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Abstract: This paper studies the agent identity privacy problem in the scalar linear quadratic Gaussian
(LQG) control system. The agent identity is a binary hypothesis: Agent A or Agent B. An eavesdropper
is assumed to make a hypothesis testing the agent identity based on the intercepted environment
state sequence. The privacy risk is measured by the Kullback–Leibler divergence between the
probability distributions of state sequences under two hypotheses. By taking into account both the
accumulative control reward and privacy risk, an optimization problem of the policy of Agent B is
formulated. This paper shows that the optimal deterministic privacy-preserving LQG policy of Agent
B is a linear mapping. A sufficient condition is given to guarantee that the optimal deterministic
privacy-preserving policy is time-invariant in the asymptotic regime. It is also shown that adding
an independent Gaussian random process noise to the linear mapping of the optimal deterministic
privacy-preserving policy cannot improve the performance of Agent B. The numerical experiments
justify the theoretic results and illustrate the reward–privacy trade-off.

Keywords: control–privacy trade-off; hypothesis testing; Kullback–Leibler divergence; optimal
control policy; privacy risk analysis

1. Related Work

During the last decades, control technologies have been widely employed and signifi-
cantly improved the industry productivity, management efficiency, and life convenience.
The breakthrough of the deep reinforcement learning (DRL) technology [1] enables the
control systems to be intelligent and applicable for more complicated tasks. Along with
the increasing concerns about information security and privacy, adversarial problems in
control systems have also attracted increasing attentions recently.

The related works and literature are introduced and discussed in the following. There
are two types of adversarial problems considered in these works: active attacks and
privacy problems.

1.1. Research on Active Adversarial Attacks

Most previous works focus on studying the active adversarial attacks on the control
systems, which aim to degenerate the control efficiency, or even worse, to lead the system
to an undesired state, and developing the corresponding defense mechanisms. Depending
on their methodologies, these works can be divided into two classes. One class aims to
develop the adversarial reinforcement learning algorithm under attack. The other class
makes a theoretic study on the adversarial problem in the standard control model.

DRL takes advantage of the deep network to represent a complex non-linear value
function or policy function. Similar to the deep network, DRL is also vulnerable to the
adversarial example attack, i.e., the DRL-trained policy can be misled to take a wrong
action by adding a minor distortion to the observation of the agent [2]. In [2–5], the optimal
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generation of adversarial examples has been studied for given DRL algorithms. As a
countermeasure, the mechanism of adversarial training uses adversarial examples in the
training phase to enhance the robustness of control policy under attack [6–8]. In [9,10],
attack/robustness-related regularization terms are added in the optimization objective to
improve the robustness of the policy.

In most theoretic studies, adversarial attack problems are modeled from the game
theoretic perspective. Stochastic game (SG) [11] and partially observable SG (POSG) can
model the indirect (In SG or POSG, players indirectly interact with each other by feeding
their actions back to the dynamic environment.) interactions between multiple players in
the dynamic control system and have been employed in the robust or adversarial control
studies [12–14]. Cheap talk game [15] models direct (In the cheap talk game, the sender with
private information sends a message to the receiver and the receiver takes an action based
on the received message and a belief on the inaccessible private information.) interactions
between a sender and a receiver. In [16–19], the single-step cheap talk game has been
extended to dynamic cheap talk games to model the adversarial example attacks in the
multi-step control systems. With uncertainty about the environment dynamics in a partially
observable Markov decision process (POMDP), the robust POMDP is formulated as a
Stackelberg game in [20], where the agent (leader) optimizes the control policy under
the worst-case assumption of the environment dynamics (follower). Another kind of
adversarial attack maliciously falsifies the agent actions and feeds the falsified actions back
to the dynamic environment to degrade the control performance. The falsified action attack
can be modeled by Stackelberg games [21,22], where the dynamic environment is the leader
and the adversarial agent is the follower. In our previous work [23], the falsified action
attack on the linear quadratic regulator control is modeled by a dynamic cheap talk game
and the adversarial attack is evaluated by the Fisher information between the random
agent action and the falsified action.

Optimal stealthy attacks have also been studied. In [24,25], Kullback–Leibler diver-
gence is used to measure the stealthiness of the attacks on the control signal and the
sensing data, respectively; then the optimal attacks against LQG control system are devel-
oped with the objective of maximizing the quadratic cost while maintaining a degree of
attack stealthiness.

1.2. Research on Privacy Problems

Besides the active attacks, passive eavesdropping in control systems leads to privacy
problems. Most works focus on preserving the privacy-sensitive environment states.
The design of agent actions in the Markov decision process has been investigated when
the equivocation of states given system inputs and outputs is imposed as the privacy-
preserving objective [26]. In [27–30], the notion of differential privacy [31] is introduced in
the multi-agent control, where each agent adds privacy noise to his states before sharing
them with other agents while guaranteeing the whole control system network to operate
well. The reward function is a succinct description of the control task and is strongly
relevant with the agent actions. The DRL-learned value function can reveal the privacy-
sensitive reward function. Regarding this privacy problem, functional noise is added
to the value function in the Q-learning such that the neighborhood reward functions
are indistinguishable [32]. As a promising computational secrecy technology, labeled
homomorphic encryption has been employed to encrypt the private states, gain matrices,
control inputs, and intermediary steps in the cloud-outsourced LQG [33].

2. Introduction
2.1. Motivation

In this paper, we consider the agent identity privacy problem in the LQG control,
which is motivated by the inverse reinforcement learning (IRL). IRL algorithms [34] can
reconstruct the reward functions of agents and therefore can also be maliciously exploited
to identify the agents. Similar to many other privacy problems in the big data era, such as
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the smart meter privacy problem, the agent identity of a control system is privacy-sensitive.
When the agent identity is leaked, an adversary can further employ the corresponding
optimal attacks on the control system.

2.2. Content and Contribution

We model the agent identity privacy problem as an adversarial binary hypothesis
testing and employ the Kullback–Leibler divergence between the probability distributions
of environment state sequences under different hypotheses as the privacy risk measure. We
formulate a novel optimization problem and study the optimal privacy-preserving LQG
policy. This work is compared with the previous research on privacy problems in Table 1.

Table 1. Comparison of research on privacy problems.

Private Information Privacy
Model/Measure Privacy Mechanism

[26] State Equivocation Privacy-preserving
policy design

[27–30] State Differential privacy Adding privacy noise
to state

[32] Reward function Differential privacy Adding privacy noise
to value function

[33] The whole LQG
system

Computational
secrecy

Labeled homomor-
phic encryption

This work Agent identity Kullback–Leibler
divergence

Privacy-preserving
policy design

The rest of this paper is organized as follows. In Section 3, we formulate the agent
identity privacy problem in the LQG control system. In Section 4, we optimize the deter-
ministic privacy-preserving LQG policy and give a sufficient condition for time-invariant
optimal deterministic policy in the asymptotic regime. In Section 5, we discuss the random
privacy-preserving LQG policy and show that the optimal linear Gaussian random policy
reduces to the optimal deterministic privacy-preserving LQG policy. In Section 6, we
present and analyze the numerical experiment results. Section 7 concludes this paper.

2.3. Notation

Unless otherwise specified, we denote a random scalar by a capital letter, e.g., X, its re-
alization by the corresponding lower case letter, e.g., x, the Gaussian distribution with mean
µ and variance σ2 by N (µ, σ2), the expectation operation by E(·), the Kullback–Leibler
divergence between two probability distributions by D(·||·), and the natural logarithm by
log(·).

