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Abstract: Estimating sentence-like units and sentence boundaries in human language is an important
task in the context of natural language understanding. While this topic has been considered using a
range of techniques, including rule-based approaches and supervised and unsupervised algorithms, a
common aspect of these methods is that they inherently rely on a priori knowledge of human language
in one form or another. Recently we have been exploring synthetic languages based on the concept
of modeling behaviors using emergent languages. These synthetic languages are characterized by
a small alphabet and limited vocabulary and grammatical structure. A particular challenge for
synthetic languages is that there is generally no a priori language model available, which limits the
use of many natural language processing methods. In this paper, we are interested in exploring
how it may be possible to discover natural ‘chunks’ in synthetic language sequences in terms of
sentence-like units. The problem is how to do this with no linguistic or semantic language model.
Our approach is to consider the problem from the perspective of information theory. We extend the
basis of information geometry and propose a new concept, which we term information topology,
to model the incremental flow of information in natural sequences. We introduce an information
topology view of the incremental information and incremental tangent angle of the Wasserstein-1
distance of the probabilistic symbolic language input. It is not suggested as a fully viable alternative
for sentence boundary detection per se but provides a new conceptual method for estimating the
structure and natural limits of information flow in language sequences but without any semantic
knowledge. We consider relevant existing performance metrics such as the F-measure and indicate
limitations, leading to the introduction of a new information-theoretic global performance based on
modeled distributions. Although the methodology is not proposed for human language sentence
detection, we provide some examples using human language corpora where potentially useful results
are shown. The proposed model shows potential advantages for overcoming difficulties due to the
disambiguation of complex language and potential improvements for human language methods.

Keywords: information-theoretic models; synthetic language; sentence boundary estimation;
sentence-like units

1. Introduction

In human communications, language is generally understood in chunks [1–13]. In spo-
ken language, the idea of a sentence is not a straightforward notion due to the lack of textual
clues, punctuation or morphological information [14]. Hence, there may be prosodic in-
formation used to determine sentence boundaries when dealing with spoken language,
and the concept of sentence-like units (SLUs) is often used [15,16]. Sentences in written
language are typically defined in terms of adhering to some known grammatical rules,
for example, patterns of nouns, verbs, and adjectives. In the field of natural language
processing, sentence segmentation is generally used as a precursor to automatic speech
recognition. For convenience, we will generally use the term ‘sentence’ where the meaning
of either sentence or sentence-like unit will be determined by the context.
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The concept of sentences has been challenged, with some arguing that the more natural
foundational unit is the phrase rather than the sentence [17]. This approach is also likely to
be more consistent with topic estimation, where the aim is to discover larger phrases than
precise sentence structure.

Sentence boundary detection is often widely varying in task definition [18]. Many
of these models are effectively solving disambiguation tasks, where the aim is to find
the most likely sentence bound from among a small number of possible tokens. More
recent attention has been given to some more challenging domains, such as legal or clinical
domains [19,20].

Methods for sentence segmentation typically use textual or prosodic information and
sentence boundaries as input features, and then a typical approach is to train a model
on corpus data to learn to predict sentence boundaries on unseen data [21]. Typically,
natural language processing methods rely on learning large-scale probabilistic relationships,
grammars, ontologies and functional relationships using knowledge of human languages.
For example, some approaches use hidden Markov models (HMMs) [22].

A probabilistic approach for parts of speech (POS) labeling, which includes end of
sentence boundaries for sentence boundary detection using conditional random fields
(CRF), was proposed in [23]. In this case, a conditional probability is assigned over the label
sequences given an observation sequence instead of trying to fit a joint distribution over the
label and observation sequences. The CRF model can be viewed as an undirected graphical
model, where random variables represent observation sequences and the nodes represent
elements of the label sequence. In contrast to the HMM approach, the independence
assumptions are relaxed to ensure tractable inference. Models in this category are typically
parametrized using a maximum entropy algorithm requiring a large amount of labeled
training data.

Some approaches to sentence segmentation have relied on rule-based models learning
the difference between periods in the text as sentence boundaries and their use as other
punctuation marks [24]. A model for sentence boundary detection based on a set of
grammatical rules for the way in which sentences use verbs was proposed in [25]. A method
for sentence boundary detection using a grammatical rule-based system to define the
linking structure between words was considered in [26]. A segmentation method based
on a syntactic structural model, which increased in complexity with corpus length, was
proposed in [27].

A common aspect of previous models is that even though there are approaches based
on rules, supervised machine learning models, or even unsupervised approaches, they
inherently are derived with some knowledge of the language. This is evident in the way in
which sentence boundary detection algorithms are generally evaluated by comparing the
results against some known gold standard [28].

We have previously proposed a new approach to artificial intelligence based on emer-
gent synthetic languages, which can be used to model natural behaviors using a linguistic
style approach [29]. Unlike human language, however, with its infinite richness [30], syn-
thetic language is based on the idea that the behavior of many systems may be treated
within a simpler framework. In this case, probabilistically framed behavioral events derived
from dynamical systems may be viewed as words within a synthetic language.

Synthetic language is based on the idea of capturing behaviors with a small alphabet,
perhaps only 5–10 symbols, and a limited vocabulary. A key difference between synthetic
language and human language is that there is not necessarily any teacher or knowledge of
the language whatsoever in the case of synthetic language. This means that most of the
techniques used in natural language processing (NLP) are of limited value for use in the
proposed framework of synthetic language.

This synthetic language framework has demonstrated effectiveness on some other-
wise challenging problems, for example, detecting neurological conditions by modeling
conversational speech [31]. An important consideration in the development of synthetic
language is the capability of determining sentence or phrase structure.
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Language is generally understood to be comprised of sequences of probabilistic
elements, ordered into sets of words, conforming to some grammatical rules [32]. Evidence
suggests that consistent rules of grammar develop rapidly even with new languages;
moreover, this is found to occur with languages other than spoken or written forms,
for example, sign languages [32]. Human language has been differentiated from animal
language by its use of syntactic communication, which gives rise to the combinatorial
richness found in human language [33].

The probabilistic primitive elements of language are typically a small, finite set of
symbols that are combined together to form words, sentences and phrases, extending to
longer narratives that can be understood in terms of probabilistic principles such as Zipfian
laws, which have been proposed to describe the relationship between probabilistic elements.

While the concept of emergent synthetic languages is appealing, the problem is that
there is generally no initial teacher or model of the language semantics, grammar or
structure. This means that recognition cannot depend on traditional approaches that
assume such a priori knowledge. This is even more difficult than unsupervised learning
when the languages are known and some form of background knowledge is available.

Unlike most natural language processing methods that have the advantage of a teacher
with knowledge of language structure such as parts of speech, we raise the question of
whether it is possible to identify synthetic language structure, such as sentences using
information theoretic principles. Moreover, it is not necessarily feasible to segment such a
sequence and measure the performance directly because we do not actually know where
such segments should be. Therefore this raises questions of how is it possible to derive a
method of segmentation in synthetic languages and how do we measure the effectiveness
of a proposed model?

Our approach here is not intended to be a definitive new method for sentence boundary
detection; rather, we are seeking to propose a new conceptual model for thinking about how
to process completely novel languages for which there is no known teacher or background
knowledge. The aim is to consider a possible way in which there may exist information-
theoretic ‘sequential chunks’, which are similar to but not necessarily the same as sentences
or even phrases.

