
����������
�������

Citation: Adil, N.; Xiao, X.; Feng, X.

Numerical Study on an RBF-FD

Tangent Plane Based Method for

Convection–Diffusion Equations on

Anisotropic Evolving Surfaces.

Entropy 2022, 24, 857. https://

doi.org/10.3390/e24070857

Academic Editor: Eun-jin Kim

Received: 22 May 2022

Accepted: 16 June 2022

Published: 22 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Numerical Study on an RBF-FD Tangent Plane Based
Method for Convection–Diffusion Equations on Anisotropic
Evolving Surfaces
Nazakat Adil, Xufeng Xiao * and Xinlong Feng

College of Mathematics and System Sciences, Xinjiang University, Urumqi 830017, China;
nazakatm@stu.xju.edu.cn (N.A.); fxlmath@xju.edu.cn (X.F.)
* Correspondence: xiaoxufeng111@sina.com

Abstract: In this paper, we present a fully Lagrangian method based on the radial basis function (RBF)
finite difference (FD) method for solving convection–diffusion partial differential equations (PDEs) on
evolving surfaces. Surface differential operators are discretized by the tangent plane approach using
Gaussian RBFs augmented with two-dimensional (2D) polynomials. The main advantage of our
method is the simplicity of calculating differentiation weights. Additionally, we couple the method
with anisotropic RBFs (ARBFs) to obtain more accurate numerical solutions for the anisotropic growth
of surfaces. In the ARBF interpolation, the Euclidean distance is replaced with a suitable metric
that matches the anisotropic surface geometry. Therefore, it will lead to a good result on the aspects
of stability and accuracy of the RBF-FD method for this type of problem. The performance of this
method is shown for various convection–diffusion equations on evolving surfaces, which include the
anisotropic growth of surfaces and growth coupled with the solutions of PDEs.

Keywords: convection–diffusion equation; Lagrangian; evolving surface; radial basis function–finite
difference; anisotropic radial basis function

1. Introduction

Convection–diffusion equations on stationary or evolving surfaces are becoming
increasingly popular since they arise in a wide variety of applications [1–4]. For PDEs
on stationary surfaces, it is a common practice that the smooth surface is discretized as
a triangulated surface, i.e., piecewise linear surface. The popular surface finite element
methods [5,6] have been used in this context. A lot of work has been done to derive the
finite element methods for solving PDEs on evolving surfaces [3,7,8]. In the finite element
framework, the mesh evolving approach is used for the discretization of surface evolutions.
However, regenerating a global mesh is expensive for large mesh deformations.

Recently, meshfree methods have become popular due to their flexibility of working
on solving surface PDEs. The meshfree methods allow large deformations or topolog-
ical changes of surfaces to be handled more easily than the mesh-based finite element
methods. In the meshfree methods, surfaces are only discretized with scattered points.
The RBF method is a high accurate numerical approach in the context of meshfree methods.
The global RBF collocation method proposed in [9] provides a high order numerical scheme
for solving stationary surface PDEs. The global RBF method has a highly computational
cost because it leads to a dense discrete matrix. When it comes to PDEs on evolving surfaces,
the dense matrix needs to be recalculated at each time layer. Therefore, the local RBF-FD
methods provide a competitive numerical discretization for surface PDEs. The RBF-FD
methods have been successfully developed to convection–diffusion and reaction–diffusion
PDEs on domains [10,11] and surfaces [12–15]. The RBF-FD methods have also been applied
to the evolving surface PDEs [16,17].
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In this paper, the surface differential operators are approximated by using the tan-
gent plane method (TPM) in the RBF-FD framework. The TPM was first proposed by
Demanet [18]. The key idea of the method is that the surface differential operators are
approximated on the tangent space. Recently, the TPM was extended to the context of
the meshfree generalized finite difference method and applied to surface PDEs on sta-
tionary [19] and evolving surfaces [20]. In [21], the RBF-FD method is combined with
TPM to calculate the differential weights for the surface Laplacian. In this paper, we
focus on the application of the RBF-FD TPM method on solving evolving surface PDEs.
The main advantage of this method comes from the simplicity of the discretization of
surface operators.