3. Agent Identity Privacy Problem in LQG Control

We consider an N-step LQG control in the presence of an eavesdropper as shown in
Figure 1. There are two possible agents, Agent A and Agent B, which are with respect
to a hypothesis H = 0 and an alternative hypothesis H = 1. We assume that the agents
and the eavesdropper have perfect observations of the environment states. Based on
the intercepted state sequence, the eavesdropper makes a binary hypothesis testing (A
binary hypothesis is considered in this paper for simplification and can be extended to a
multi-hypothesis.) to identify the current agent, which results in an agent identity privacy
problem. To have a better understanding of the privacy problem, we give an example in
the emerging application of autonomous vehicle. An autonomous vehicle can be controlled
by a human driver (Agent A) or an autonomous driving system (Agent B). An adversary,
who can be a compromised manager of the vehicle to everything (V2X) network, has access
to the sensing data (environment state) of the autonomous vehicle and aims to attack the
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autonomous vehicle, e.g., to mislead the autonomous vehicle off the lane. To this end,
the adversary needs to first identify if the current driver is the autonomous driving system
by the intercepted sensing data sequence. The agent identity privacy problem commonly
exists in intelligent autonomous systems, e.g., unmanned aerial vehicles and robots, where
the autonomous control agents depending strongly on the sensing data are vulnerable to
injection attacks and therefore the agent identities are privacy-sensitive.

Environment

Agent A/B

State Action

Eavesdropper

Figure 1. LQG control in the presence of an eavesdropper.

The LQG control model for each agent is given as follows: For H = 0 or H = 1,
1 ≤ i ≤ N,

s(H)
i+1 = αs(H)

i + βa(H)
i + zi, (1)

a(H)
i = F(H)

i

(
s(H)

i

)
, (2)

r(H)
i = R(H)

(
s(H)

i , a(H)
i

)
= −θ(H)

(
s(H)

i

)2
− φ(H)

(
a(H)

i

)2
, (3)

S(H)
1 ∼ b(H)

1 , N (µ1, σ2
1 ), (4)

Zi ∼ N (0, ω2), (5)

where the parameters α 6= 0, β 6= 0, θ(H) > 0, φ(H) > 0, µ1, σ2
1 > 0, and ω2 > 0 are given.

The initial environment state s(H)
1 is randomly generated following an independent Gaussian

distribution. In the i-th time step, on observing the environment state s(H)
i , the agent with

respect to the hypothesis H employs the control policy F(H)
i to (randomly) determine an

action a(H)
i as (2); the instantaneous control reward r(H)

i is jointly determined by the current

state s(H)
i and action a(H)

i as (3); the next state s(H)
i+1 is jointly determined by the current

state s(H)
i , the current action a(H)

i , and zi randomly generated following an independent
zero-mean Gaussian distribution as (1). In the standard LQG problem, the agent with
respect to the hypothesis H only aims to maximize the expected accumulative reward by
optimizing the control policies F(H)

1:N :

F(H)∗
1:N = arg max

F(H)
1:N

E
(

N

∑
i=1

R(H)
(

S(H)
i , A(H)

i

))
. (6)
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The optimal LQG control policy has been well established [35] and can be described
as follows. For H = 0 or H = 1, 1 ≤ i ≤ N,

θ̃
(H)
N+1 = 0, (7)

θ̃
(H)
i = L(H)

(
θ̃
(H)
i+1

)
= θ(H) + θ̃

(H)
i+1 α2 −

(
θ̃
(H)
i+1

)2
α2β2

φ(H) + θ̃
(H)
i+1 β2

> 0, (8)

κ
(H)∗
i = −

θ̃
(H)
i+1 αβ

φ(H) + θ̃
(H)
i+1 β2

, (9)

F(H)∗
i

(
s(H)

i

)
= κ

(H)∗
i s(H)

i . (10)

For H = 0 or 1, it can be easily verified that the mapping L(H) is order-preserving,
i.e., L(H)(x) ≤ LH(x′) if 0 ≤ x ≤ x′. From the Kleene’s fixed point theorem [36], it
follows that

θ̃(H) = limN→∞ L(H)(L(H)(· · · (L(H)(L(H)︸ ︷︷ ︸
N iterations

(θ̃
(H)
N+1))) · · · ))

= θ(H) + θ̃(H)α2 − (θ̃(H))
2
α2β2

φ(H)+θ̃(H)β2

=

√
(φ(H)−θ(H)β2−φ(H)α2)2+4θ(H)φ(H)β2−(φ(H)−θ(H)β2−φ(H)α2)

2β2 .

(11)

Therefore, if we consider the asymptotic regime as N → ∞, the optimal control polices are
time-invariant: For H = 0 or H = 1, i ≥ 1,

κ(H)∗ = − θ̃(H)αβ

φ(H) + θ̃(H)β2
, (12)

F(H)∗
i

(
s(H)

i

)
= κ(H)∗s(H)

i . (13)

For the agent identity privacy problem, we assume that the eavesdropper collects a
sequence of environment states and carries out a binary hypothesis testing on the agent iden-
tity. Thus, the privacy risk can be measured by the hypothesis testing performance. In infor-
mation theory, Kullback–Leibler divergence measures the “distance” between two proba-

bility distributions. When the value of the Kullback–Leibler divergence D
(

p
S(1)

1:N

∣∣∣∣p
S(0)

1:N

)
is

smaller, the random environment state sequences S(0)
1:N and S(1)

1:N are statistically “closer” to
each other and it is more difficult for the eavesdropper to identify the current agent, i.e., a
poorer hypothesis testing performance and a lower privacy risk. In this paper, we employ

the Kullback–Leibler divergence D
(

p
S(1)

1:N

∣∣∣∣p
S(0)

1:N

)
as the privacy risk measure.

Furthermore, we assume that both agents aim to improve their own expected accumu-
lative rewards while only Agent B considers to reduce the privacy risk. This assumption
makes sense in a lot of scenarios. In the aforementioned autonomous vehicle example,
Agent A denotes the human driver and does not need to change the optimal driving style;
Agent B denotes the autonomous driving system and can be reconfigured with respect
to the human’s optimal driving style to improve the driving efficiency and to reduce the
privacy risk. Under the assumption, Agent A takes the optimal LQG control policy as
described by (7)–(10) with H = 0. In the following, we focus on the privacy-preserving
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LQG control policy of Agent B. Taking into account the two design objectives of Agent B,
we formulate the following optimization problem:

F(1)?
1:N = arg max

F(1)
1:N

E
(

N

∑
i=1

R(1)
(

S(1)
i , A(1)

i

))
− λD

(
p

S(1)
1:N

∣∣∣∣p
S(0)∗

1:N

)
, (14)

where λ ≥ 0 denotes the privacy-preserving design weight; the random environment state
sequence S(0)∗

1:N is induced by the optimal LQG policy F(0)∗
1:N of Agent A. It follows from

the chain rule of Kullback–Leibler divergence and the Markovian property of the state
sequences that the privacy risk measure can be further decomposed as

D
(

p
S(1)

1:N

∣∣∣∣p
S(0)∗

1:N

)
= D

(
p

S(1)
1

∣∣∣∣p
S(0)

1

)
+ ∑N

i=2 D
(

p
S(1)

i

∣∣S(1)
i−1

∣∣∣∣p
S(0)∗

i

∣∣S(0)∗
i−1

)
= ∑N

i=2 D
(

p
S(1)

i

∣∣S(1)
i−1

∣∣∣∣p
S(0)∗

i

∣∣S(0)∗
i−1

)
.

(15)

It is obvious that the optimal privacy-preserving LQG control policy of Agent B
depends on the value of λ. In the following two remarks, the optimal privacy-preserving
LQG control policies are characterized for two special cases, λ = 0 and λ→ ∞, respectively.

Remark 1. When λ = 0, Agent B only aims to maximize the expected accumulative reward
E
(

∑N
i=1 R(1)

(
S(1)

i , A(1)
i

))
. In this case, the optimal privacy-preserving LQG policy of Agent B

reduces to the optimal LQG policy of Agent B, i.e., F(1)?
i

(
s(1)i

)
= F(1)∗

i

(
s(1)i

)
= κ

(1)∗
i s(1)i for all

1 ≤ i ≤ N.