Hence in this paper, we propose a new approach we refer to as information topology,
which extends the widely known information geometry methodology [34,35]. In particular,
we present a novel method that measures the incremental information flow across such
a topology and show how this can be used to estimate natural bounds in sentence-like
structures without any semantic knowledge.

We describe this approach in the next section, and then, in subsequent sections, explore
how it can be used to effectively provide a method of discovering synthetic language
structure. Given that there may be no way of measuring any actual sentence boundaries
within synthetic languages, we introduce a new performance measure, which we propose
will help provide a possible approach to assessing the performance of this and other
algorithms similar to it in the future. We also introduce a new form of relative entropy
that we term normalized relative difference entropy, which appears to be well suited for this
particular area.

2. Analyzing Language Using Information Topology
2.1. Statistical Manifolds

Our approach in this area is to consider how a probabilistic view of synthetic language
may be used to estimate structure and potentially discover the meaning of an unknown
language. As noted above, the problem we face is considerably different from the usual
natural language processing (NLP). The field of NLP normally relies on an a priori knowl-
edge of any given language. In this case, however, such knowledge is not assumed to exist.
In general, the one assumption we choose to invoke is that synthetic languages will have
some underlying probabilistic structure in common with human languages.
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This means that we might expect to see that there exists a Zipfian structure across
different levels of language. In addition, we expect that the language will consist of a
small set of primitives that are random but occur with some probabilistic consistency.
Such symbols might then be grouped to form synthetic words and sentences. A synthetic
language might also be considered in terms of parts of speech, grammar, lexicons and other
familiar aspects of language; however, this does not seem to be a strict requirement in the
same way as encountered in human language. For example, it is not clear how parts of
speech as a language construct may be instantiated as the alphabet size and vocabulary
size change.

The main aspect of this probabilistic approach to determining language meaning is that
we are interested in methods of discovering language structure based only on probabilistic
measurements. In previous work, we have proposed a number of algorithms that can be
useful for determining synthetic language symbols and words. The next level we propose
to consider is segmenting sentences (or some approximation of them) from a sequence of
synthetic language words.

The approach we propose to consider is if the information flow can be used to segment
sequences into sentence-like units. Moreover, we are interested in determining if the
structural aspects of information flow are related to the structural aspects of language
sequences. Hence, we firstly consider the information geometry approach as a way of
understanding this information flow.

A convenient starting point in our discussion is to consider the concept of relative
information-theoretic measurements. The information-theoretic properties of a natural
sequence can be defined in terms of the self-information

H0(X) = E[I(s)] (1)

where the expectation can be defined in terms of the probabilities of each element

I(s) = log2(p(s)) (2)

Now, this results in the single symbol Shannon entropy defined as [36] :

H0(X) = −
M

∑
i=1

p(xi) log2(p(xi)) (3)

Entropy can be considered to describe the level of ‘surprise’ or information content
in a given sequence of probabilistic data and extends to the case where the probabilities
of multiple symbols occurring together are taken into account. Entropy-based measures
have been applied to a range of tasks, including the use of decision trees for character
recognition [37], analysis of physiological patterns for emotion detection [38], cluster
analysis [39], face recognition [40], identification of disease markers through human gene
mapping [41,42] and detection of covert communications by analyzing the patterns of
packet timing events [43]. While entropy is useful for characterizing the probabilistic
nature of language, a problem exists with trying to estimate relatively rare events from
limited data [44].

It can be observed that there is an inherent distance between statistical elements.
A convenient model for determining the distance between distributions is relative entropy
(also known as the Kullback–Leibler divergence [35,45]), which is defined as

HR(X; Y) =
1
2

M

∑
i=1

p(xi) log2

(
p(xi)

p(yi)

)
(4)

While relative entropy is useful for contrasting pairs of distributions, this raises the
question of how to contrast a sequence of distribution pairs. When comparing multiple
sequences of data with different distributions, the Kullback–Leibler divergence or relative
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entropy is typically used. However, there are various ways in which differences can exist.
For example, consider a simple probability mass function, then, a single point can account
for most of the divergence, or it may be due to a small change across the entire function.
The implications of each may be quite different, and hence, this means we may need to
consider this concept of contrasting relative distributions in more detail.

Another way in which we can consider the issue of probabilistic divergences is through
the concept of information geometry, where each distribution can be considered to exist
as a point in a statistical manifold, and such manifolds are not necessarily flat as in a
usual Euclidean space but may be curved. Moreover, within the context of language, we
are not interested in simple differences between two points (i.e., two distributions) only
but between the broader differences between sequences of distributions. This means we
need a way to measure these differences and understand what such differences mean.
A visual representation of this idea is shown in Figure 1. We give more explicit detail to
this below by considering the concepts of statistical manifolds and information geometry
in relation to multiple probability distributions.

Figure 1. Information flow can be considered in terms of the incremental changes in relative distri-
butions over time. Here, we visualize the concept of multiple curved Riemannian manifold spaces
formed in a language sequence. Can this probabilistic structure be used to reveal some aspects of the
language sequence structure?

An information-theoretic approach to analyzing language can be formulated on the
basis of understanding the relationships that may exist between different distributions.
Consider a family of probability distributions S = {p(x, θ)}, which may be termed a
statistical model over some space X with observable random variable x ∈ X, where each
distribution p(x, θ) is parametrized by an n-dimensional real vector, forming a coordinate
system θ = [θ1, . . . , θn]. Hence, S can be regarded as an n-dimensional statistical manifold
where each point in the space, labeled by coordinates θ represents a probability distribution.
In this case, S is a Riemannian manifold, where the distance between two distributions
can be measured by the Kullback–Leibler divergence. The classical information-geometric
formulation is based on the idea of examining the local properties of curves and surfaces in
the statistical space [46–48].

This approach provides a foundation for understanding the relationships that may
exist between different distributions. We consider an extension to this idea in terms of
continuously changing distributions over time, which gives rise to the concept of informa-
tion topology. In the subsequent sections below, we discuss an approach for measuring
the information topology space, particularly in regard to probabilistic symbolic sequences
of language.
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2.2. Contrasting Distributions on a Riemannian Manifold

A question of significant practical interest is how to detect statistical anomalies ob-
served in natural systems such as behavioral dynamics [31] through consideration of
distributions on a statistical manifold. In this case, it is necessary to compare natural
symbolic sequences in terms of their probabilistic behavior.

The conventional approach to measuring the distance between distributions on a
Riemannian manifold can be achieved by relative entropy [36,49]. In this approach, we
view natural language as discrete random variables X of a sequence X = X1, . . . , Xi, . . . , XK
, Xi = x ∈ XM, that is, xi may take on one of M distinct values, XM is a set from which the
members of the sequence are drawn, and hence, xi is in this sense symbolic, where each
value occurs with probability p(xi), i ∈ [1, M].

Suppose we wish to contrast two sequences of social behavioral data; this might
occur within various contexts such as conversational dialog, swarms, geopolitical events
or human–machine interaction. Now, instead of contrasting direct time-series data, our
interest is in information-theoretic modeling. Is it possible to derive an understanding of
the underlying system by considering the changes in the relative distributions over time?