Furthermore, we found that some anisotropic surface evolutions [3] may introduce
the trouble of distortion on the nodes distribution. For example, surfaces evolve in ways
that depend linearly on the underlying axes. In this case, the irregular clustering of nodes
may lead to results in conditioning problems of the RBF interpolation. To improve the
performance of the RBF-FD TPM , we couple the method with ARBF interpolation [22–24]
to solve this kind of problem.

The rest of the paper is organized as follows. In Section 2, we give the formulation of a
convection–diffusion equation on evolving surfaces. In Section 3, we firstly review the basic
notation of ARBF interpolation. Then we show how to calculate the differentiation weights
by using the ARBFs within the TPM framework. In Section 4, the PDE is discretized in time.
In Section 5, we analyze the accuracy and eigenvalue stability of the approximation for
the Laplacian on an ellipsoid using the proposed method. In Section 6, various numerical
examples are performed to verify the effectiveness of the proposed method for different
surface evolutions. Finally, we end with conclusions and some further issues.

2. Convection–Diffusion Equation on Evolving Surfaces

In this section, we consider the convection–diffusion equation on a time-dependent
closed and smooth submanifold Γ(t) ⊂ R3:

d
dt

u + u∇Γ(t) · v− k∆Γ(t)u = f (t, x), on Γ(t), t ∈ (0, Te], (1)

with an initial condition of u(t, x) = u0(x). Here, d
dt u is a material derivative, i.e.,

d
dt

u = ut + v · ∇u,

v is a velocity of the surface Γ(t) and k is a diffusion coefficient.
Let n denote the outward normal vector of the surface Γ(t). We assume that the

velocity v contains both normal and tangential components. We denote by v = Vn + vS
(with vS · n = 0) the velocity of material points on the surface. The tangential velocity vS
transports u along Γ(t).

For a given time t, we denote by P the projection operator that projects a vector in R3

at the point x into the TxΓ(t). Then P can be written as

P = I − nnT .

Thus, we can define the surface gradient and Laplacian on Γ(t):

∇Γ(t) := P∇, ∆Γ(t) := ∇Γ(t) · ∇Γ(t).

We represent the evolving surface Γ(t) by a parameterization approach. The velocity
v determines the movement of nodes on Γ(t) by the following form:

d
dt

x(t) = v(t, x(t)). (2)



Entropy 2022, 24, 857 3 of 15

If (2) can be solved analytically, then we can define the parameterization of the Γ(t) over
the initial surface Γ(0):

Γ(t) = {x(t) | x(0) ∈ Γ(0)}.

If not, we use the second order method [20] to numerically solve the ODE system (2):

xm+1 = xm +
∆t
2
(3vm − vm−1). (3)

3. ARBF-FD TPM for the Convection–Diffusion Equation on Evolving Surfaces
3.1. Anisotropic Radial Basis Function Interpolation

In this paper, we use a generalization form of RBF: ARBF. The purpose of using this
basis function is that we want to benefit from its ability to handle the anisotropic growth
of surfaces.

ARBF can be better understood from the two aspects: one is the RBF interpolant on
transformed data, and the other is that using a new distance in the RBF. Let X = {xi}N

i=1 ⊂
Rd denote an interpolated nodes set, where d is the dimension of space. We change the X
into another data set X̃ through a linear transformation or a nonsingular d× d matrix M:

X̃ = {x̃i | x̃i = Mxi, i = 1, 2, · · · , N}.

Let T = MT M, then T is symmetric positive definite. Results from [24] show that the RBF
interpolation on X̃ is equivalent to the ARBF interpolation on X. The corresponding new
norm is defined as

‖x‖T =
√

xTTx.

Now we can define the ARBF interpolant of a target function s(x):

Iφs(x) =
N

∑
i=1

αiφ(‖x− xi‖T) +
mp

∑
k=1

βk pk(Mx). (4)

It should be noted that the constraints on multivariate polynomials in (4) are

N

∑
k=1

αk pj(Mxk) = 0, j = 1, 2, 3, · · · , mp,

here, mp = (l+d
l ) and l is the largest degree of the polynomials. The coefficients

α = (α1, α2, · · · , αN)
T , β = (β1, β2, · · · , βmp)

T in (4) are obtained by solving the following
linear system: (

A P
PT 0

)(
α
β

)
=

(
sX
0

)
,

where A = {aij = φ(‖xi − xj‖T)}, sX = (s(x1), s(x2), · · · , s(xN))
T , and

P =


p1(Mx1) p2(Mx1) · · · pmp(Mx1)

p1(Mx2) p2(Mx2) · · · pmp(Mx2)
...