Remark 2. When λ → ∞, Agent B only aims to minimize the privacy risk, which is measured

by the Kullback–Leibler divergence D
(

p
S(1)

1:N

∣∣∣∣p
S(0)∗

1:N

)
. In this case, the optimal privacy-preserving

LQG policy of Agent B reduces to the optimal LQG policy of Agent A, i.e., F(1)?
i

(
s(1)i

)
=

F(0)∗
i

(
s(1)i

)
= κ

(0)∗
i s(1)i for all 1 ≤ i ≤ N, and the minimum privacy risk is achieved, i.e.,

D
(

p
S(1)?

1:N

∣∣∣∣p
S(0)∗

1:N

)
= 0.

When 0 < λ < ∞, we characterize the optimal privacy-preserving LQG control
policies of Agent B in different forms in the following sections. For ease of reading, we list
the parameters and their meanings in Table 2.
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Table 2. Parameters.

Parameter Meaning Parameter Meaning

N Number of steps H Agent identity
binary hypothesis

α, β

Time-invariant linear
coefficients in the
linear Gaussian
dynamic model

zi, ω2

Independent
zero-mean

Gaussian-distributed
disturbance noise in

the i-th step and
its variance

s(H)
i

State of the agent (H)
in the i-th step a(H)

i
Action of the agent
(H) in the i-th step

F(H)
i

Policy of the agent
(H) in the i-th step κ

(H)
i

State feedback gain of
a linear policy of the

agent (H) in the
i-th step

r(H)
i

Instantaneous control
reward of the agent
(H) in the i-th step

R(H), θ(H), φ(H)

Time-invariant
instantaneous

quadratic control
reward function of
the agent (H) and

its coefficients

µ1, σ2
1

Mean and variance of
the

Gaussian-distributed
initial state

λ
Privacy-preserving

design weight

4. Deterministic Privacy-Preserving LQG Policy

When the privacy risk is not considered, as shown in (10), the optimal LQG control
policy of Agent B is a deterministic linear mapping. In this section, we study the optimal
deterministic privacy-preserving LQG policy of Agent B. Therefore, the policy of Agent B
can be specified as: For 1 ≤ i ≤ N,

F(1)
i : R→ R. (16)

In the following theorem, we characterize the optimal deterministic privacy-preserving
LQG policy of Agent B.

Theorem 1. At each step, the optimal deterministic privacy-preserving LQG policy of Agent B
with respect to the optimization problem (14) is a linear mapping as: For 1 ≤ i ≤ N,

θ̂
(1)
N+1 = 0, (17)

θ̂
(1)
i = JN+1−i

(
θ̂
(1)
i+1

)
= θ(1) + θ̂

(1)
i+1α2 +

λ

2ω2 β2
(

κ
(0)∗
i

)2
−

(
λ

2ω2 β2κ
(0)∗
i − θ̂

(1)
i+1αβ

)2

φ(1) + θ̂
(1)
i+1β2 + λ

2ω2 β2
> 0, (18)

κ
(1)?
i =

λ
2ω2 β2κ

(0)∗
i − θ̂

(1)
i+1αβ

φ(1) + θ̂
(1)
i+1β2 + λ

2ω2 β2
, (19)

F(1)?
i

(
s(1)i

)
= κ

(1)?
i s(1)i . (20)
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Then, the maximum achievable weighted design objective of Agent B is

max
F(1)

1:N

E
(

N

∑
i=1

R(1)
(

S(1)
i , A(1)

i

))
− λD

(
p

S(1)
1:N

∣∣∣∣p
S(0)∗

1:N

)
= −θ̂

(1)
1 (µ2

1 + σ2
1 )−ω2

N−1

∑
i=1

θ̂
(1)
i+1. (21)

The proof of Theorem 1 is presented in Appendix A.

Remark 3. When λ = 0, it is easy to show that κ
(1)?
i = κ

(1)∗
i for all 1 ≤ i ≤ N, i.e., the optimal

deterministic privacy-preserving LQG policy is consistent with the optimal privacy-preserving LQG
policy shown in Remark 1.

Remark 4. It is easy to show that limλ→∞ κ
(1)?
i = κ

(0)∗
i for all 1 ≤ i ≤ N, i.e., the optimal

deterministic privacy-preserving LQG policy is consistent with the optimal privacy-preserving LQG
policy shown in Remark 2.

Remark 5. Although the objective in (14) is a linear combination of the expected accumulative
reward and the privacy risk measured by the Kullback–Leibler divergence, the optimal linear
coefficient κ

(1)?
i is a non-linear function of κ

(1)∗
i (the optimal linear coefficient with respect to only

maximize the expected accumulative reward) and κ
(0)∗
i (the optimal linear coefficient with respect to

only minimize the privacy risk) when we consider the deterministic privacy-preserving LQG control
policy of Agent B.

Remark 6. When Agent B employs the optimal deterministic privacy-preserving LQG policy at
each step, the random state-action sequence is jointly Gaussian distributed.

In the asymptotic regime as N → ∞, the optimal LQG control policy is time-invariant.
In this case, the design of the optimal policy becomes an easier task. Theorem 2 gives a
sufficient condition such that the optimal deterministic privacy-preserving LQG policy of
Agent B is time-invariant in the asymptotic regime.

Theorem 2. When the model parameters satisfy the following inequality∣∣∣∣ λ
2ω2 β4

(
κ(0)∗

)2
φ(1) −

(
φ(1)α2 + λ

2ω2 β2
(

α + βκ(0)∗
)2
)(

φ(1) + λ
2ω2 β2

)∣∣∣∣(
φ(1) + λ

2ω2 β2
)2 < 1, (22)

the optimal deterministic privacy-preserving LQG policy of Agent B is time-invariant in the
asymptotic regime. More specifically, JN(JN−1(· · · (J2(J1(θ̂

(1)
N+1))) · · · )) converges to the unique

fixed point θ̂(1) as

θ̂(1) = lim
N→∞

JN(JN−1(· · · (J2(J1(θ̂
(1)
N+1))) · · · ))

= θ(1) + α2θ̂(1) +
λ

2ω2 β2
(

κ(0)∗
)2
−

(
λ

2ω2 β2κ(0)∗ − αβθ̂(1)
)2

φ(1) + β2θ̂(1) + λ
2ω2 β2

; (23)
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and the time-invariant optimal deterministic privacy-preserving LQG policy of Agent B can be
described by

κ(1)? =
λ

2ω2 β2κ(0)∗ − θ̂(1)αβ

φ(1) + θ̂(1)β2 + λ
2ω2 β2

, (24)

F(1)?
i

(
s(1)i

)
= κ(1)?s(1)i . (25)

Under this condition, the asymptotic weighted design object rate of Agent B achieved by the time-
invariant optimal deterministic privacy-preserving LQG policy is

lim
N→∞

1
N

max
F(1)

1:N

E
(

N

∑
i=1

R(1)
(

S(1)
i , A(1)

i

))
− λD

(
p

S(1)
1:N

∣∣∣∣p
S(0)∗

1:N

)
= −ω2θ̂(1). (26)

The proof of Theorem 2 is given in Appendix B.

5. Random Privacy-Preserving LQG Policy

As shown in Theorem 1, the optimal deterministic privacy-preserving LQG policy of
Agent B is a linear mapping. In this section, we first discuss the optimal random privacy-
preserving LQG policy and then consider a particular random policy by extending the
deterministic linear mapping to the linear Gaussian random policy for Agent B. Here,
the random policy of Agent B can be specified as: For 1 ≤ i ≤ N,

F(1)
i : R×R→ R≥0. (27)

With slight abuse of notation, we denote the condition probability (density) of taking the ac-
tion a(1)i ∈ R given the state s(1)i ∈ R and the random policy F(1)

i by F(1)
i

(
a(1)i

∣∣∣s(1)i

)
∈ R≥0.

