester grouping. We used month one as the first
month of each group and, consequently, the most recently launched sets of games have
shorter time series, with the smallest series having two months. Due to outliers, the average
behavior of different groups vary wildly in all ranges, clearly exemplified by the three
upper curves in Figure 1A. A similar pattern is also observed with the standard deviation,
only on a different scale. Note that the presence of such outliers makes it difficult to identify
a general pattern in a limited range for all means and standard deviations.

A procedure that can favor the identification of a universal pattern related to Figure 2A,B
come from attenuating the effects caused by outliers. In this direction, we will employ a new
variable that smoothes outlier contributions. It is defined by:

y; = logx;, (1)

where x; represents the average number of players by the hour in each month in the i-th
game and log refers to the logarithm in base e. Using this new variable, we in fact verified
an improvement in the temporal behavior of the means and the standard deviations, in the
sense of revealing a more constant behavior after the first months after the game’s release.
This fact is illustrated in Figure 2C,D.
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Figure 2. Mean and standard deviation of the trimester groups. (A) Mean of the average number of
players per hour in each month (x;) of all games of each trimester group along the months after release.
(B) For these groups, the time evolution of their standard deviations. By using the logarithmic variable
(y; = log x;), the time dependence of the corresponding means (C) and standard deviations (D). Each
one of the thirty-four trimester groups has its own color.

To go beyond means and standard deviations, we move our study in the direction of
probability distributions. This approach enables us to investigate relative popularity among
video games, since the relative frequency of occurrences of video games with a different
number of players can be put in evidence. With this goal in mind, we firstly determined
probability density functions (PDFs) of y;. Note that, due to the approximate constancy of
each mean and standard deviation previously discussed, PDFs that trend towards stability
are expected. Pursuing the investigation of these PDFs, we grouped the games in trimesters
by their release date, as employed in the discussion of means and standard deviations.
To conduct an exploratory analysis of the data, we initially chose to investigate one of
these release date trimesters separately. The group randomly chosen from the thirty-four
trimesters in our database was the one with games released in the first trimester of 2015
(01/2015). Motivated by the approximate constancy of means and standard deviations
(Figure 2C,D), we grouped the monthly average of players per game per hour in each
subsequent quarter until December 2020, giving 24 quarters of time evolution. Since there
are 420 games in the 01/2015 trimester, the quantity of y; considered is 420 x 24 (=10,080).
Figure 3A shows the PDF of these 10,080 data, where we used the normalized variable z,
that is,

g = Y _(T<yi> , 2
Y

with (y;) and oy, being respectively the mean and standard deviation of the quarterly set

of y;’s. As we can see from this figure, the PDF is somewhat left-skewed. Proceeding

similarly, we verified that this slightly asymmetrical pattern occurs in the other remaining

thirty-three release date trimesters of our database.
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Figure 3. Box—Cox analysis of the 01/2015 trimester group. (A) Probability distribution function of
the normalized logarithmic variable z; = (y; — (y;)) /0y with y; = log x; for the 01/2015 trimester
group, where x; is the average number of users per hour in each month of the i-th game. (B) The same
as (A) but employing the optimal A value (Aop; = —0.07) of the Box-Cox transformation, Equation (3).
The dashed lines refer to a normal distribution with the mean zero and unity standard deviation.
(C) Time evolution of the optimal parameter A, Aopt, of the trimester group along the twenty-four
quarters. The discs represent the Ayp;’s along the time evolution of the 01/2015 trimester group and
the straight line of the mean of all quarters, (Aop;) = —0.08, which is close to the value obtained
with the A,p; obtained via the maximum-likelihood method in (B). The error bars refer to the 95%
confidence interval of the Aopt’s estimated via the maximum-likelihood method.

As can be seen, the graph of the data in Figure 3A resembles a Gaussian in the
variable z, that is, a lognormal distribution in the variable x. Despite this similarity, the
slight asymmetry of the data distribution, when compared to the normal one of mean
zero and unit standard deviation, suggests a necessity of a more fine-grained variable
transformation than the logarithm. In cases like this, the Box—-Cox transformation is usually
employed [42-46]:

Xt — .
y = L35 (WA £0) ®)
Z logx; (ifA=0) '

where, at the limit A — 0, the logarithmic behavior is recovered and the value of the
parameter A indicates the degree of deviation from this behavior.