...
...

...
p1(MxN) p2(MxN) · · · pmp(MxN)

.

In numerical computations, the behaviors of RBF interpolations are usually related to
the separation distance and fill distance:

qX =
1
2

min
1≤i<j≤N

‖xi − xj‖2, hX = sup
x∈Ω

min
1≤i≤N

‖x− xi‖2, (5)
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where Ω ⊂ Rd is a computational domain. The condition number of the RBF interpolation
matrix increases with the decrease in the qX . The fill distance hX determines the accuracy
of the interpolation. The two quantities of a near-uniform nodes set are close to each other.

When M (or T) is an identity matrix, the above ARBF interpolation turns into the RBF
interpolation. If the surface does not have an anisotropic structure, the Euclidean distance
is sufficient to give good results for the interpolation. For surfaces with a global anisotropic
structure, such as ellipsoids, we need to select a matrix M that matches the anisotropic
surface geometry. In other words, our goal is to seek a suitable matrix M such that the hX
and qX of the mapped data X̃ are closer together. In this paper, the basis function is chosen
as the anisotropic version of the Gaussian RBF:

φ(‖x− xi‖T) = exp(−ε2‖x− xi‖2
T),

where ε is a free shape parameter.
We know that the shape parameter also has an effect on the RBF interpolation. For a

fixed node set, it leads to ill-conditioned problems as the shape parameter ε becomes small.
In this case, RBF becomes flatter, and the local interpolation matrix causes an ill-conditioned
linear system. The RBF-QR method [25,26] has been proposed to circumvent this problem.
However, our study focuses on the influence of nodes distribution on the RBF interpolation.
Therefore, instead of using the RBF-QR method, a suitable shape parameter is selected for
each numerical test.

3.2. Differentiation Weights Based on TPM

In this section, we illustrate how to calculate the surface gradient and Laplacian using
the ARBF-FD TPM. Without loss of generality, let S1 = {xj}n

j=1 ⊂ X denote a stencil, where
xj, j = 1, 2, · · · , n are the nearest neighbors of the center x1. Let L be a differential operator.
The approximation of the Lu(x) at x1 can be computed by the following linear combination:

Lu(x)|x=x1 ≈ L1
Xu(x) =

n

∑
j=1

ωL
j u(xj). (6)

Thus the weights ωL
j are found by solving the system,(

A P
PT 0

)(
ωL

η

)
=

(
LΦ(x)|x=x1

Lp(Mx)|x=x1

)
, (7)

where Φ(x) =
(

φ(‖x− x1‖T), φ(‖x− x2‖T), · · · , φ(‖x− xn‖T)
)T

and p(Mx) = (p1(Mx),

p2(Mx), · · · , pmp(Mx))T .
A straightforward way is that calculating the weights directly by (7) using a closed-

form formulation of surface operators, as proposed in [27,28] (the method is called the
RBF-FD direct method hereafter). In this paper, the process of calculating the weights
is implemented within the TPM framework. The advantage of using this method lies in
the fact that the proposed method does not require a closed-form formulation of surface
operators. Thus, it is much easier to implement.

We describe this method in detail below. Let ū denote the normal extension of u,
i.e., n · ∇ū = 0. The key idea of TPM is that the problem of computing the surface operator
of u is reduced to that of computing the gradient (in R3) of the ū. This is due to the fact that

∇Γu = ∇ū− (n · ∇ū)n = ∇ū.

Notice again that the gradient of ū in the local orthonormal coordinate system {t1, t2, n}
can be written as

∇ū = (t1 · ∇ū)t1 + (t2 · ∇ū)t2 + (n · ∇ū)n = (t1 · ∇ū)t1 + (t2 · ∇ū)t2.
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Thus, we only need to compute the t1 · ∇ū and t2 · ∇ū. Here, t1 and t2 are the orthogonal
basis of the tangent plane Tx1 Γ. Further, the weights of the surface gradient are computed by

ω∇Γ
j = t1ω

∇t1
j + t2ω

∇t2
j , j = 1, 2, · · · , n. (8)

The above differentiation weights ω
∇t1
j and ω

∇t2
j correspond to the directional derivatives

of a function in the directions of t1 and t2, respectively.
For computational simplicity, we project the stencil onto the tangent plane at the center

x1. Then we use a rotation R = (t1, t2 , n)T to transform the projected nodes so that they
are now located around a plane that is parallel to the plane z = 0. Through the coordinate
transformation

xR = R x, (9)

we can obtain
∂ū

∂xR
= t1 · ∇ū,

∂ū
∂yR

= t2 · ∇ū,

where xR and yR are the first and second components of xR. Then we ignore the z-
coordinates of xR, construct 2D RBFs on the rotated stencil and compute the weights
corresponding to ∂ū

∂xR
and ∂ū

∂yR
.