It can be easily shown that the optimal random privacy-preserving LQG policy
of Agent B in the final step F(1)?

N reduces to the deterministic linear mapping in (A2).
For 1 ≤ i ≤ N − 1, it follows from the backward dynamic programming that the optimal
random privacy-preserving LQG policy of Agent B in the i-th step does not reduce to
a deterministic linear mapping in general. That is because the conditional probability
distribution p

S(1)
i+1

∣∣S(1)
i

given a random policy F(1)
i is a Gaussian mixture model and then

the Kullback–Leibler divergence D
(

p
S(1)

i+1

∣∣S(1)
i

∣∣∣∣p
S(0)∗

i+1

∣∣S(0)∗
i

)
between a Gaussian mixture

model and a Gaussian distribution generally does not reduce to the quadratic mean of
A(1)

i − κ
(0)∗
i S(1)

i as (A5). To the best of our knowledge, there is no analytically tractable
formula for Kullback–Leibler divergence between Gaussian mixture models and only ap-
proximations are available [37–39]. Therefore, we do not give the close-form solution of the
optimal random privacy-preserving LQG policy in this paper.

In what follows, we focus on the linear Gaussian random policy: For 1 ≤ i ≤ N,

F(1)
i

(
s(1)i

)
= κ

(1)
i s(1)i + w(1)

i , (28)

where w(1)
i is the realization of an independent zero-mean Gaussian random process noise

W(1)
i ∼ N (0, δ2

i ). Thus, a linear Gaussian random policy F(1)
i can be completely described

by the parameters
(

κ
(1)
i , δ2

i

)
. Theorem 3 characterizes the optimal linear Gaussian random

privacy-preserving LQG policy of Agent B.
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Theorem 3. At each step, the optimal linear Gaussian random privacy-preserving LQG policy of
Agent B with respect to the optimization problem (14) is the same deterministic linear mapping as
in Theorem 1.

The proof of Theorem 3 is presented in Appendix C.

Remark 7. Adding an independent zero-mean Gaussian random process noise to the linear mapping
of the optimal deterministic privacy-preserving LQG policy cannot improve the performance of
Agent B.

6. Numerical Experiments

6.1. Convergence of the Sequence
(

θ̂
(1)
N+1, θ̂

(1)
N , θ̂

(1)
N−1, . . .

)
When the constraint (22) in Theorem 2 is satisfied, we first illustrate the convergence

of the sequence
(

θ̂
(1)
N+1, θ̂

(1)
N , θ̂

(1)
N−1, . . .

)
. In addition to the default model parameters in

Table 3, we set θ(1) = 8, φ(1) = 1, and let the privacy-preserving design weight λ = 1,
5 or 10. By using these parameters, it can be easily verified that the constraint (22) is
satisfied. Figure 2 shows that θ̂

(1)
N+1−k = Jk(Jk−1(· · · (J2(J1(θ̂

(1)
N+1))) · · · )) converges after

k = 20 iterations for different values of λ. Furthermore, different convergence patterns can
be observed for different values of λ.

Table 3. Default model parameters.

Parameter µ1 σ2
1 α β ω2 θ(0) φ(0)

Value 1 1 1 0.5 0.5 1 16

0 2 4 6 8 10 12 14 16 18 20

0

5

10

15

 = 1

 = 5

 = 10

Figure 2. For λ = 1, 5 or 10, the convergence of θ̂
(1)
N+1−k = Jk(Jk−1(· · · (J2(J1(θ̂

(1)
N+1))) · · · )).

6.2. Impact of the Privacy-Preserving Design Weight λ

Here, we show the impact of the privacy-preserving design weight λ on the trade-off
between the control reward of Agent B and the privacy risk. We use the same parameters
as in Section 6.1, but allow 0 ≤ λ ≤ 10,000. Then, Theorem 2 is applicable and therefore
the optimal deterministic privacy-preserving LQG policy of Agent B is time-invariant in
the asymptotic regime. Figures 3 and 4 show that both the asymptotic average control
reward limN→∞

1
NE
(

∑N
i=1 R(1)

(
S(1)?

i , A(1)?
i

))
and the asymptotic average privacy risk

limN→∞
1
ND
(

p
S(1)?

1:N

∣∣∣∣p
S(0)∗

1:N

)
achieved by the time-invariant optimal deterministic privacy-

preserving LQG policy of Agent B decrease as λ increases, i.e., the control reward of Agent
B is degraded while the privacy is enhanced. When the privacy risk is not considered,
the best control reward of Agent B is achieved at the cost of the highest privacy risk.
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consider privacy

Figure 3. When 0 ≤ λ ≤ 10,000, comparison of the asymptotic average control reward

limN→∞
1
NE
(

∑N
i=1 R(1)

(
S(1)∗

i , A(1)∗
i

))
achieved by the time-invariant optimal LQG policy of Agent

B and the asymptotic average control reward limN→∞
1
NE
(

∑N
i=1 R(1)

(
S(1)?

i , A(1)?
i

))
achieved by the

time-invariant optimal deterministic privacy-preserving LQG policy of Agent B.

0 2000 4000 6000 8000 10000
0

0.05

0.1

0.15

0.2

0.25

without privacy

consider privacy (simulation)

consider privacy

Figure 4. When 0 ≤ λ ≤ 10,000, comparison of the asymptotic average privacy risk

limN→∞
1
ND
(

p
S(1)∗

1:N

∣∣∣∣p
S(0)∗

1:N

)
achieved by the time-invariant optimal LQG policy of Agent B and the

asymptotic average privacy risk limN→∞
1
ND
(

p
S(1)?

1:N

∣∣∣∣p
S(0)∗

1:N

)
achieved by the time-invariant optimal

deterministic privacy-preserving LQG policy of Agent B.

In addition to the analytical results, we also present the simulation results by consid-
ering privacy in Figures 3 and 4. Given 0 ≤ λ ≤ 10,000, we employ the corresponding
time-invariant optimal deterministic privacy-preserving LQG policy of Agent B and run
the 10,000-step privacy-preserving LQG control with 100 randomly generated initial states.
Then, the average control reward and the average privacy risk are evaluated and compared
with the analytical results of asymptotic average control reward and asymptotic average
privacy risk, respectively. As shown in Figures 3 and 4, the simulation results match quite
well with the analytical results, which validates our analytical results.

6.3. Impact of Parameter θ(1)

Here, we study the impact of the parameter θ(1) on the control reward of Agent
B and the privacy risk. In addition to the default model parameters in Table 3, we set
φ(1) = φ(0) = 16 and allow 0.01 ≤ θ(1) ≤ 8, λ = 0 (without privacy), 10, 100, 1000
or 10,000. It can be verified that Theorem 2 holds for those model parameters. For all
0.01 ≤ θ(1) ≤ 8 and by increasing the value of λ, Figures 5 and 6 show a trade-off between
the control reward of Agent B and the privacy risk, which is consistent with the previous
observations. For λ = 0, 10, 100, 1000 or 10,000, Figure 5 shows that the asymptotic average
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control reward of Agent B decreases as θ(1) increases. This is reasonable since −θ(1) is the
quadratic coefficient in the instantaneous reward function R(1). For λ = 0, 10, 100, 1000 or
10,000, Figure 6 shows that the asymptotic average privacy risk has a pattern to decrease
first, then to increase, and to achieve the minimum value 0 when θ(1) = θ(0) = 1. When
θ(1) = θ(0) = 1, both agents have the same instantaneous reward function and employ
the same optimal LQG control policy, which leads to the same state sequence distribution
under both hypotheses and the minimum value 0 of the Kullback–Leibler divergence.
As θ(1) deviates from the value of θ(0), the agents have more different instantaneous reward
functions, which lead to more different state sequence distributions under both hypotheses
and a larger value of the Kullback–Leibler divergence.