A standard procedure to arrive at an optimal A is the maximum likelihood method [47].
The result of this procedure, applied to the same data of Figure 3A, can be seen in Figure 3B.
In this figure, we utilized the normalized variable:

7 = TS, @

@ @
1 1

corresponding standard deviation ¢. It is noticeable that the degree of symmetry of the
data distribution in Figure 3B is greater than that in Figure 3A. This gain in symmetry
was verified for all the thirty-four quarterly groups of our database. Note also that, in
terms of the original variable and employing the Box-Cox transformation, the popularity

distribution is given by:

where (y.") is the mean value y of the more than ten thousand y;"’’s and ey is the
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where x > 0and (x* — 1) /A is replaced by log x when A = 0, reducing p(x) to a lognormal
distribution.

Despite our grouping of the twenty-four quarters of the time evolution for the 01/2015
trimester data, it should be noted that we can apply the Box-Cox transformation separately
for each of these quarters. The results of these applications are PDFs comparable to the one
presented in Figure 3B. In addition, the optimal A for each one of these PDFs is close to the
Aopt considered in Figure 3B, as presented in Figure 3C. Similar results were verified for
each optimal A value of the other thirty-three trimesters of our data. These results indicate
that the PDFs of each one of the thirty-four trimester groups are both stable and similar to
each other over time, justifying the use of the grouping process employed in Figure 3A,B.

When a procedure analogous to that discussed in connection to Figure 3B is applied
to each one of the thirty-four trimester groups, a mean Aopt, Agpt, is obtained. These
values of A,y are shown in Figure 4A. Among all A,p’s, the smallest Ay is —0.07, the
largest is —0.02, and the mean is —0.04. These facts point to a similarity of the PDFs of the
trimester data normalized via the transformation given in Equation (4). This robustness
also suggests investigating the behavior of all standardized trimester data as a unique
data set via a single PDF. In this case, Figure 4B illustrates how the distribution in terms
of the variable z(¥) would be. Note that the slight asymmetry of this data distribution is
consistent with that of the dataset presented in Figure 3A. In turn, when the variable z(*
with the maximum likelihood is employed, we obtain the optimal global parameter equal
to /\opt = —0.05. Note that this value is close to the behavior of the different Aopt’s shown
as dots in Figure 4A and also close to the mean value of all Aopt’s, shown as the continuous
line. From Figure 4B,C, we also verify that the similarity with the Gaussian is accentuated
when A,y is used instead of A = 0, just as it was for the data used in Figure 3A,B. These
facts point to a unifying standard PDF of the normalized variable, including all thirty-four
trimesters as well as their time evolution.

0.00 |- -

/\opt

—0.05

—0.10

=015 | 1 1 1 1 1 1 -

Probability distribution

Figure 4. Box-Cox analysis for all trimester groups. (A) Optimal A, Ay, for each trimester group
(disc) and the mean value, ﬁpt = —0.04, represented by the red straight line. The error bars indicate
95% confidence intervals. (B) For the normalized global data, the PDF of the logarithmic variable,
z(0), (C) The same as in (B) but employing A,pr = —0.05 in the Box-Cox transformation. The dashed
lines correspond to the normal distribution with mean zero and unity standard deviation.
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Another way of focusing on the popularity of video games involves comparing games
with others of the same category (also called fag in Steam). The category of a video game
is indicated by developers or users. In our analysis, we use the user-defined categories
(decided by popular vote) as the classification of a game. The twelve categories with the
largest number of games are Indie (15,348), Casual (9201), Action (8705), Adventure (8601),
Single Player (6835), Simulation (5514), Strategy (5063), RPG (4027), 2D (3451), Puzzle (2753),
Atmospheric (2479), and Early Access (2351), in which the numbers in parentheses indicate
the number of games as of December 2020. Note that there is overlap between the categories,
e.g., a game could belong to both the Indie and to the Puzzle category. In Figure 5A, the
time evolution of the average number of players per hour in each month from July 2012
to December 2020 of the largest category, Indie, is shown. As can be seen, there is a mean
linear growth trend similar to the one identified in the general case shown in Figure 1A.
Linear growth trends over time of the average number of players per hour have also been
verified for the majority of the twelve largest categories. Other categories, which have less
than 150 games, show many statistical fluctuations in their temporal evolution, making
it difficult in most cases to identify a pattern. On the other hand, as in the general case
(Figure 1B), the number of games released monthly exhibits an approximate exponential
growth trend (at least for the intermediate months) for most of the twelve major categories
of games. This behavior is illustrated for the Indie case in Figure 5B. For each of the other
categories of games, the number of games released per month is smaller and the possible
identification of an exponential behavior becomes less clear.
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Figure 5. Number of players in and of games released on Steam for the Indie category. (A) The
average number of players per hour in each month for the Indie category (purple discs) and a linear
adjustment (straight line, red), where month one is July 2012 and the last month is December 2020.
(B) During these same months, growth of the number of games released in this category (green discs)
and an exponential fit (straight line, red).