To sum up the above, the calculation of the differentiation weights of the surface
gradient requires two steps. The first step is to calculate the 2D weights on the rotated
stencil by solving (7). The second step is to transform the weights to the original stencil by
using (8).

For the discretization of the surface Laplacian, the RBF-FD TPM only needs the
normal vectors. However, the RBF-FD direct method requires reconstructing the curvatures
of surfaces. In addition, the RBF-FD TPM uses fewer terms in the polynomial basis in
comparison to the RBF-FD direct method. This is because the 2D basis functions are used
in the RBF-FD TPM.

We found that the transport scheme on sphere [29] is also essentially a tangent plane
method, which uses Householder reflection to implement the process of rotation. However,
the Householder reflection can only handle the surface of a sphere. For general surfaces, it
is necessary to find t1 and t2 and construct the matrix R. If Γ is a parametric surface defined
by x = x(ψ, θ), then t1 and t2 can be obtained directly by normalizing xψ and xθ .

For the calculation of the surface Laplacian, we use the rotational invariance of the
Laplacian or the proof in [19]. Therefore, we can obtain

ω∆Γ
j = ω∆T

j , j = 1, 2, · · · , n,

where ∆T is the 2D Laplacian on Tx1 Γ.

4. Discretization in Time

The Lagrangian framework is considered for the numerical discretization of (1). Let
time steps tm = m∆t, m = 0, 1, · · · , Me, ∆t = Te/Me. At each time layer, we update the
nodes xm through (3). Then we calculate the required differentiation weights for each center
node by repeating the procedure presented in Section 3.2. Further, the differentiation matrix
Dm is constructed by the differentiation weights. Differentiation weights can be computed
in parallel, as the procedure for each point is independent of that for all other points.

The material derivative of u can be simply approximated as

d
dt

u|(tm ,xm) ≈
u(tm, xm)− u(tm−1, xm−1)

∆t
.
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We use the Crank–Nicolson scheme for time discretization. The fully discrete form is
written as

(I − ∆t
2

Dm)Um = (I +
∆t
2

Dm−1)Um−1 +
∆t
2
(Fm + Fm−1), m = 1, 2, · · · , Me, (10)

where Um
i is the approximated value of u(tm, xi(tm)) and Fm

i = f (tm, xi(tm)).

5. Differentiation Accuracy

For the computation of PDEs on stationary or moving surfaces, calculating accurate
differentiation weights turned out to be essential in the RBF-FD context. In this section, we
show the errors and convergence orders of the proposed method for the approximation of
the surface Laplacian. This test is conducted over the ellipsoid given by

Γ = {x | x2

9
+

y2

9
+ z2 = 1}. (11)

We consider the function

u(x, y, z) = sin(x) sin(y) sin(z) + cos(x) cos(y) cos(z). (12)

The error is measured by the following form:

Error∆Γ = max
1≤i≤N

|∆Γu(xi)− Li
∆Γ ,Xu(x)|,

where Li
∆Γ ,X represents the approximation given by (6) for the surface Laplacian. For the

surface, we map ’minimal energy’ (ME) nodes on the unit sphere to the ellipsoid (11). This
node layout is illustrated in Figure 1.

Figure 1. Node layout on the ellipsoid.