0 1 2 3 4 5 6 7 8
-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

without privacy

consider privacy &  = 10

consider privacy &  = 100

consider privacy &  = 1000

consider privacy &  = 10000

Figure 5. For 0.01 ≤ θ(1) ≤ 8 and λ = 0 (without privacy), 10, 100, 1000 or 10,000, compari-

son of the asymptotic average control reward limN→∞
1
NE
(

∑N
i=1 R(1)

(
S(1)∗

i , A(1)∗
i

))
achieved by

the time-invariant optimal LQG policy of Agent B and the asymptotic average control reward

limN→∞
1
NE
(

∑N
i=1 R(1)

(
S(1)?

i , A(1)?
i

))
achieved by the time-invariant optimal deterministic privacy-

preserving LQG policy of Agent B.

0 1 2 3 4 5 6 7 8
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

without privacy

consider privacy &  = 10

consider privacy &  = 100

consider privacy &  = 1000

consider privacy &  = 10000

Figure 6. For 0.01 ≤ θ(1) ≤ 8 and λ = 0 (without privacy), 10, 100, 1000 or 10,000, comparison of the

asymptotic average privacy risk limN→∞
1
ND
(

p
S(1)∗

1:N

∣∣∣∣p
S(0)∗

1:N

)
achieved by the time-invariant optimal

LQG policy of Agent B and the asymptotic average privacy risk limN→∞
1
ND
(

p
S(1)?

1:N

∣∣∣∣p
S(0)∗

1:N

)
achieved

by the time-invariant optimal deterministic privacy-preserving LQG policy of Agent B.

6.4. Impact of Parameter φ(1)

Here, we show the impact of the parameter φ(1) on the control reward of Agent
B and the privacy risk. In addition to the default model parameters in Table 3, we set
θ(1) = θ(0) = 1 and allow 0.01 ≤ φ(1) ≤ 40, λ = 0 (without privacy), 10, 100, 1000 or 10,000.
It can be verified that Theorem 2 holds for those model parameters. For all 0.01 ≤ φ(1) ≤ 40
and by increasing the value of λ, Figures 7 and 8 also show a trade-off between the control
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reward of Agent B and the privacy risk. For λ = 0, 10, 100, 1000 or 10,000, Figure 7 shows
that the asymptotic average control reward of Agent B decreases as φ(1) increases. This is
because −φ(1) is the other quadratic coefficient in the instantaneous reward function R(1).
For λ = 0, 10, 100, 1000 or 10,000, Figure 8 shows that the asymptotic average privacy risk
has a similar pattern to decrease first, then to increase, and to achieve the minimum value 0
when φ(1) = φ(0) = 16. This pattern can be similarly explained as Section 6.3.

0 5 10 15 20 25 30 35 40
-8

-7

-6

-5

-4

-3

-2

-1

0

without privacy

consider privacy &  = 10

consider privacy &  = 100

consider privacy &  = 1000

consider privacy &  = 10000

Figure 7. For 0.01 ≤ φ(1) ≤ 40 and λ = 0 (without privacy), 10, 100, 1000 or 10,000, compari-

son of the asymptotic average control reward limN→∞
1
NE
(

∑N
i=1 R(1)

(
S(1)∗

i , A(1)∗
i

))
achieved by

the time-invariant optimal LQG policy of Agent B and the asymptotic average control reward

limN→∞
1
NE
(

∑N
i=1 R(1)

(
S(1)?

i , A(1)?
i

))
achieved by the time-invariant optimal deterministic privacy-

preserving LQG policy of Agent B.

0 5 10 15 20 25 30 35 40
0
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0.1

0.15

0.2

0.25

without privacy

consider privacy &  = 10

consider privacy &  = 100

consider privacy &  = 1000

consider privacy &  = 10000

Figure 8. For 0.01 ≤ φ(1) ≤ 40 and λ = 0 (without privacy), 10, 100, 1000 or 10,000, comparison

of the asymptotic average privacy risk limN→∞
1
ND
(

p
S(1)∗

1:N

∣∣∣∣p
S(0)∗

1:N

)
achieved by the time-invariant

optimal LQG policy of Agent B and the asymptotic average privacy risk limN→∞
1
ND
(

p
S(1)?

1:N

∣∣∣∣p
S(0)∗

1:N

)
achieved by the time-invariant optimal deterministic privacy-preserving LQG policy of Agent B.

6.5. Impact of Parameter θ(0)

By fixing θ(1) = 1 and φ(1) = φ(0) = 16, we study the impact of the parameter θ(0)

on the control reward of Agent B and the privacy risk. In addition to the default model
parameters in Table 3, we allow 0.01 ≤ θ(0) ≤ 8 and λ = 0 (without privacy), 10, 100,
1000 or 10,000. It can be verified that Theorem 2 holds for those model parameters. For all
0.01 ≤ θ(0) ≤ 8 and by increasing the value of λ, Figures 9 and 10 show a trade-off between
the control reward of Agent B and the privacy risk. For λ = 0, 10, 100, 1000 or 10,000,
Figures 9 and 10 show that the asymptotic average control reward of Agent B achieves the
maximum value while the asymptotic average privacy risk achieves the minimum value
0 when θ(1) = θ(0) = 1. In this case, both agents have the same instantaneous reward
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function and employ the same optimal LQG control policy, which maximizes their control
rewards, leads to the same state sequence distribution under both hypotheses, and therefore
achieves the minimum value 0 of the Kullback–Leibler divergence.

0 1 2 3 4 5 6 7 8
-8

-7.5

-7

-6.5

-6
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-4

without privacy
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consider privacy &  = 100

consider privacy &  = 1000

consider privacy &  = 10000

Figure 9. For θ(1) = 1, φ(1) = φ(0) = 16, 0.01 ≤ θ(0) ≤ 8, and λ = 0 (without privacy), 10, 100, 1000 or

10,000, comparison of the asymptotic average control reward limN→∞
1
NE
(

∑N
i=1 R(1)

(
S(1)∗

i , A(1)∗
i

))
achieved by the time-invariant optimal LQG policy of Agent B and the asymptotic average control

reward limN→∞
1
NE
(

∑N
i=1 R(1)

(
S(1)?

i , A(1)?
i

))
achieved by the time-invariant optimal deterministic

privacy-preserving LQG policy of Agent B.
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0
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consider privacy &  = 10000

Figure 10. For θ(1) = 1, φ(1) = φ(0) = 16, 0.01 ≤ θ(0) ≤ 8, and λ = 0 (without privacy), 10, 100, 1000

or 10,000, comparison of the asymptotic average privacy risk limN→∞
1
ND
(

p
S(1)∗

1:N

∣∣∣∣p
S(0)∗

1:N

)
achieved

by the time-invariant optimal LQG policy of Agent B and the asymptotic average privacy risk

limN→∞
1
ND
(

p
S(1)?

1:N

∣∣∣∣p
S(0)∗

1:N

)
achieved by the time-invariant optimal deterministic privacy-preserving

LQG policy of Agent B.

6.6. Impact of Parameter φ(0)

By fixing φ(1) = 16 and θ(1) = θ(0) = 1, we study the impact of the parameter φ(0)

on the control reward of Agent B and the privacy risk. In addition to the default model
parameters in Table 3, we allow 0.01 ≤ φ(0) ≤ 40 and λ = 0 (without privacy), 10, 100, 1000
or 10,000. From Figures 11 and 12, we have similar observations of the impact of φ(0) as in
Section 6.5. These observations here can be similarly explained as well.
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Figure 11. For θ(1) = θ(0) = 1, φ(1) = 16, 0.01 ≤ φ(0) ≤ 40, and λ = 0 (with-
out privacy), 10, 100, 1000 or 10,000, comparison of the asymptotic average control reward

limN→∞
1
NE
(

∑N
i=1 R(1)

(
S(1)∗

i , A(1)∗
i

))
achieved by the time-invariant optimal LQG policy of Agent

B and the asymptotic average control reward limN→∞
1
NE
(

∑N
i=1 R(1)

(
S(1)?

i , A(1)?
i

))
achieved by the

time-invariant optimal deterministic privacy-preserving LQG policy of Agent B.
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Figure 12. For θ(1) = θ(0) = 1, φ(1) = 16, 0.01 ≤ φ(0) ≤ 40, and λ = 0 (without privacy), 10, 100, 1000

or 10,000, comparison of the asymptotic average privacy risk limN→∞
1
ND
(

p
S(1)∗

1:N

∣∣∣∣p
S(0)∗

1:N

)
achieved

by the time-invariant optimal LQG policy of Agent B and the asymptotic average privacy risk

limN→∞
1
ND
(

p
S(1)?