Continuing with the analysis of the popularity of categorized video games, Figure 6A
is analogous to Figure 4C (all quarters of all trimester groups together) focusing on the
distribution of the number of users for Indie video games. In this case, one has a Box-Cox
transformation with Aoy = —0.049. This value is consistent with the A,y obtained for
each quarterly data of the Indie category, shown in Figure 6B (the analogous of Figure 4A).
Similar behaviors to those shown in Figure 6A,B were also obtained for the other eleven
major categories of games, whose A,¢’s are presented in Figure 6C. In turn, the mean of
these twelve average values of Ayp is equal to —0.028, a result close to the global mean
shown in Figure 4B. The calculation of these optimal A’s for the remaining categories is also
close to —0.03 in most cases, even though the number of games involved in each category
is small.
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Figure 6. Video game categories. (A) PDF for the Indie category obtained via the Box-Cox transforma-
tion (Agpr = —0.049), analogous to Figure 4C (all quarters of all trimester groups together). (B) The
Box—Cox parameter for Indie games in each trimester of our dataset, analogous to Figure 4A. The
bars refer to 95% confidence intervals. The straight line refers to the mean of all trimestral Box-Cox
parameters, (A,p:) = —0.06. (C) Optimal Box—Cox parameter, Ay, for the twelve largest game
categories, calculated via the same procedure of (A). The Aopt’s are sorted in descending order of their
number of games by category. The straight line represents the average of these Agp;’s, (A) = —0.028
for the twelve major categories.

As the last stratum of our analysis, we examine further aspects of the popularity
of video game categories. The first concern considered was the growth of the number
of distinct video game categories over time. As shown in Figure 7A, we identified a
linear growth trend, whose increase rate is approximately 8 categories/month. In turn,
the approach to investigate the relative popularity among categories is similar to the
one of Figure 6A,B. In this investigation, we focus on the relative popularity distribution
of categories as a function of their number of video games. By using an optimal Box—
Cox transformation, this distribution in December 2020 is displayed in Figure 7B. In
December 2020 there were 1044 categories, encompassing 21,752 games. Despite having
many categories with only one game, we did not consider them. This is because the naming
of the pertinent category can be quite uncertain since there is a very limited number of
votes for these categories, which leads to statistical uncertainties. As we can see from
Figure 7B, the Box—Cox transformed data can be adjusted by a normal distribution of
mean zero and unity standard deviation, but in a less precise manner than in our previous
studies (Figures 3B, 4C and 6A). However, the optimal A, Aoyt = —0.12, is close to the ones
previously found, indicating a unified view for our study of the popularity of video games.
This result is reinforced by the stability of Ay time evolution in recent years, shown in
Figure 7C. In the early years of our database, there were both few categories and few games,
worsening the adjustment of the data by a Box-Cox distribution and leading to an unclear
Aopt value, evidenced by wider confidence intervals. As in previous analyses, since )topt is
close to zero, the data as in Figure 7B can be represented by a lognormal distribution in a
first approximation.



Entropy 2022, 24, 860

10 of 15

A
I I I I I I I I I
@ 1000 4 &
15 5
e
o 800 - — 2
4 -
o o
o 600 | 4 3
° oy
g 400 - %
£ - Q
5 0} slope =7.98 3
== o
AN I I TR I N B
0 12 24 36 48 60 72 84 96 108
Month
C
02 F I I I I I I I I i
0.0 |- A T TR A N N + } .
o] SN A A AR ]
8 -04| .
~
_06 — —
-0.8 [~ -
-1.0 |- ] ] | | | | ] |
0 2 4 6 8 10 12 14 16
Semesters

Figure 7. Distribution of video game categories. (A) Time evolution of the number of categories along
the months from July 2012 to December 2020. The straight red line represents a linear adjustment
from month 10 to the last one. (B) PDF for categories obtained via the Box—Cox transformation
(Aopt = —0.12) as a function of the number of video games in each category in December 2020. The
dashed line refers to a Gaussian distribution of mean zero and unity standard deviation. (C) Time
evolution from 2012 to 2020 of the A,pt, where each disc represents a semester. The bars indicate 95%
confidence intervals of Aoy¢ parameters. The straight red line exhibits the mean behavior of the last
two years.