5.1. On the Choice of the Matrix M

It is worth pointing out that the using of a suitable M matrix will improve the accuracy
and well-conditioning of the interpolation problem (4). Therefore, it leads to better results
for the computation of differentiation weights. Note again that the nodes on the ellipsoid
are obtained by mapping the ME nodes on the unit sphere. An additional point to note is
that the RBFs used in TPM are the 2D basis functions defined on rotated stencils. Therefore,
for each stencil, we define a matrix M2:

M2 = Rs M1R−1
e , (13)
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where M1 = diag
(

1
3 , 1

3 , 1
)

, Rs = (ts
1, ts

2, ns)T , Re = (te
1, te

2, ne)T . Here, Rs and Re consist
of the tangent vectors and normal vectors of the unit sphere and the ellipsoid at the center
of the stencil, respectively. The role of M2 is that of the nodes mapped to the unit sphere
before rotating through (9) and then performing the rotation step by Rs.

In the implementation, M2 is only used to construct a 2 × 2 matrix M by extracting
the first two rows and columns of M2. We then define the 2D ARBFs using the matrix M
and compute differentiation weights using (7). Additionally, we construct an anisotropic
type of stencils. That is, the distance between the center and nearest neighbors is measured
using the ‖ · ‖T1 , where T1 = MT

1 M1.

5.2. Results on the Ellipsoid

For the choice of parameters, we first choose the degree of polynomials with l = 1, 2
and 3. Then, we have set n = 2mp + 1, where mp = (l+3

l ) and fix ε = 3. To explain that the
ARBFs would work better than RBFs, we compare the accuracy of the RBF-FD TPM and
ARBF-FD TPM. Several observations can be made in Figure 2.

Figure 2. Errors for surface Laplacian of function (12) on the ellipsoid.

1. The errors of the RBF-FD TPM are relatively large. The reason for this is that the irreg-
ularity of nodes leads to poor RBF interpolation. The irregularity of nodes is reflected
by the difference between the fill distance and separation distance. For convenience,
the fill distance in (5) is approximated by

h̄X =
1
2

max
1≤j≤N

min
1≤i≤N,i 6=j

‖xj − xi‖2.

For 6561 nodes on the ellipsoid, h̄X = 0.0697 and qX = 0.0214, the difference between
the two quantities is relatively large;

2. The ARBF-FD TPM has smaller errors and faster convergence rates than those of
RBF-FD TPM. The M1-matrix maps the nodes on the ellipsoid to the near-uniform ME
nodes on the unit sphere. The corresponding two distances of the transformed nodes
set are h̄X = 0.0235 and qX = 0.0210. We obtained better results by introducing a
new distance to reduce the difference between these two quantities. The convergence
orders are 1.43, 3.67 and 6.19 for different l, respectively.

In Figure 3, we give the eigenvalues of the RBF-FD TPM and ARBF-FD TPM corre-
sponding to the surface Laplacian differentiation matrix on the ellipsoid, where l = 2,
n = 21, ε = 3 and N = 6561. Due to the irregular sampling of the nodes on the ellipsoid,
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the RBF-FD TPM method has large positive eigenvalues. In the ARBF-FD TPM method, we
improved this problem using a new metric. Therefore, the eigenvalues of the ARBF-FD
TPM are all in the negative half-plane.

For this test, there are two other ways to improve the results of the RBF-FD TPM.
The first one is to use the method proposed in [12], fixing the condition number of local
interpolation matrix and choosing stencil-dependent shape parameters. Compared with
the ARBF method, choosing different shape parameters in each stencil can be regarded
as the isotropic scaling of each stencil. For the evolving surface problems, this strategy
increases the computational cost. The second one is to sample near-uniform nodes on the
ellipsoid. This can improve the stability of eigenvalues for the ellipsoid. However, if we
consider the anisotropic growth of the unit sphere, regenerating the near-uniform nodes at
each time layer would be time consuming.

(a) RBF-FD TPM (b) ARBF-FD TPM

Figure 3. Eigenvalues of the two methods for the surface Laplacian on the ellipsoid.

Summarizing the above discussion, the use of the ARBFs overcomes the ill-conditioned
interpolation problem caused by irregular sampling of the nodes without increase of the
computation cost. This means that the ARBF-FD TPM method is effective for solving the
Poisson or diffusion equations on the stationary ellipsoid. In this paper, we mainly focus
on the application of the ARBF-FD TPM for the anisotropic growth of surfaces.

6. Numerical Experiments
6.1. Normal and Tangential Motion on the Unit Sphere

First, we test the accuracy of the proposed method for the Equation (1) on surfaces
without anisotropy. In this case, we suggest using isotropic RBFs (i.e., M is the identity) for
the numerical simulations. For this, we consider two examples: an expanding sphere and a
rotating sphere. The velocity of the expanding sphere has only a normal component, while
the velocity of rotating sphere is purely tangential.