1:N

∣∣∣∣p
S(0)∗

1:N

)
achieved by the time-invariant optimal deterministic privacy-preserving

LQG policy of Agent B.

7. Conclusions

In this paper, we consider the agent identity privacy problem in the scalar LQG control.
Regarding this novel privacy problem, we model it as an adversarial binary hypothesis
testing and employ the Kullback–Leibler divergence to measure the privacy risk. We then
formulate a novel privacy-preserving LQG control optimization by taking into account both
the accumulative control reward of Agent B and the privacy risk. We prove that the optimal
deterministic privacy-preserving LQG control policy of Agent B is a linear mapping, which
is consistent with the standard LQG. We further show that the random policy formulated
by adding an independent Gaussian random process noise to the optimal deterministic
privacy-preserving LQG policy cannot improve the performance. We also give a sufficient
condition to guarantee the time-invariant optimal deterministic privacy-preserving LQG
policy in the asymptotic regime.

This research can be extended in our future works. Studying the general random
policy of Agent B is an interesting extension. This theoretic study can be extended to
develop privacy-preserving reinforcement learning algorithms. The problem can also be
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extended and formulated as a non-cooperative game of multiple agents with conflicting
objectives, where some agents only aim to optimize their own accumulative control rewards
while the other agents consider the agent identity privacy risk in addition to their own
accumulative control rewards.
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Appendix A

Proof of Theorem 1. The proof is based on the backward dynamic programming.
We first consider the sub-problem of the final step. Given a probability distribution

p
S(1)

N
, the final step optimization problem of the deterministic control policy F(1)

N is

F(1)?
N = arg max

F(1)
N

E
(

R(1)
(

S(1)
N , A(1)

N

))
= arg max

F(1)
N
−θ(1)E

(
S(1)

N

)2
− φ(1)E

(
F(1)

N

(
S(1)

N

))2
.

(A1)

Since p
S(1)

N
is given, the first term −θ(1)E

(
S(1)

N

)2
is fixed. Note the upper bound on the

second term −φ(1)E
(

F(1)
N

(
S(1)

N

))2
≤ 0. The upper bound can be achieved by the optimal

deterministic privacy-preserving LQG policy:

F(1)?
N

(
s(1)N

)
= κ

(1)?
N s(1)N = 0, (A2)

where

κ
(1)?
N =

λ
2ω2 β2κ

(0)∗
N − θ̂

(1)
N+1αβ

φ(1) + θ̂
(1)
N+1β2 + λ

2ω2 β2
= 0 = κ

(1)∗
N . (A3)

Then, the maximum achievable objective of the final step is

max
F(1)

N

E
(

R(1)
(

S(1)
N , A(1)

N

))
= −θ(1)E

(
S(1)

N

)2
= −θ̂

(1)
N E

(
S(1)

N

)2
. (A4)

We then consider the sub-problem from the (N − 1)-th step until the final step. Given
a probability distribution p

S(1)
N−1

and the optimal deterministic privacy-preserving LQG

policy in the final step F(1)?
N , the sub-optimization problem of the deterministic control

policy F(1)
N−1 is



Entropy 2022, 24, 856 17 of 22

F(1)?
N−1 = arg max

F(1)
N−1

E
(

∑N
i=N−1 R(1)

(
S(1)

i , A(1)
i

))
− λD

(
p

S(1)
N

∣∣S(1)
N−1

∣∣∣∣p
S(0)∗

N

∣∣S(0)∗
N−1

)
= arg max

F(1)
N−1
−θ(1)E

(
S(1)

N−1

)2
− φ(1)E

(
A(1)

N−1

)2
− θ̂

(1)
N E

(
S(1)

N

)2

−λD
(

p
S(1)

N

∣∣S(1)
N−1

∣∣∣∣p
S(0)∗

N

∣∣S(0)∗
N−1

)
= arg max

F(1)
N−1
−θ(1)E

(
S(1)

N−1

)2
− φ(1)E

(
F(1)

N−1

(
S(1)

N−1

))2
− θ̂

(1)
N E

(
S(1)

N

)2

−λE

log

1√
2πω2

exp

−
(

S(1)N −αS(1)N−1−βF(1)N−1

(
S(1)N−1

))2

2ω2


1√

2πω2
exp

−
(

S(1)N −αS(1)N−1−βκ
(0)∗
N−1S(1)N−1

)2

2ω2




= arg max

F(1)
N−1
−θ(1)E

(
S(1)

N−1

)2
− φ(1)E

(
F(1)

N−1

(
S(1)

N−1

))2

−θ̂
(1)
N E

(
αS(1)

N−1 + βF(1)
N−1

(
S(1)

N−1

)
+ ZN−1

)2

− λ
2ω2 β2E

(
F(1)

N−1

(
S(1)

N−1

)
− κ

(0)∗
N−1S(1)

N−1

)2

= arg max
F(1)

N−1
−
(

θ(1) + θ̂
(1)
N α2 + λ

2ω2 β2
(

κ
(0)∗
N−1

)2
)
E
(

S(1)
N−1

)2
− θ̂

(1)
N E(ZN−1)

2

−
(

φ(1) + θ̂
(1)
N β2 + λ

2ω2 β2
)
E
(

F(1)
N−1

(
S(1)

N−1

))2

−
(

2θ̂
(1)
N αβ− λ

ω2 β2κ
(0)∗
N−1

)
E
(

S(1)
N−1F(1)

N−1

(
S(1)

N−1

))
= arg max

F(1)
N−1

∫
R

[
−
(

φ(1) + θ̂
(1)
N β2 + λ

2ω2 β2
)(

F(1)
N−1

(
s(1)N−1

))2

−
(

2θ̂
(1)
N αβ− λ

ω2 β2κ
(0)∗
N−1

)
s(1)N−1F(1)

N−1

(
s(1)N−1

)]
p

S(1)
N−1

(
s(1)N−1

)
ds(1)N−1

=
∫
R arg max

F(1)
N−1

[
−
(

φ(1) + θ̂
(1)
N β2 + λ

2ω2 β2
)(

F(1)
N−1

(
s(1)N−1

))2

−
(

2θ̂
(1)
N αβ− λ

ω2 β2κ
(0)∗
N−1

)
s(1)N−1F(1)

N−1

(
s(1)N−1

)]
p

S(1)
N−1

(
s(1)N−1

)
ds(1)N−1.