To summarize our quantitative results about the comparative popularity of video
games, we present in Table 2 typical values of optimal A as well as the corresponding
Box—Cox transformed mean (y), standard deviation (¢), skewness (), and kurtosis (x)
for the popularity distribution of video games both globally and per-category. If the PDF,
considering a convenient variable transformation, was Gaussian, it would be symmetric
in relation to y, ¢y = 0, and there would be a balance between the distribution tail and
its peak, x = 0 [48]. Therefore, deviations from these values indicate discrepancies from
normality. For instance, if a logarithmic variable (A = 0) is used and if v and «x are close to
zero, these values of y and « indicate, in a first approximation, that the data can be seen
as lognormally distributed (usually, this approximation could be improved by employing
an optimal A). In terms of the original variables, the optimized popularity distribution for
each stratum presented in Table 2 is obtained using the corresponding values for A, u, and
o in the Equation (5).
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Table 2. Statistical parameters for the transformed data. The parameters of the Box-Cox transformed
data (first column): Box-Cox parameter (1), mean (y), standard deviation (¢), skewness (7y), and
kurtosis (x). Values for these parameters are shown for log-transformed (second column), Box-Cox
all data transformed (third column), Box-Cox transformation for the Indie category (tag) (fourth
column), and Box—Cox transformation for the distribution of the number of video games by category
(fifth column). After the & symbol, the 95% confidence interval of each parameter are exhibited.

Lognormal Box—Cox Box—Cox Box—Cox
(All Data) (All Data) (Indie Tag) (Games by Tags)
A 0.00 —0.053 - 0.001 —0.049 £ 0.002 —0.124+0.05
U 0.27 +0.01 0.43 4-0.02 1.60 £ 0.02 3.724+0.25
o 12+0.1 26+02 26+0.2 0.74+0.15
0% 0.41 £+0.02 0.01£0.01 0.01£0.01 0.03 £0.05
K 0.1540.07 —0.28 £0.02 —0.34£0.03 —05+0.6

4. Discussion

Our empirical results about the popularity of video games, based on one of the major
gaming platforms (Steam), suggest a robust scenario. Firstly, our studies are consistent with
the notion of a crescent number of video game players around the world, as well as with an
increase in video games released over time. Quantitatively, the average number of players
per hour along the months approximately displays a linear growth, which is manifested
both from a global point of view (Figure 1A) and from the perspective of game categories
(Figure 5A), especially for the major ones. For the number of distinct categories, a pattern of
growth similar to the ones presented in Figures 1B and 5B was also verified in Figure 7A. As
for the evolution of the number of released games, an approximately exponential growth
trend was identified at the global level (Figure 1B). This behavior of linear (arithmetic)
resource growth and exponential (geometric) demand has already been well explored by
Malthus [49]. Indeed, players will occupy the role of resources and games and the role of
demand in the Malthusian view if we interpret games as competing with each other for
players” attention. In this case, the exponential increase drastically dominates the linear
one in the long term. In addition to Figure 1A,B, a Malthusian pattern of growth is also
present when analyzing the data in categories (Figure 5A,B), but less robust. These studies
point to common patterns of growth in the three levels under investigation: global data,
major categories, and among categories. The Malthusian behavior is common in population
dynamics in biological [50] and social [51] systems when there are no limitations, typically
occurring in the early stages. On the other hand, restrictions to this initial growth regime
commonly manifest over time, indicating some kind of population saturation [52].

Another aspect investigated in this work was the relative popularity of the games,
in this case, made through probability distributions. In our results, we conducted the
lognormal distribution by considering the stability of log-transformed means and standard
deviations (Figure 2). However, for the purposes of this discussion, we emphasize another
viewpoint. In this direction and from a qualitative perspective, one could consider that
each video game release fragments (partitions) of the player base in a given proportion.
In turn, successive releases lead to subsequent fragmentation (partition) of the player
base. The simplest hypothesis is that the games are unknown to the players at the time of
their release and, as a consequence, one could assume in a first approximation that these
successive fragmentations occur entirely at random and independently of each other, that
is, this multiplicative process occurs in a memoryless manner. This simple hypothesis is
an essential condition for obtaining the lognormal distribution [53]. An important result
of this study was to detect similar approximate lognormal patterns across three different
strata. Despite the apparent simplicity of the memoryless (randomness) hypothesis, the
lognormal distribution has been successfully employed in the most diverse contexts, such
as in the investigation of news and memes [35,54], proportional elections [55], or in the
network analysis of seed dispersion [45].
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As discussed above, we found that the lognormal distribution is a first approximation
of the empirical distribution. Deviations from this distribution are related to the violation of
the simple hypothesis; that is, some factors we assume to drive the lognormal distribution
are not fully true. It is unreasonable to assume that games are completely unknown to play-
ers at the time of their release, or that ignorance remains over time. For instance, each game
has its defining characteristics, its peculiarities, its target audience, and its business model.
Moreover, there exists some cultural memory due to advertisements and well-established
game franchises. Communicative memory between players, such as social networks, antici-
pation for a game’s release, and the accumulation of fame, also change the perception of
games. Since all these factors disturb the memoryless (randomness) hypothesis, they can
contribute to explaining the asymmetry shown by Figures 3A and 4B. Quantitatively, the
Aopt parameter provides a measure of the departure from the initial hypothesis. Thus, we
interpret the magnitude of A,,+ as a measure of the presence of cultural and communicative
memories in the distribution of popularity, where A,,; = 0 corresponds to the memoryless
hypothesis. This finding is consistent over time (Figure 3C), across different game groups
(Figure 4A), and in the game categories (Figure 6B). Despite small variations around the
average (showing that the popularity of some games is more affected by memories than
others), the effect of memories is present in all strata investigated.