6.1.1. Expanding Sphere

For the first example, we consider the expanding sphere,

Γ(t) = {x(t) | x2 + y2 + z2 = (1 + 0.5t)2}.

Then the velocity is v = 0.5n. In Equation (1), the diffusion coefficient is chosen to be k = 1.
We assume that the exact solution is given by

u(t, x) = e−6txy,

The time interval of the simulation is set to be (0, 1].
At the initial time, we use ME nodes on the unit sphere. The values of the parameters

are given in Table 1. For the two cases listed in the table, we choose ∆t = h̄X/5 and
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∆t = h̄2
X/30, respectively. The relative l2 error in the numerical solution is measured at

Te = 1 by

l2 error =

(
∑N

i=1(U
Me
i − u(Te, xi(Te)))2

∑N
i=1 u(Te, xi(Te))2

)1/2

.

Table 1. The values of the parameters.

Case l n ε

1© 1 9 1
2© 2 21 2

The errors of the RBF-FD TPM for the test are given in Figure 4. Second- and fourth-
order convergence are obtained for the cases of 1© and 2©, respectively. It can be found that
the nodes remain near-uniformly distributed as the expanding of the sphere. That is, hX
and qX are relatively close to each other during the surface evolution. For this case, we can
see from Figure 4 that higher convergence orders are obtained by the using of the Euclidean
distance in RBFs.

Figure 4. Relative l2 error of the RBF-FD TPM for the test of expanding sphere at Te = 1.

6.1.2. Rotating Sphere

In this example, we choose a velocity of v = (y, − x, 0)T , which is a divergence free
tangential velocity. Therefore, Equation (1) can be simplified as

ut + v · ∇Γu− k∆Γu = f .

This equation can also be viewed as a convection–diffusion equation on the stationary unit
sphere and can be numerically solved in the Eulerian framework. For pure convection or
convection-dominated cases, the Eulerian RBF-FD method usually has spurious oscillations.
This needs to rectified with artificial hyperviscosity [15]. The fully Lagrangian method
used in this paper does not require the artificial hyperviscosity .

For this example, let f = 0 and k = 10−5. The initial condition is taken as a cosine bell:

u0(x) =

{
1
c

(
1 + cos(π arccos x

1/3 )
)

, arccos x < 1
3 ,

0, arccos x ≥ 1
3 ,

(14)
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where c = 2. We simulate the numerical solutions in Figure 5 at times t = 0, 2π and 20π.
Here we using the parameters of N = 6561, ∆t = 0.005 and 1© given in Table 1. There are
no spurious oscillations in the numerical solution because the method does not require the
discretization of the surface gradient. Numerical results demonstrated the validity of the
RBF-FD TPM for the convection-dominated convection–diffusion equations.

(a) t = 0 (b) t = 2π (c) t = 20π

Figure 5. Numerical solution for the test of rotating sphere.

6.2. Evolving Ellipsoid

In this example, we wanted to present the effectiveness of the ARBF-FD TPM method
for the anisotropic evolution of surfaces. We consider Equation (1) on an evolving ellipsoid:

Γ(t) = {x(t) | x2

a(t)2 +
y2

b(t)2 +
z2

c(t)2 = 1},

where a(t) = 1 + 4t, b(t) = 1 + 2t and c(t) = 1 + t. We assume that the nodes move in the
following way:

x(t) = a(t)x(0), y(t) = b(t)y(0) and z(t) = c(t)z(0).

Then the velocity of the surface is computed by v(t, x) =
(

a′(t)
a(t) x, b′(t)

b(t) y, c′(t)
c(t) z

)T
.

We assume that the exact solution is given by

u(t, x) = e−t sin(x),

and the diffusion coefficient k = 1. The final time is taken to be Te = 1. The final surface is
an ellipsoid which has different growth rates in the x,y and z directions.

The velocity v leads to an irregular clustering of nodes with the increase in time.
In Figure 6, we show how the distribution of nodes changes with the increase in time. h̄X
and qX corresponding to the nodes set in each subgraph in Figure 6 are given in Table 2.
With the anisotropic growth of the surface, these two quantities display differences be-
tween themselves.