As an example of this, consider the changing probability distributions in a synthetic
language sequence. In this case, audio conversation files are transformed into synthetic
languages based on an alphabet size of 10 symbols, using the pause lengths between speech
audio activity [31,50]. A visualization of the trajectories of changes in probability distribu-
tions computed from sequences of natural conversational data is shown in Figure 2. In this
particular case, we consider only two of the probability mass points, { p̂12(na), p̂12(nb)},
where p̂12(na) indicates the probability located at the trajectory point [ p̂1(na), p̂2(na)] at
time na. Hence, this enables the comparison of corresponding points in probability trajec-
tory space over time. Our task is then to determine a more comprehensive probabilistic
model of the underlying behavior that gives rise to the observed probabilistic changes.

Figure 2. A view of contrasting pairs of probability distribution trajectories from a natural sequence.
Each curve represents points on distributions of successive points plotted against each other. Hence,
changes in the underlying probability characteristics can be visualized across the sequence and can
be considered in terms of traversing a Riemannian manifold. Can this view of information flow be
used to analyze structure in synthetic language sequences?

In the next section, we develop an approach to addressing this issue using a model
based on statistical curvature from information geometry, extended to consider the shape
of information flow.

2.3. Normalized Ollivier–Ricci Curvature

The approach we are interested in is to consider the notion of statistical curvature
as a method of understanding the structure and potentially some aspects of meaning
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within synthetic language. The idea is that it is not only the distance between probability
distributions that may be useful but the curvature and potentially the shape of the manifold.

As an introduction to the ideas contained in this section, consider the idea of relative
differences between distributions. Suppose we have one distribution, which for conve-
nience, we consider in terms of a point mass function. A starting point to measure the
difference between this distribution and another is to measure the relative entropy. This
essentially provides a direct measurement of the difference. However, as noted in [31], a
degeneracy exists, which means that there is an essentially infinite number of distributions
that can exist that have the same relative entropy values. Therefore, what are we to do?

A further method of contrasting distributions is to measure the transport distance.
This is also known as the earth-mover distance and intuitively provides an indication of
the nearness between points in the two distributions required to make one the same as
the other.

Now, based on these two distance measures, it is possible to introduce the concept of a
type curvature in Riemannian probability space. Consider two separate examples of pairs
of distributions. For a constant relative entropy in each pair, it is possible to formulate a
measure that indicates the change between the two pairs based on the transport distance.
Hence, if one of these pair measurements is greater than the other, we might say that it
is because the manifold is more curved. This is the idea behind Ricci curvature and then
made explicit in the Ollivier–Ricci curvature [51].

More formally, the statistical curvature between distributions in Riemannian space can
be extended to a sectional curvature model on a Riemannian manifold. Given a Riemannian
manifold (X, d), (X is a metric measure space equipped with distance d) , consider two
tangent vectors {v, wx} at a point x ∈ X, then parallel transport the unit vector wx from
x to y, which is the end-point of δv where ε, δ > 0. The sectional curvature K(v, w) at x is
defined over all directions w where [51]

d = δ

(
1− ε2

2
K(v, w) + O(ε3 + ε2δ)

)
(5)

A simplified formulation is the Ricci curvature, which averages K(v, w) over all directions
w. The Ollivier–Ricci curvature is a coarse approximation to the Ricci curvature given by

κ(x, y) = 1−
W1(ux, uy)

d(x, y)
(6)

where {ux : x ∈ X} is a family of probability measures on the manifold and W1(ux, uy) is
the Wasserstein-1 transportation distance given by

W1(ux, uy) =

(
inf

ξ∈Π(ux ,uy)

∫∫
d(x, y)pdu(x, y)

)1/p

(7)

where Π(ux, uy) is a set of all couplings between measures ux and uy. The transportation
distance from ux to uy represents the shape of the curve or the effective distance between
the spheres ux and uy, and d(x, y) is the distance between the centers of ux and uy. The
distance d(x, y) is the minimum path between vertices on a graph or ‘hop’ distance. While
the direct minimum path between vertices is appropriate for network graphs, relative
entropy or Kullback–Leibler divergence provides a measure of the distance between the
elements of ranked order probability distributions.

Ricci curvature has found application in numerous areas to characterize high dimen-
sional complex probabilistic data, including internet topology [52], cancer studies [53]
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and phylogenetics [54]. Hence, as a means of applying a probabilistic curvature model to
synthetic language, we introduce a normalized Ollivier–Ricci curvature measure defined as

κ̃(x, y) = 1−
W̃1(ux, uy)

H̃R(ux, uy)
(8)

where H̃R(ux, uy; x) is the normalized relative entropy across x = {x, y} given by

H̃R(ux, uy) =
1

(1− πL)

(
HR
(
ux, uy

)
πH

− πL

)
(9)

and

HR(x, y; M) = −
M

∑
i=1

pi(x) log2

(
pi(x)
pi(y)

)
(10)

is the usual relative entropy measure with scaling factors {πL, πH} given by

πL = inf
n
{HR(n), n ∈ [1, Na]} (11)

πH = sup
n
{HR(n), n ∈ [1, Na]} (12)

where Na is the sequence length, expressed in terms of the number of segments from
which the relative entropy measure is computed, with index n. Similarly, the normalized
Wasserstein-1 transportation distance W̃1(ux, uy) is given by

W̃1(ux, uy) =
1

(1− ξL)

(
W1(ux, uy)

ξH
− ξL

)
(13)

with scaling factors {ξL, ξH} given by

ξL = inf
n
{W1(n), n ∈ [1, Na]} (14)

ξH = sup
n
{W1(n), n ∈ [1, Na]} (15)

A limitation of this method is that it implicitly assumes the cardinality of
{

ux, uy
}

is
identical for each distribution. However, this assumption is typically not valid in practice,
and so a method is required to overcome this issue. Hence, we introduce the normalized
relative difference entropy, which solves the problem and is defined as follows.

Suppose we have measures {uv, uz} where pv = [p1(v), . . . , pnv(v)] and pz = [p1(z),
. . . , pnz(z)] are the distributions associated with {uv} and {uz} of dimension nv and nz, re-
spectively, where nv 6= nz. We introduce associated measures {uv̂, uẑ} where
pv̂ = [p1(v̂), . . . , pnv̂(v̂)] and pẑ = [p1(ẑ), . . . , pnẑ(ẑ)] are the distributions associated with
{uv̂} and {uẑ} of dimension nv̂ and nẑ, respectively, where nv̂ = nẑ. The associated distri-
butions are found as

pv̂ = fs(pv; θv̂) (16)

pẑ = fs(pz; θẑ) (17)

where fs is an interpolated spline function parametrized by {θv̂, θẑ}, resulting in matched
distributions {pv̂, pẑ}, which can be then applied to determine the matched relative en-
tropy as

Hm(v, z; nv̂) = −
nv̂

∑
i=1

pi(v̂) log2

(
pi(v̂)
pi(ẑ)

)
(18)
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with scaling to obtain H̃m(v, z; nv̂) according to Equations (11) and (12) as before. Similarly,
the matched normalized Wasserstein-1 transportation distance W̃1m(uv̂, uẑ) is given in the
same way, with scaling according to Equations (13) and (14).