(A5)

Since θ̂
(1)
N = θ(1) > 0, it follows that

−
(

φ(1) + θ̂
(1)
N β2 +

λ

2ω2 β2
)
< 0. (A6)

Given any s(1)N−1 ∈ R, the objective of the inner optimization in (A5) is a concave quadratic

function of F(1)
N−1(s

(1)
N−1). Therefore, we can obtain the optimal deterministic privacy-

preserving LQG policy as

F(1)?
N−1

(
s(1)N−1

)
= κ

(1)?
N−1s(1)N−1, (A7)

where

κ
(1)?
N−1 =

λ
2ω2 β2κ

(0)∗
N−1 − θ̂

(1)
N αβ

φ(1) + θ̂
(1)
N β2 + λ

2ω2 β2
. (A8)

By using the optimal deterministic policies F(1)?
N−1:N , the maximum achievable objective of

the sub-problem is

max
F(1)

N−1:N
E
(

∑N
i=N−1 R(1)

(
S(1)

i , A(1)
i

))
− λD

(
p

S(1)
N

∣∣S(1)
N−1

∣∣∣∣p
S(0)∗

N

∣∣S(0)∗
N−1

)
= −θ̂

(1)
N−1E

(
S(1)

N−1

)2
− θ̂

(1)
N E(ZN−1)

2.
(A9)
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The coefficient θ̂
(1)
N−1 can be specified as

θ̂
(1)
N−1 = θ(1) +

φ(1) θ̂
(1)
N α2 + λ

2ω2 β2
(

κ
(0)∗
N−1

)2
φ(1) + λ

2ω2 β2θ̂
(1)
N

(
α + βκ

(0)∗
N−1

)2

φ(1) + θ̂
(1)
N β2 + λ

2ω2 β2
. (A10)

It can be easily justified that θ̂
(1)
N−1 > 0 since θ̂

(1)
N > 0.

We now consider the sub-problem from the (N − 2)-th step until the final step. Given
a probability distribution p

S(1)
N−2

and the optimal deterministic privacy-preserving LQG

policies F(1)?
N−1:N , the sub-optimization problem of the deterministic control policy F(1)

N−2 is

F(1)?
N−2 = arg max

F(1)
N−2

E
(

∑N
i=N−2 R(1)

(
S(1)

i , A(1)
i

))
− λ ∑N

i=N−1 D
(

p
S(1)

i

∣∣S(1)
i−1

∣∣∣∣p
S(0)∗

i

∣∣S(0)∗
i−1

)
= arg max

F(1)
N−2
−θ(1)E

(
S(1)

N−2

)2
− φ(1)E

(
A(1)

N−2

)2
− θ̂

(1)
N−1E

(
S(1)

N−1

)2
− θ̂

(1)
N E(ZN−1)

2

−λD
(

p
S(1)

N−1

∣∣S(1)
N−2

∣∣∣∣p
S(0)∗

N−1

∣∣S(0)∗
N−2

)
= arg max

F(1)
N−2
−θ(1)E

(
S(1)

N−2

)2
− φ(1)E

(
F(1)

N−2

(
S(1)

N−2

))2

−θ̂
(1)
N−1E

(
αS(1)

N−2 + βF(1)
N−2

(
S(1)

N−2

)
+ ZN−2

)2

− λ
2ω2 β2E

(
F(1)

N−2

(
S(1)

N−2

)
− κ

(0)∗
N−2S(1)

N−2

)2
− θ̂

(1)
N E(ZN−1)

2

=
∫
R arg max

F(1)
N−2

[
−
(

φ(1) + θ̂
(1)
N−1β2 + λ

2ω2 β2
)(

F(1)
N−2

(
s(1)N−2

))2

−
(

2θ̂
(1)
N−1αβ− λ

ω2 β2κ
(0)∗
N−2

)
s(1)N−2F(1)

N−2

(
s(1)N−2

)]
p

S(1)
N−2

(
s(1)N−2

)
ds(1)N−2.

(A11)

Note that the objective functions in (A5) and (A11) have the same form. We have also
proved that θ̂

(1)
N−1 > 0. Therefore, we can use the same arguments to obtain the optimal

deterministic privacy-preserving LQG policy as

F(1)?
N−2

(
s(1)N−2

)
= κ

(1)?
N−2s(1)N−2, (A12)

where

κ
(1)?
N−2 =

λ
2ω2 β2κ

(0)∗
N−2 − θ̂

(1)
N−1αβ

φ(1) + θ̂
(1)
N−1β2 + λ

2ω2 β2
, (A13)

the maximum achievable objective of the sub-problem as

max
F(1)

N−2:N
E
(

∑N
i=N−2 R(1)

(
S(1)

i , A(1)
i

))
− λ ∑N

i=N−1 D
(

p
S(1)

i

∣∣S(1)
i−1

∣∣∣∣p
S(0)∗

i

∣∣S(0)∗
i−1

)
= −θ̂

(1)
N−2E

(
S(1)

N−2

)2
− θ̂

(1)
N−1E(ZN−2)

2 − θ̂
(1)
N E(ZN−1)

2,
(A14)

and θ̂
(1)
N−2 > 0.

We can further prove the optimal deterministic privacy-preserving LQG policies in
the remaining steps and the maximum achievable weighted design objective of Agent B in
Theorem 1 using the same arguments.

Appendix B

Proof of Theorem 2. The proof is based on the optimal deterministic privacy-preserving
LQG policy of Agent B in Theorem 1.
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For all 1 ≤ i ≤
⌈

N
2

⌉
and x ≥ 0, let

J(x) = lim
N→∞

JN+1−i(x) = θ(1) + α2x +
λ

2ω2 β2
(

κ(0)∗
)2
−

(
λ

2ω2 β2κ(0)∗ − αβx
)2

φ(1) + β2x + λ
2ω2 β2

, (A15)

where the second equality follows from

limN→∞ κ
(0)∗
i = limN→∞−

θ̃
(0)
i+1αβ

φ(0)+θ̃
(0)
i+1β2

= −

αβ limN→∞ L(0)(L(0)(· · · (L(0)(L(0)︸ ︷︷ ︸
N−i iterations

(θ̃
(0)
N+1)))··· ))

φ(0)+β2 limN→∞ L(0)(L(0)(· · · (L(0)(L(0)︸ ︷︷ ︸
N−i iterations

(θ̃
(0)
N+1)))··· ))

= − θ̃(0)αβ

φ(0)+θ̃(0)β2

= κ(0)∗.

(A16)

When the model parameters satisfy the condition in (22), J(x) is a contraction mapping,
i.e., there exists 0 < γ < 1 such that |J(x)− J(x′)| ≤ γ|x− x′| for all x ≥ 0 and x′ ≥ 0.
From the Banach’s fixed point theorem, there is a unique fixed point θ̂(1) with respect to the
contraction mapping J such that

θ̂(1) = limN→∞ JN(JN−1(· · · (J2(J1(θ̂
(1)
N+1))) · · · ))

= limN→∞ JN(JN−1(· · · (JN+2−d N
2 e(JN+1−d N

2 e(θ̂
(1)
d N

2 e+1
))) · · · ))

= limN→∞ J(J(· · · (J(J︸ ︷︷ ︸
d N

2 e iterations

(θ̂
(H)

d N
2 e+1

))) · · · ))

= θ(1) + α2θ̂(1) + λ
2ω2 β2

(
κ(0)∗

)2
−
(

λ
2ω2 β2κ(0)∗−αβθ̂(1)

)2

φ(1)+β2 θ̂(1)+ λ
2ω2 β2 .

(A17)

From (19)–(21), (A16), and (A17), it is easy to verify the time-invariant optimal de-
terministic privacy-preserving LQG policy of Agent B in (24)–(25) and the asymptotic
weighted design objective rate in (26).

Appendix C

Proof of Theorem 3. The proof is similar as that of Theorem 1.
We first consider the sub-problem of the final step. Given a probability distribution

p
S(1)

N
, the final step optimization problem of the linear Gaussian random policy F(1)

N with

parameters κ
(1)
N and δ2

N is(
κ
(1)?
N , δ2?

N

)
= arg max

κ
(1)
N ∈R,δ2

N∈R≥0
E
(

R(1)
(

S(1)
N , A(1)

N

))
= arg max

κ
(1)
N ∈R,δ2

N∈R≥0
−θ(1)E

(
S(1)

N

)2
− φ(1)E

(
A(1)

N

)2

= arg max
κ
(1)
N ∈R,δ2

N∈R≥0

(
−θ(1) − φ(1)

(
κ
(1)
N

)2
)
E
(

S(1)
N

)2
− φ(1)δ2

N .