(a) t = 0 (b) t = 0.5 (c) t = 1

Figure 6. Distribution of nodes on the evolving ellipsoid, where N = 1024.

Table 2. The fill and separation distance of the nodes on the ellipsoid, where N = 1024.

Distance t = 0 t = 0.5 t = 1

h̄X 5.9378 × 10−2 1.2999 × 10−1 2.0258 × 10−1

qX 5.3421 × 10−2 8.5483 × 10−2 1.1430 × 10−1
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The new metric in ARBFs is constructed in the same way as described in Section 5.1.
At a given time t, the M1-matrix in (13) is chosen by

M1(t) = diag
(

1
a(t)

,
1

b(t)
,

1
c(t)

)
.

The matrix M1 maps the nodes to the initial surface (the unit sphere) at each time layer.
In more detail, the hX and qX of the mapped data are closer together, which will lead
to more stable and accurate results. If we consider a more general case of the surface
evolution,

x(t) = B(t)x(0),

then we can choose M1(t) = B(t)−1 for this case.
Use the same parameters as the test of the expanding sphere, given in Table 1. For

1© and 2©, the time step is chosen as ∆t = h̄X/5 and ∆t = h̄2
X, respectively. In Figure 7,

we give the errors of the RBF-FD TPM and ARBF-FD TPM. For the anisotropic surface
evolution, the Euclidean distance is not appropriate. As a result, the RBF-FD TPM method
shows eigenvalue instability. However, the proposed ARBF-FD TPM method does not
suffer from the irregular clustering of nodes. This is because we map the nodes to the initial
surface at each time layer. Further, the values of h̄X and qX of the transformed data stay the
same as the initial moment. The advantage of the method is that it not only overcomes the
instability caused by the irregularity of nodes, but also avoids the loss of accuracy caused
by the growth of h̄X .

(a) l = 1 (b) l = 2

Figure 7. Relative l2 errors of the RBF-FD TPM and ARBF-FD TPM for the test of evolving ellipsoid
at Te = 1.

6.3. Evolving Torus

We consider the anisotropic evolution on the torus:

Γ(t) = {x | (x2 + y2 + (1 + 2t)2z2 + 0.84)2 − 4(x2 + y2) = 0}. (15)

Thus, the position of the nodes is given by x(t) =
(

x(0), y(0), z(0)
1+2t

)T
. This surface be-

comes very thin as it shrinks in the z-direction. It can be seen from Table 3 that the separation
distance decreases with time, which leads to an ill-conditioned RBF interpolation. Follow-
ing the idea of the previous example, the M1-matrix is chosen by M1(t) = diag(1, 1, 1 + 2t).
The matrix transforms the nodes at time t to the initial surface. Then, we replace Rs and Re
in (13) with the rotation matrix corresponding to the torus at the initial time and time t.
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Table 3. The fill and separation distance of the nodes on the torus, where N = 6230.

Distance t = 0 t = 1 t = 2

h̄X 2.8538 × 10−2 2.7508 × 10−2 2.7501 × 10−2

qX 2.1260 × 10−2 7.8858 × 10−3 4.7380 × 10−3

We simulate the diffusion on the evolving torus with k = 10−1. Initial condition is
chosen as the cosine bell (14) with c = 800. Figure 8 shows the evolution of the surface
and the numerical solutions at times t = 0, t = 1 and t = 2. We use 6230 near-uniform
nodes on the initial surface and 2© given in Table 1. For the test, let ∆t = 0.001. This surface
evolution is anisotropic shrinking, as reflected by the fact that qX decreases much faster
than h̄X. The mapped nodes (i.e., nodes at t = 0) present increased qX, with consequent
reduction of the condition number of the RBF interpolation matrix. This gives a better
quality of the ARBF interpolant. Thus, the ARBF-FD TPM method accurately simulates the
problem, even when the torus becomes very thin.

(a) t = 0 (b) t = 1 (c) t = 2

Figure 8. Numerical solution on the evolving torus.

6.4. Solid Tumor Growth

In more general evolutions of surfaces, the velocity is often coupled with the solution
of the PDE on the surfaces, such as the model of solid tumor growth [3,4,16,17]. This model
is mathematically described by the following reaction–diffusion system [16]:

d
dt

u + u∇Γ(t) · v− ∆Γ(t)u = f1(u, w),

d
dt

w + w∇Γ(t) · v− dc∆Γ(t)w = f2(u, w),
(16)

where
f1(u, w) = γ(a− u + u2w), and f2(u, w) = γ(b− u2w).