We can now apply this normalized Ollivier–Ricci curvature to synthetic language
sequences of symbolic data. This provides an indication of the change in the probabilistic
structure of the language being used over time. For the proposed information topology
approach, to achieve an effective measure of the changes in information, we define a new
form of relative entropy called the normalized relative difference entropy. This is defined as

HD(v̂, ẑ; nv̂) = −
1

nv̂

nv̂

∑
i=1

(
(pi(v̂)− pi(ẑ))

2

pi(ẑ)2

)
log2

(
pi(v̂)
pi(ẑ)

)
(19)

Adopting the same scaling principle as indicated in Equations (9)–(12), leads to the
scaled version of the normalized relative difference entropy given by

H̃D(uv̂, uẑ) =
1

(1− πL)

(
HD(uv̂, uẑ)

πH
− πL

)
(20)

Hence, we can introduce a normalized difference Ollivier–Ricci curvature measure
defined on matched distributions {pv̂, pẑ} as

κ̃D(v̂, ẑ) = 1− W̃1m(uv̂, uẑ)

H̃D(uv̂, uẑ)
(21)

The curvature of the Riemannian manifold that supports the family of probability
distributions indicates an information geometry. However, in terms of recognition of
the flow of dialog in synthetic language, our interest is in forming a global view of the
probabilistic nature of language with local features. Can this be extended further to estimate
synthetic language structure? In the next section, we extend the normalized Ollivier–Ricci
curvature to an information topology space.

2.4. Information Topology Manifold

To introduce a topology into the Riemannian manifold, one approach is to note that
W̃1m(uv̂, uẑ) defines an arc in the space, which is subtended by the distance H̃D(uv̂, uẑ).
Hence, the chord distance is related to the radius rv̂ẑ by the function

rv̂ẑ = fr

(
H̃DW̃1; uv̂, uẑ

)
(22)

where we omit the m-subscript for notational convenience, with the matched probabilistic
inputs indicated by context, and rv̂ẑ is found by solving the function fr according to

H̃D(uv̂, uẑ) = 2rv̂ẑ sin
(

W̃1(uv̂, uẑ)

2rv̂ẑ

)
(23)

and where H̃D(uv̂, uẑ) and W̃1(uv̂, uẑ) are determined as above. Now, this indicates a
particular sectional arc angle, which can readily be found as

θv̂ẑ =
W̃1(uv̂, uẑ)

rv̂ẑ
(24)

We extend the notion of a curved probabilistic manifold across multiple points (each
representative of a distribution in the information space). Hence, for each pair of points
(uv̂, uẑ) a related arc angle will be obtained.

For any two points, it is possible to derive a circle, and for multiple points, a hyper-
sphere of appropriate dimensionality can be obtained defined by the set {θv̂ẑ}, thereby
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defining the required topological features on the manifold. Note that Equation (23) is
generally well behaved, and hence, θv̂ẑ can be easily obtained by numerical solution.

The normalized Ollivier–Ricci sectional radius derived from the curvature of natural
sequence symbolic data can be extended to the sectional arc angle. An information topology
space can be obtained by extending the concept of curvature to a higher dimensional manifold.

One approach to achieve this is by extending the normalized Ollivier–Ricci sectional
arc angle to an n-dimensional sphere in n-dimensional parameter space. This effectively
transforms a sequential symbolic set into an event-based representation. Note that a
sequence of symbols may be sampled in the time-domain or indexed from some other
feature space. Extending this to the sectional arc angle, the normalized Ollivier–Ricci
sectional arc angle can be derived from the curvature of natural sequence symbolic data
and applied to a set of synthetic language data.

The concept of an information topology extends information geometry to create
a new approach to viewing information. This extends the idea of a symbolic entropy-
based event space beyond the natural curvature measures to one in which we might
possibly consider higher-dimensional shapes and topology. Our idea is that in contrast
to simpler classification approaches, this potentially gives a framework for probabilistic
metalanguages to be mapped into these spaces and to represent intrinsic meaning using
the lexical components of the synthetic language via mappings and topological features on
a Riemannian manifold and the grammatical components through the dynamic patterns in
this space.

Once we have obtained the sectional arc angles, it is straight-forward to generate a
representation of this using multidimensional hyperspheres, where the information topol-
ogy manifold can be formed across any number of parameter dimensions. The parameters
can be derived using various probabilistic estimation algorithms; see, for example, [55].

In contrast to conventional Euclidean manifolds, where the distance between points
is measured by simple straight lines (i.e., using a Pythagorean metric), here, information
topology manifolds provide a new approach for potentially understanding the meaning
of sequences of synthetic language. This extends the concept of measuring information
content in data by enabling the distances between probability distributions to be measured
using entropy-based divergence metrics to capture the information properties in a manifold.

The advantage of this approach is that almost any natural sequence that can be
symbolized and subsequently described in terms of a synthetic natural language with
dynamic probabilistic distributions can be modeled in terms of an information topology.
Using this approach, it is possible to consider multidimensional measures of synthetic
language in a higher dimensional information topology. This framework indicates the
possibility of associating meaning to natural sequences through feature recognition on an
information topology manifold.

This approach to deriving an information topology is considered and more explicitly
implemented in the next section, where sequences of hyper-dimensional distribution seg-
ments form contrasting topological regions that yield insights into the unfolding structure
of language sequences.

3. Information-Theoretic Sentences
3.1. Incremental Relative Information

The segmentation of sentences or phrases in synthetic language is made difficult by
the potential lack of knowledge of the language itself. Hence, this means that conventional
approaches to determining sentences based on language aspects such as symbols, parts of
speech, grammar, words or punctuation are not likely to be feasible due to the lack of such
properties. An alternative approach is, therefore, to consider some form of probabilistic
approach using minimal assumptions about the language.

Earlier approaches that adopt this idea of complex language structure identification
combining probabilistic information with language instantiation are considered in various
contexts. A model mapping words, linguistic and contextual factors to a prosodic proba-
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bilistic information structure was proposed in [56]. A review of sophisticated probabilistic
models of language processing and acquisition was given in [57].

A probabilistic model of learning developed within a Bayesian framework showed
that surprise signals modulate learning speed, hence giving insight into constraints on
statistical theories of animal and human learning [58]. It was shown in [59] that humans
attempt to learn confidence-weighted transition probabilities underlying auditory and
visual sequences.

In the previous section, we considered an approach to modeling the information
topology of a natural sequence with a view of observing the probabilistic characteristics
of the sequence. The idea of this is that the probabilistic properties mimic the structure
of the sequence in terms of the information being conveyed. This raises the question of
whether it may be possible to model the information flow in finer detail and, hence, derive
an information-theoretic model to detect sentence or phrase boundaries.

A simple approach is the concept that for each sentence, we expect that there will be a
limit to how much information is conveyed. This could potentially provide an information
bound and hence determine when the sentence ends. However, the problem with this
approach is that sentences can carry varying amounts of information, and hence, there
is a need for further probabilistic constraints to determine sentence or phrase bounds.
Note that information content is not necessarily dependent on sentence length. A long
rambling sentence may contain little new information, but a short sentence might have
surprising content.