Some particularities of the game categories can be concretely related to cultural and
communicative memories. As Figure 6C shows, some categories have the A,,: magnitude
notably larger than others. Particularly, the popularity of the Indie and Casual categories
are most affected by memories. An explanation consistent with our interpretation is that
this is due to the business model adopted by the developers of these game categories.
For instance, Indie games are considered independent, relatively small productions in the
gaming market. Frequently, these games are unknown to the public, and the goal of these
small developers is to sell as many games as possible at a fair price. In this way, the games
that survive and achieve success are through word of mouth among players, characterizing
a high communicative memory. In the same vein, Casual games have similar features,
that is, they do not usually involve expensive productions, are considered a hobby of a
few hours, and their business model is similar to that of Indie. In contrast, the business
model adopted by Multiplayer game developers is quite different. Most of these games are
“freemium”, meaning they are free or inexpensive, where the goal is to keep people playing
as much as possible and spending money on customization. Since these games are readily
available to every user, the decision to play or not is entirely up to the person, favoring
the hypothesis of randomness and, consequently, the small magnitude of Aopt. Despite
variations, all Aop;’s found were negative. The more negative the Ay, the more asymmetric
is the empirical distribution (see Figures 3A and 4B), favoring the presence of outliers. Thus,
memory mechanisms seem to contribute to increasing the popularity inequality among
video games by promoting the existence of highly popular games. This inequality was
further investigated regarding the distribution of video game categories (Figure 7B) over
time (Figure 7C). Curiously, the patterns discovered were consistent with the ones found
in Figures 3B and 4C, and in Figures 3C and 4A, respectively. A possible reason for this
resemblance could be that some video game developers try to develop games belonging to
popular categories, since it is difficult to gauge popular reception of an unknown genre
and, therefore, there is a greater risk of commercial failure.

For the objectives outlined in this work, the Box—Cox transformation was sufficient
to identify memory effects and to describe prominent aspects of the relative popularity
distributions. Without doubt, other families of distributions could be employed in the
direction of further refining the empirical data description. In particular, a limitation of
the present study is that we are unable to clearly separate cultural and communicative
memories and, thus, our interpretations of the magnitude of the A parameter rely on
domain knowledge. As a next step in improving the model, one could, in a direction
similar to the one proposed in Reference [3], try to untangle the memory phenomena via a
model with extra parameters (for instance, a multivariate Box-Cox transformation could
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potentially be employed, where each of the parameters would be interpreted as a distinct
memory mechanism). However, this new hypothetical model would probably require
other types of data to correctly quantify the diverse memory mechanisms (e.g., the number
of unique user tweets that refers to a game in the weeks following its release as a way to
gauge communicative memory). In addition, it would be worthwhile to re-investigate the
linear growth of the number of players and the exponential number of games released to
amplify the coverage of our analysis and to confirm if the Malthusian competition remains
valid. This latter point would be of special value if it were possible to combine several
game databases since, if the growth trends are similar across different bases, this could
indicate the existence of a universal video game consumption pattern.

Finally, we believe that the model proposed to describe the relative popularity could
potentially contribute to psychological and sociological investigations. For instance, a
perennial issue both in academic [19,56] and quotidian [57] discussions is if video game
usage contributes to violent behavior. A possible future application of the work presented
here would be, first, to correlate the popularity of violent game categories (e.g., Steam has
games with the Gore and Violent tags) with socioeconomic indicators in the same period. If
the relative popularity of these categories is better described by a Box—Cox transformed
distribution rather than by a lognormal, this could be suggestive of a communicative
memory effect; that is, a collective, user-centered preference for violent games. Such
description could then be utilized to better understand this consumption pattern and to
serve to support the psychological/social sciences in formulating hypotheses to answer the
aforementioned issue.
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