For the system, we choose dc = 10, γ = 200, a = 0.1 and b = 0.9. The velocity is
chosen to be

v = (−0.01κ + 0.4u)n + va,

where κ = ∇Γ · n denotes the mean curvature, and va is a given anisotropic velocity. We
observed in the previous articles that the model does not have va. Note that the velocity
v is no longer purely in the normal direction, but includes a tangential component. We
compute the surface divergence of the velocity by

∇Γ(t) · v = (−0.01κ + 0.4u)κ +∇Γ(t) · va.

For the test, use N = 6561 nodes on the unit sphere and N = 6230 nodes on the torus
Γ(0) given by (15) as initial data. The initial conditions are obtained from the simulation
of the model (16) in the stationary case (i.e., v = 0) for these two surfaces at t = 1.7 and
t = 1, respectively. In the scheme (10), the nonlinear source term is computed by the
following form

1
2

(
3 fi

(
Um−1, Wm−1

)
− fi

(
Um−2, Wm−2

))
, i = 1, 2.
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We choose va =
(

4
1+4t x, 2

1+2t y, 1
1+t z

)T
for the evolution of the sphere and va = (0, 0, 0)

for the torus, respectively. For the test on the sphere, we construct ARBFs in the way illus-
trated in Section 6.2. For the case on the torus, we use isotropic RBFs.

Note that at each time layer, the normal vector is required for numerical computation.
Here, we compute a weighted normal, which is an average (corresponding to the area of
each triangle) of all the triangle normals belonging to triangles with the given nodes.

Let ∆t = 0.001. Here, we use the cases of 2© and 1© (given in Table 1) for the tests on
the sphere and the torus, respectively. Numerical approximations of u on the two surfaces
are given in Figures 9 and 10. It can be found that the surface expands outwards in regions
where the solution u is large. In particular, solid tumor growth on the sphere becomes a
bumpy ellipsoid. This is because it contains an artificial anisotropic velocity.

The example demonstrates that our method is effective for solving PDEs on moving
point clouds. For this, we only need to calculate the normal vector through the triangular
mesh. Although, the velocity v contains the curvature, we replace this term with the
relation κn = −∆Γx. Notice that the velocity also leads to a less uniform distribution
of nodes, but the changes of h̄X and qX are not significant during the time interval we
tested. Some adaptive mesh refinement strategy may be needed if we want to simulate
long time evolution.

(a) t = 0 (b) t = 0.2 (c) t = 0.3

Figure 9. Numerical solution for the solid tumor growth on the sphere.

(a) t = 0 (b) t = 0.2 (c) t = 0.3

Figure 10. Numerical solution for the solid tumor growth on the torus.

7. Conclusions

In this work, we developed an RBF-FD method that can be employed for practical
applications of PDEs on evolving surfaces. This proposed method is based on the tangent
plane approach for calculating differentiation weights. The most attractive advantage of the
method is that it transforms the problem into computing weights in 2D Euclidean space.

To make the RBF-FD TPM more efficient for anisotropic surface evolutions, we pro-
pose the new ARBF-FD TPM. The proposed method gives a significant improvement in
numerical experiments. To construct the ARBFs, we define a linear mapping such that the
nodes at each time layer are mapped to the initial surface. This approach gives advantages
because it is possible to reduce the impact on the irregular clustering of nodes during
the anisotropic surface evolution. An extension of the ARBF-FD TPM would be to adapt
the method to handle anisotropic diffusion on surfaces. Our method can obtain higher
convergence order by increasing the stencil size and degree of polynomials. Furthermore,
the proposed ARBF-FD TPM can be applied directly to PDEs on evolving surfaces repre-
sented by triangular meshes or point clouds. Therefore, the method is potentially useful
for computing PDEs on evolving surfaces.

A limitation of the ARBF-FD TPM is that the current results may be only applicable to
the surface evolution in ways that depend linearly on the underlying axes. For evolving
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surface problems which are stretched in nonlinear ways, it may be necessary to find
a nonlinear mapping. This approach requires defining a more complex basis function
than ARBF. Moreover, we will extend the method to handle complex surfaces with large
deformations, such as for the topological change of surfaces.
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