The approach we propose can be considered unsupervised since it does not employ a
language model or a set of labeled training data. However, it is substantially different from
other unsupervised methods. For example, a sentence segmentation algorithm proposed
by Kiss and Strunk is regarded as unsupervised since it does not employ a language model;
however, it does rely on inherent knowledge of the language features, such as knowing
what constitutes a period and the potential end of sentence [60].

In contrast, our proposed method does not use any labeled training data, language
model or grammatical features or knowledge of the parts of speech. Hence, our pro-
posed approach can be referred to as a blind model [61] since it is based on fundamental
mathematical properties without regard to general linguistic properties.

A further information-theoretic constraint can be considered in terms of not only the
absolute value of information carried but a more subtle measure of the completeness of
information conveyed. For example, it may be possible to measure the change or even
deceleration of information conveyed or even characterized in terms of the shape of the
information flow over the course of a sentence. Hence, we propose a model for estimating
sentence boundaries based on measuring the probabilistic characteristics of incremental
information change.

The next aspect to consider is the particular language elements to use as a basis for
measuring information. In practice, there are numerous possible choices. For the purpose
of our investigation, we propose that a suitable proxy of information change is the n-
grams of symbolic elements. The incremental information is defined by measuring the
change in information due to a new set of n-grams, which have not been observed in the
previous sequence.

This differs from other computational linguistic approaches, for example, where we
seek to form large-scale predictive probabilistic models using all possible words. The dif-
ficulties of this are evident both in terms of data requirements, sparseness of examples,
computational and linguistic complexity. We proceed to explore this approach as follows.

Suppose that we have a sequence of n-grams given by S(ng) = [s0, . . . , sN ], where
we explicitly specify the size of the n-grams as ng in length, each of which is treated as a
symbol and may take any value out of a prescribed set of available n-grams but may be
comprised of individual language elements. The use of unique symbols enables the basis
for precisely measuring new incremental information. Then, the Shannon information is
defined in a similar manner to Shannon entropy, based on the probabilities of the observed
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elements. Note that the probabilities can be measured in terms of the known long-term
probabilities or in terms of some shorter length history.

The Shannon self-information due to the occurrence of a single probabilistic symbolic
event is defined according to Equation (2). We can generalize this to permit the occurrence
of an event at a particular time n, where the probability is a function of both the particular
symbol and the time (or context) in which it may occur. In this case, we have:

Ik(s; n) = − log2(p(sk; n)) (25)

The average self-information across all events with associated probabilities defines the
entropy. Suppose there exists a sequence of independent symbolic events observed at time
n, given by ψn, then the total of all self-information is given by

I0(ψ; n) = ∑
i∈ψn

Ii(s) (26)

and for a sequence ψn−1, it follows that

I0(ψ; n− 1) = ∑
k∈ψn−1

Ik(s) (27)

Now, consider the set of unique incremental symbols is defined as

φn = ψn −
NL

∑
j=1

ψn−j (28)

where NL is the immediate, short-term context length for which we consider the relevance
of past information in terms of a potential sentence-like unit, and hence, we can define the
incremental information Id(φ; n) at time n, as

Id(φ; n, NL) = I0(ψ; n)− I0(ψ(NL); n− 1) (29)

and where

ψn−1(Nl) =
NL

∑
j=1

ψn−j (30)

Typically the incremental information is found using a block-wise overlap-add method,
which provides a convenient approach to measuring the information gained over small
steps in the sequence by giving a contrastive measure to the previous short history. The cu-
mulative incremental information that occurs as a result of the incremental set of symbols
φn is defined as

Î(φ; n) = ∑
n∈π

Id (φ; n, NL) (31)

where π is the set of all segments in a sequence of language elements.
In a similar way, the incremental normalized Wasserstein-1 distance W̃d1(φ; n, NL) can

be determined operating on the incremental or newly added unique set of symbols φn to
a sequence, that is, the difference between the current set of observed language elements
ψn and the recent contextual set of language elements ψn−1(Nl). Another view of this is
that it is the incremental distance to the next novel set of n-grams φi+1(t) not observed in
the recent sequence {φi∈t(t)}. Hence, the incremental normalized Wasserstein-1 distance is
given by

W̃d1(φ; n, NL) = W̃1(ψ; n, NL)− W̃1(ψ; n− 1, NL) (32)
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where W̃1(φ; n, M) is computed according to Equations (13) and (14). Hence, the cumulative
incremental Wasserstein-1 distance, which occurs as a result of the incremental set of
symbols φn, is defined as

Ŵ1(φ; n, NL) = ∑
n∈π

W̃d1(φ; n, NL) (33)

The idea of this approach is that we are concerned with determining the incremental
flow of information with symbols in a sequence and how this might be used to gain insight
into the potential meaning of the sequence. In particular, we are interested in the question of
whether the change in probabilistic information might provide some means of determining
the natural bounds on a chunk of a sequence.

In our subsequent derivation, we adopt the broad assumption of a Zipfian probabilistic
structure of language primitives and propose that these can be estimated using a previously
derived model, which requires a small number of data points [44]. An important aspect
of this process is the question of how natural language sequences are converted into
synthetic language symbols. This is addressed in our previous work, where a number of
symbolization algorithms have been derived [29]. In addition, a key aspect of the proposed
model is that the probabilities of short segments of symbolic sequences can be reliably
estimated with limited data. This is achieved by means of a previously proposed algorithm
described in detail in [55].

3.2. Curvature of Incremental Tangent Normalized Wasserstein Distance

The incremental information gain considered in the previous section provides an
effective starting point to determine sentence boundaries by measuring the cumulative
information over a sequence of language elements. Now, in addition to a language sequence
information flow, we might expect that there will be some form of “connectedness”, where
the sequential information elements are probabilistically related and, in an information
topology sense, converges over the course of a sentence. The idea is that we can measure
the packaging of information within a sentence and, hence, require a measure of the
convergence of the information flow in some sense.

Here, we propose to consider the Wasserstein distance in conjunction with relative
entropy to measure the curvature of the information space. We estimate the incremental
normalized Wasserstein distance W̃d1(φ; n) between short segments of language elements,
where, as indicated previously and in the example shown here, we use novel n-grams
φi+1(t) not observed in the sentence {φi∈t(t)}.

The decreasing curvature of the information flow can be estimated using the cumu-
lative incremental normalized Wasserstein-1 distance and adopted as a measure of the
sentence boundaries. This can be visualized across sequential segments, and for demon-
strative purposes, an example of this measure applied to the Brown News corpus [62] is
shown in Figure 3.

Interestingly, as can be observed in the example, the curvature of the Wasserstein
distance decreases as the sentence progresses. This can be viewed in terms of the tangent
angle of the Wasserstein distance, which measures the decreasing change in incremental
information along the sequence. While the absolute value of the information flow in
terms of the curvature of the Wasserstein distance may vary significantly for each sentence,
and the change in curvature is remarkably consistent. This provides a potential basis
for confirming the initial idea that the information change will decrease as each sentence
progresses and, hence, permit the possible identification of sentence boundaries.

The proposed algorithm does not require any language model or other form of labeled
training data. Apart from the assumption of Zipfian structure, we do not introduce any
form of a priori grammatical structure or insight into the language properties. In this sense,
as noted above, the algorithm can be considered a blind, unsupervised approach.
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Figure 3. The cumulative incremental Wasserstein distance for n-grams is shown here for a range
of sentences in the Brown News corpus. Here, each sentence is marked by the vertical red lines. It
can be observed that the curvature increases rapidly for each sentence to a limit before each new
sentence begins. The curvature of the Wasserstein distance increases rapidly for each sentence and
then tapers off. This can be understood in terms of the tangent angle of the Wasserstein distance,
which measures the decreasing change in incremental information as each sentence progresses. The x
axis is shown in terms of information-carrying symbols, and the y-axis is in terms of cumulative
incremental Wasserstein distance.

We note that there are limitations with this approach, indicating the requirement
for further investigation. In particular, the method is based on the notion of incremental
information changes, as measured by the curvature of the Wasserstein distance. However,
it is evident that for some of the phrases tested, there can be difficulties in accurately
measuring this. While the measure is generally accurate, it is possible to find cases where
the information flow is not so consistent. For example, if a speaker trails off in their voice,
does this indicate the end of a sentence or not? Hence, it might be of interest to introduce
further prosodic or other multidimensional symbolization approaches that could enhance
the model estimation process [63].

A normalization factor is applied and the curvature of the tangent is found as

θ̃1(φ; n) = arctan
(

Ŵ1(φ; n)
)

(34)

The decreasing curvature of the information flow, as estimated using the cumulative
incremental normalized Wasserstein-1 distance, provides insight into the shape of the
information flow. One approach to estimate the sentence boundaries is to model the
curvature at the end of each sentence and then estimate the sentence boundary based
on this curvature directly. For example, in the simplest case, a maximum likelihood
estimator could be used to determine a limit on the curvature, which would provide a test
to determine the sentence bound.

A more sophisticated approach is to use a combined EM-HMM approach, where an
EM algorithm is used to estimate a set of curvature bounds [64], and an HMM model [65]
is used to estimate which state we are in based on the observed sequence of information
changes as measured in terms of either the incremental information or the incremental
normalized Wasserstein-1 distance. The aim here is to determine that, according to a
particular input sequence, detecting a particular curvature can then indicate the end of
a sentence.

It is also evident that there are various other observation sequences, such as prosodic,
morphological or semantic sequences, which can be used to train an HMM model to select
the end of a sentence. These methods are beyond the scope of this paper, and thus, we do
not consider them further here. Rather, we present a simple decision region approach that
can be used to identify the end of sentences.
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The idea behind our approach is simply that there is a limited amount of information
carried by a sentence or sentence-like unit. Unlike approaches that carry some outside form
of sentence boundary indicator, whether textual or prosodic, our approach is based entirely
on information theoretic methods. The basis of our method is that by introducing a proxy of
information, we can measure the decreased flow of information as each sentence progresses
and, hence, based on the historical context of decision bounds, make a reasonable estimate
of when the sentence is ending. The decision bounds used to indicate when this information
flow can be determined theoretically or estimated approximately using a training algorithm
on contextual data.

In particular, our approach here is to recognize that it is possible to estimate the
sentence boundaries by combining the cumulative information Î(φ; n) and the decreas-
ing curvature of the cumulative incremental normalized Wasserstein-1 distance θ̃1(φ; n).
Hence, a bounded region Ω(φN), which will be used for a decision-making process, can be
determined based on these parameters. The idea here is that the information topological
parameters

{
θ̃1(φ; n), Î(φ; n)

}
can be tracked throughout a dialog and then used to initiate

an impending end of sentence, and then when the boundary of the decision region is
reached, an end of sentence is flagged. The bounded region is defined as

Ω(φN) = [ωl , ωb, ωw, ωh] (35)

where N is the number of symbols used for the model, and [ωl , ωb, ωw, ωh, ωt] defines a
region consisting of left, bottom, width and height parameters, respectively, given by

ωl = I(φ; n)− αψw (36)

ωb = θ(φ; n)− αψh (37)

ωw = αψw (38)

ωh = αψh (39)

where ωt = ωb + ωh and a covariance matrix of the cumulative information Î(φ; n) and
cumulative incremental normalized Wasserstein-1 distance θ̃1(φn; n, M) is given by

ΣIθ = Σ
(

I(φ; n), θ(φ; n)
)

(40)

with eigenvalues (λ1, λ2) and eigenvector v1 and where I(φ; n) and θ(φ; n) are the means
of the maximum values of Î(φ; n) and θ̃1(φn; n) computed as

I(φ; n) =
1

Np

Np

∑
n=1

max
(

Î(φ; n)
)

(41)

and

θ(φ; n) =
1

Np

Np

∑
n=1

max
(

θ̃(φ; n)
)

(42)

where Np is considered the long-term historical context and defines the number of sentence-
like units in the proceeding history. This defines a covariance ellipse as

Ψ(φN) = [ψw, ψh, ψc, ψa] (43)

where ψw, ψh, ψc, ψa are parameters of width, height, center and angle, respectively, and α
is a scaling parameter (α = 0.5 for unity standard deviation region) and
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ψw = 2λ1 (44)

ψh = 2λ2 (45)

ψc =
(

I(φ; n), θ(φ; n)
)

(46)

ψa = arccos(v1) (47)

Hence, a bounded region can be determined, which enables sentences to be determined
in synthetic language sequences. Examples of this bounded region for a range of known
sentences in the Brown News corpus are displayed in Figure 4, where the red hatched area
indicates the bounded information flow region, which provides a method of estimating
synthetic language sentence boundaries.

Figure 4. A method of analyzing structure in synthetic language is shown using information topology.
In this measure, the elliptical region indicates the end of a sentence. This is found as the constrained
limit between the information flow and the decreasing change in curvature of the information flow.
This is given by the probabilistic curvature measurements of the cumulative incremental tangent
angle of the estimated Wasserstein-1 distance (y axis) and the cumulative incremental information
(x axis). The results are shown for a range of known sentences in the Brown News corpus. The red
hatched region defines the bound of the information flow and predicts the sentence end-points.

Once the trajectory of a sentence crosses into this region, it indicates the sentence
ending. This decision point q(φ; n) for an end of a sentence-like unit is indicated as

q(φ; n) =

{
1 if

(
Î(φ; n) ≥ ωl

)
&
(

θ̃(φ; n) ≤ ωt

)
0 otherwise

(48)

The pseudo-code for the proposed algorithm is shown in Algorithm 1, where an initial
procedure computes the decision bounds and then is used by a second procedure on current
input data, and a visual representation of the algorithm is shown in Figure 5.

The experimental results for a range of known sentences in the Brown News corpus
are shown in Figure 6, where a learning region can be determined, which can be used to
indicate the end of a sentence.

The trajectories of the probabilistic curvature measurements of the cumulative incre-
mental tangent angle Wasserstein distance and the cumulative incremental information are
shown for 10 known sentences in the Brown News corpus in Figure 7.
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Figure 5. A diagrammatic representation of the information topological algorithm measuring the
probabilistic curvature measurements between short segments of symbolic sequences. The curvature
diminishes to a bound on the information flow, predicting the sentence end-point.

Figure 6. The probabilistic curvature measurements of the cumulative incremental tangent angle
Wasserstein-1 distance (y axis) and the cumulative incremental information (x axis) are shown for
200 known sentences in the Brown News corpus. The clustering shows evidence of the expected
information change for each sentence. The red hatched region defines the bounds of the information
flow and predicts the sentence end-points.

Figure 7. The trajectories of the probabilistic curvature measurements of the cumulative incremental
tangent angle Wasserstein distance (y axis) and the cumulative incremental information (x axis) are
shown for 10 known sentences in the Brown News corpus. The sentence end-points are detected
when the trajectory crosses into the red hatched region. The results indicate the potential of the
approach for determining the sentence bounds.
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Algorithm 1 Proposed information topology SLU estimation algorithm

1: procedure INFTOPSENTENCEBOUNDS(Πh) . Estimate contextual SLU bounds
2: for all g ∈ Πh do . Do for all contextual data Πh
3: {uv, uz} ← g(Πh) . Read new set of symbols
4: {uv̂, uẑ} ← {uv, uz} . Obtain topological set of new unique symbols
5: {pv̂, pẑ} ← fs({uv, uz}) . Functional spline match distributions
6: HD(v̂, ẑ)← {p(v̂), p(ẑ)} . Normalized relative difference entropy
7: Id(φ)← I0(ψ)− I0(ψ(NL)) . Incremental information
8: Î(φ; n)← Id . Cumulative incremental information
9: W̃d1(φ; n) = W̃1(ψ; n)− W̃1(ψ; n− 1) . Incr. norm. Wasserstein-1 distance

10: Ŵ1(φ; n)← W̃d1(φ; n) . Cumulative W-1 distance
11: θ̃1(φ; n) = arctan

(
Ŵ1(φ; n)

)
. Curvature of the W-1 distance tangent

12: end for
13: I(φ; n)← mean

(
Î(φ; n)

)
. Mean cumulative information

14: θ(φ; n)← mean
(

θ̃1(φn; n)
)

. Mean incremental W-1 distance

15: Ψ(φN)← Σ
(

I(φ; n), θ(φ; n)
)

. Covariance of incr. info and W-1 distance
16: ωl = I(φ; n)− αψw
17: ωb = θ(φ; n)− αψh
18: ωw = αψw
19: ωh = αψh
20: Ω(φN) = [ωl , ωb, ωw, ωh] . Compute decision bounds over Πh
21: end procedure

22: procedure INFTOPSENTENCE(Gs, Ωφ) . Estimate SLU for current data
23: for all g ∈ Gs do . Do for all local data Gs
24: {uv, uz} ← g(Gs) . Read new set of symbols
25: {uv̂, uẑ} ← {uv, uz} . Obtain topological set of new unique symbols
26: {pv̂, pẑ} ← fs({uv, uz}) . Functional spline match distributions
27: HD(v̂, ẑ)← {p(v̂), p(ẑ)} . Norm. relative difference entropy
28: Id(φ)← I0(ψ)− I0(ψ(NL)) . Incremental information
29: Î(φ; n)← Id . Cumulative incremental information
30: W̃d1(φ; n) = W̃1(ψ; n)− W̃1(ψ; n− 1) . Incr. norm. W-1 distance
31: Ŵ1(φ; n)← W̃d1(φ; n) . Cumulative W-1 distance
32: θ̃1(φ; n) = arctan

(
Ŵ1(φ; n)

)
. Curvature of W-1 distance tangent

33: Ω(φN) = [ωl , ωb, ωw, ωh] . Apply SLU decision bounds
34: if

(
Î(φ; n) ≥ ωl

)
and

(
θ̃(φ; n) ≤ ωt

)
then . SLU decision test

35: q(φ; n) = 1 . End of SLU detected
36: end if
37: end for
38: end procedure

3.3. F-Measure Performance Analysis

Measuring the performance of linguistic processing algorithms is a non-trivial process
due to the different metrics that may be considered and the way in which they are weighted.
In particular, the concept of precision and recall have been used to measure errors associated
with substitution, deletion and insertion [66].

At the lowest level, performance can be assessed by comparing the result of matching
a tag in a reference set that represents ground truth against a hypothesis [67]. At each tag
location, there may be one or more slots, for example, the tags in the context of detecting
sentence boundaries might consist of slots corresponding to a period, question mark or
exclamation mark [28]. Hence, the precision and recall measures are defined as:
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P =
C

C + M̂
, R =

C
C + N̂

(49)

where P is the precision measure determined as the number of correct results C divided by
the number of actual outcomes, that is, the total number of slots in the hypothesis, and R
is the recall measure calculated as the number of correct results divided by the number of
possible outcomes, that is, the total number of slots in the reference. The number of correct
results is considered those where the slots in the hypothesis are exactly aligned with slots
in the reference. The various slot errors can be used to determine the total number of actual
and possible error outcomes as

M̂ = S + I (50)

N̂ = S + D (51)

where S is the number of errors due to the wrong slot being substituted, D is the number
of errors due to a slot being in the reference set being missed in the hypothesis set, and I
is the number of errors due to a slot being flagged in the hypothesis that does not exist in
the reference set. The F-measure can be defined as the harmonic mean of the precision and
recall values [68]

Fα =
RP

(1− α)P + αR
for 0 ≤ α ≤ 1 (52)

A common expression is

F =
2RP

R + P
(53)

where α = 0.5. The F-measure has been criticized since it implicitly over-emphasizes
some particular types of errors compared to others [67], which could lead to bias [69].
In particular, risk-centric applications may give a high weight to retrieving information
more so than precision, whereas a high F-measure can occur due to an uneven weighting
between precision and recall; hence, variations based on different scaling values α have
been proposed such as the F2-measure [70] and the semantic error rate [71].

A problem exists in devising an appropriate performance measure for synthetic
language because, although we can conduct a test on known human languages, this
does not necessarily inform us about the actual expected performance in a synthetic
language environment.

A particular issue is that we do not necessarily have any access to the true end-
of-sentence boundaries, so it is not possible to apply existing performance measures.
Nevertheless, as a preliminary test of the performance of the proposed algorithm, we
conducted a test on a known human language corpus and compared it against an existing
sentence boundary detection algorithm.

We selected the Brown News corpora and compared the performance against the Kiss
and Strunk (KS) algorithm [60]. We note that this is not strictly a fair comparison since our
proposed method does not rely on any semantic knowledge but only uses the information
topology approach. This places it at a considerable disadvantage to other algorithms, such
as the KS method, which incorporates an inherent knowledge of human language. Hence,
it is not expected that the BW algorithm is likely to perform as well as methods that have
this advantage.

A further difference between the algorithms considered here is that the KS method is
essentially a disambiguation approach as it seeks to determine the precise ending symbol.
However, in our proposed algorithm, since we do not incorporate any semantic knowledge,
there is no particular consideration given to any symbol as a sentence boundary. While
this could be incorporated into future versions of this method, for the present version, we
do not use this approach. Instead, due to the nature of our proposed algorithm, there is a
margin allowed in the precise sentence ending permitted.
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The results for both the KS method and the proposed BW method when applied to
sentence boundary detection on the difficult text of the Brown News corpus are shown
in Table 1. Interestingly, when we examine the specific sentence boundaries selected, it
is evident that the KS method has difficulties in the very problem of disambiguating the
use of periods within the complex text. However, the BW method does not have this
same problem, which indicates that there may be a possibility of deriving a more accurate
model for human language sentence boundary detection by incorporating our proposed
methodology into existing algorithms such as the KS method.

Table 1. F-measure result on the Brown News corpus.

Model Fα(%)

KS 78.91
BW 68.09

3.4. An Information-Theoretic Performance Measure

Although we have demonstrated the performance in terms of the F-measure, in general,
for synthetic language algorithms, it is not possible to know if the algorithm is operating
successfully because there is not necessarily any language knowledge to indicate the ground
truth. Hence, existing performance measures such as accuracy and the F-measure will
not be suitable or possible to use in synthetic language data. In this section we propose
such a global performance measure based on information-theoretic principles. Hence, it
can be used to determine the overall effectiveness of algorithms for estimating sentence
boundaries even without semantic knowledge.

We propose a global performance criterion to measure the effectiveness of the pro-
posed approach by considering the distribution of the resulting sentence lengths. Unlike
coarse methods, which might seek to determine an average sentence length and arbitrarily
limit each sentence length, the method proposed here does not introduce any specific
sentence limits.

Hence, the distribution of sentence lengths resulting from the proposed informa-
tion topology sentence bound model can be compared against an estimated probabilistic
synthetic language model.

For natural sequences, including natural language, a mechanism to model the symbolic
probabilities is to use a Zipfian law [72,73]. Our approach is to use a previously derived
analytic model. Hence, for a natural sequence with alphabet size M, which consists of
symbols with rank r, the probability of occurrence of a given word can be defined in
terms of rank, the Zipf–Mandelbrot–Li law provides an expression for the probability to be
used, where [44,74,75]:

P̂(r; M̂) =
γ′

(r + β)α (54)

and for iid samples, the constants can be computed as [72]:

α =
log2(M̂ + 1)

log2(M̂)
, β =

M̂
M̂ + 1

, γM =
M̂α−1(

M̂− 1
)α (55)

and γ′ = γ/κ where
M

∑
i=1

p(i) = 1,
M

∑
i=1

γ

(r + β)α = κ (56)

Having then estimated P̂h(r, M), the entropy can then be easily estimated as

Ĥ1(r, X) = −
M̂

∑
h=1

P̂h(r, M) log2

(
P̂h(r, M)

)
(57)
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which defines the rank r Shannon entropy estimate. However, in our case, we use the
analytic distribution above to contrast against the sentence distribution obtained as a result
of the incremental information topology algorithm for sentence estimation described in the
previous section.

Accordingly, we evaluate the proposed information topology approach by applying
the probabilistic distribution criteria to a set of data from the Brown corpora and then
comparing it to an analytic distribution as indicated here. The results for 1000 estimated
sentences using this approach are shown in Figure 8. Hence, a trivial next step is to
introduce a relative entropy measure to contrast the measured and expected distributions.

Figure 8. A performance criteria to measure the effectiveness of the proposed information topological
sentence model is obtained by comparing the probability distributions of sentence lengths resulting
from the proposed information topology sentence bound model when compared against an estimated
probabilistic synthetic language model based on a Zipf–Mandelbrot–Li distribution on sentence
length [44]. The distribution of the estimated model provides a reasonably similar distribution to the
actual data obtained from the Brown News corpora (1000 sentence result shown).

An interesting further example of the performance can be obtained by comparing
the actual sentence data from test corpora and the estimated sentences. We suggest that a
global performance metric as defined above is likely to provide a better overall indicator;
however, we include it here out of curiosity. Note that all punctuation is removed for the
model, an example of this is shown below:

Actual sentence: “Only a relative handful of such reports was received”, the jury said,
“considering the widespread interest in the election, the number of voters and the size of this city”.

Estimated sentence: “Only a relative handful of such reports was received”, the jury said,
“considering the widespread interest in the election, the number of voters and the size of this city”.
The jur

Using this approach, it would be possible to formulate a metric that measures the
precise effectiveness of the model against a test set. This can be achieved in a number of
ways, for example, using a simple sentence length measure, the probabilistic distributions
shown above, a relative entropy measure, or some other approach such as using the specific
roles of words included or not. However, this example indicates that the potential of the
proposed information topological method for sentence estimation in synthetic languages
has been demonstrated in this section.

4. Conclusions

Determining sentence-like units and sentence boundaries for human language has
been considered using various approaches in the literature. In this present work, we are
interested in seeking to determine a method for estimating sentence-like units in synthetic
language, for which there is no teacher, no grammar and very limited functional knowledge.
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In previous methods for human languages, even when using unsupervised methods, there
is inherently some background knowledge of the language, which is normally included.

The challenge for synthetic languages is that, in contrast to human languages, we
do not necessarily have any a priori knowledge of language elements. It is evident that
without such a comprehensive background knowledge of a given language in terms of
understanding of what constitutes language primitives such as letters, words, sentences,
topics and even spaces or pauses, for synthetic languages, even determining how to identify
these elements is non-trivial.

In traditional approaches, the idea of chunking sequences implies a precise aspect of
determining sentence structure. However, since this is not possible, we propose a new
information theoretic approach to identify synthetic language structure when there is prac-
tically nothing known about the language. The assumption we make in our development
is that the language follows a Zipfian structure.

While various information-theoretic approaches, for example, based on entropy, may
be useful, in this paper, we consider an extension to the information-geometric framework.
In particular, we consider the notion of information topology based on the curvature in
a statistical manifold unfolding over time as the sequence of language progresses. This
gives the potential for synthetic language structure to be efficiently inferred through
measurements in a topological information space.

To determine sentence-like structure in synthetic languages, we have proposed a
model based on the concept that sentences are constrained to convey a finite amount of
information in a particular shape that can be measured. We describe this approach and
then show how it can be used to model the property of an information shape across a
sequence based on a measure of the cumulative incremental tangent angle Wasserstein-1
distance. This curvature of this information surface is used to estimate a natural limit
of information flow in language sequences. This provides the potential for a method of
autonomous segmentation without any semantic or other linguistic knowledge.

Measuring the performance of the proposed algorithm is an important task, and so
we have considered this in the paper. We have provided an example comparison of
the proposed method by comparing it to an existing algorithm (Kiss and Strunk (2006))
and evaluated it using the F-measure. We describe the limitations of the comparison
and the appropriateness of the F-measure, in general, for this work. It is evident that
existing performance metrics such as the F-measure are unsuitable for synthetic language
applications when there may be no language model present that can be used to indicate
ground truth. Accordingly, we have introduced a novel information-theoretic that is capable
of measuring the global performance based on modeled distributions.

We demonstrate the proposed sentence-like boundary estimation method and global
performance measure by applying them to a human language corpora, where it is shown
that the proposed approach is capable of segmenting synthetic language data into sen-
tences that approximate known sentence structure. However, we stress that this is a new
conceptual approach, and there is much work to be conducted to improve the performance
of the method so that it can be effectively used.

An area of further investigation is that while the method proposed here does not con-
sider semantic information, meaning there is no inherent grounding to re-align sentence-like
units, the proposed approach has the potential to be useful in developing new methods
in modeling dialog for which there is very little known about the language. In particular,
given the problems that existing algorithms can have with the disambiguation of com-
plex language, there appears to be an interesting way forward to develop more robust
sentence segmentation models that overcome these problems by introducing the proposed
information topology methods.
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