(A18)

It is obvious the optimal parameters are κ
(1)?
N = 0 and δ2?

N = 0, i.e., the optimal linear
Gaussian random policy reduces to the optimal deterministic privacy-preserving LQG
policy in the final step.

Similarly, we then consider the sub-problem from the (N − 1)-th step until the final
step. Given a probability distribution p

S(1)
N−1

and the optimal linear Gaussian random policy
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in the final step F(1)?
N , the sub-optimization problem of the linear Gaussian random policy

F(1)
N−1 with parameters κ

(1)
N−1 and δ2

N−1 is(
κ
(1)?
N−1, δ2?

N−1

)
= arg max

κ
(1)
N−1∈R,δ2

N−1∈R≥0
E
(

∑N
i=N−1 R(1)

(
S(1)

i , A(1)
i

))
− λD

(
p

S(1)
N

∣∣S(1)
N−1

∣∣∣∣p
S(0)∗

N

∣∣S(0)∗
N−1

)
= arg max

κ
(1)
N−1∈R,δ2

N−1∈R≥0
−θ(1)E

(
S(1)

N−1

)2
− φ(1)E

(
A(1)

N−1

)2
− θ̂

(1)
N E

(
S(1)

N

)2

−λD
(

p
S(1)

N

∣∣S(1)
N−1

∣∣∣∣p
S(0)∗

N

∣∣S(0)∗
N−1

)
= arg max

κ
(1)
N−1∈R,δ2

N−1∈R≥0
−θ(1)E

(
S(1)

N−1

)2
− φ(1)E

(
A(1)

N−1

)2
− θ̂

(1)
N E

(
S(1)

N

)2

−λE

log

1√
2π(ω2+β2δ2

N−1)
exp

−
(

S(1)N −αS(1)N−1−βκ
(1)
N−1S(1)N−1

)2

2(ω2+β2δ2
N−1)


1√

2πω2
exp

−
(

S(1)N −αS(1)N−1−βκ
(0)∗
N−1S(1)N−1

)2

2ω2




= arg max

κ
(1)
N−1∈R,δ2

N−1∈R≥0
−θ(1)E

(
S(1)

N−1

)2
− φ(1)E

(
κ
(1)
N−1S(1)

N−1 + W(1)
N−1

)2

−θ̂
(1)
N E

(
αS(1)

N−1 + βκ
(1)
N−1S(1)

N−1 + βW(1)
N−1 + ZN−1

)2

− λ
2ω2 β2

(
κ
(1)
N−1 − κ

(0)∗
N−1

)2
E
(

S(1)
N−1

)2
− λ

2ω2 β2δ2
N−1

− λ
2 log ω2

ω2+β2δ2
N−1

= arg max
κ
(1)
N−1∈R,δ2

N−1∈R≥0
−
(

φ(1) + θ̂
(1)
N β2 + λ

2ω2 β2
)
E
(

S(1)
N−1

)2(
κ
(1)
N−1

)2

−
(

2θ̂
(1)
N αβ− λ

ω2 β2κ
(0)∗
N−1

)
E
(

S(1)
N−1

)2
κ
(1)
N−1

−
(

θ(1) + θ̂
(1)
N α2 + λ

2ω2 β2
(

κ
(0)∗
N−1

)2
)
E
(

S(1)
N−1

)2
− θ̂

(1)
N ω2

−
(

φ(1) + θ̂
(1)
N β2 + λ

2ω2 β2
)

δ2
N−1 −

λ
2 log ω2

ω2+β2δ2
N−1

.

(A19)

(A19) consists of two independent optimizations: the optimization of κ
(1)
N−1 ∈ R and the

optimization of δ2
N−1 ∈ R≥0. Since θ̂

(1)
N > 0, it follows that

−
(

φ(1) + θ̂
(1)
N β2 +

λ

2ω2 β2
)
E
(

S(1)
N−1

)2
< 0. (A20)

The optimization of κ
(1)
N−1 ∈ R has a concave quadratic objective. Then we can obtain the

optimal linear coefficient as

κ
(1)?
N−1 =

λ
2ω2 β2κ

(0)∗
N−1 − θ̂

(1)
N αβ

φ(1) + θ̂
(1)
N β2 + λ

2ω2 β2
. (A21)

The optimization of δ2
N−1 ∈ R≥0 has a decreasing objective. Then, the optimal variance is

δ2?
N−1 = 0. Therefore, the optimal linear Gaussian random policy reduces to the optimal

deterministic privacy-preserving LQG policy in the (N − 1)-th step.
We then consider the sub-problem from the (N − 2)-th step until the final step. Given

a probability distribution p
S(1)

N−2
and the optimal linear Gaussian random policies F(1)?

N−1:N ,

the sub-optimization problem of the linear Gaussian random policy F(1)
N−2 with parameters

κ
(1)
N−2 and δ2

N−2 is



Entropy 2022, 24, 856 21 of 22

(
κ
(1)?
N−2, δ2?

N−2

)
= arg max

κ
(1)
N−2∈R,δ2

N−2∈R≥0
E
(

∑N
i=N−2 R(1)

(
S(1)

i , A(1)
i

))
− λ ∑N

i=N−1 D
(

p
S(1)

i

∣∣S(1)
i−1

∣∣∣∣p
S(0)∗

i

∣∣S(0)∗
i−1

)
= arg max

κ
(1)
N−2∈R,δ2

N−2∈R≥0
−θ(1)E

(
S(1)

N−2

)2
− φ(1)E

(
A(1)

N−2

)2
− θ̂

(1)
N−1E

(
S(1)

N−1

)2
− θ̂

(1)
N ω2

−λD
(

p
S(1)

N−1

∣∣S(1)
N−2

∣∣∣∣p
S(0)∗

N−1

∣∣S(0)∗
N−2

)
= arg max

κ
(1)
N−2∈R,δ2

N−2∈R≥0
−θ(1)E

(
S(1)

N−2

)2
− φ(1)E

(
κ
(1)
N−2S(1)

N−2 + W(1)
N−2

)2

−θ̂
(1)
N−1E

(
αS(1)

N−2 + βκ
(1)
N−2S(1)

N−2 + βW(1)
N−2 + ZN−2

)2
− θ̂

(1)
N ω2

− λ
2ω2 β2

(
κ
(1)
N−2 − κ

(0)∗
N−2

)2
E
(

S(1)
N−2

)2
− λ

2ω2 β2δ2
N−2

− λ
2 log ω2

ω2+β2δ2
N−2

= arg max
κ
(1)
N−2∈R,δ2

N−2∈R≥0
−
(

φ(1) + θ̂
(1)
N−1β2 + λ

2ω2 β2
)
E
(

S(1)
N−2

)2(
κ
(1)
N−2

)2

−
(

2θ̂
(1)
N−1αβ− λ

ω2 β2κ
(0)∗
N−2

)
E
(

S(1)
N−2

)2
κ
(1)
N−2

−
(

θ(1) + θ̂
(1)
N−1α2 + λ

2ω2 β2
(

κ
(0)∗
N−2

)2
)
E
(

S(1)
N−2

)2
− θ̂

(1)
N−1ω2 − θ̂

(1)
N ω2

−
(

φ(1) + θ̂
(1)
N−1β2 + λ

2ω2 β2
)

δ2
N−2 −

λ
2 log ω2

ω2+β2δ2
N−2

.

(A22)

Note that the objective functions in (A19) and (A22) have the same form. Therefore, we
can use the same arguments to show that the optimal linear Gaussian random policy
reduces to the optimal deterministic privacy-preserving LQG policy in the (N − 2)-th step,
i.e., δ2?

N−2 = 0 and

κ
(1)?
N−2 =

λ
2ω2 β2κ

(0)∗
N−2 − θ̂

(1)
N−1αβ

φ(1) + θ̂
(1)
N−1β2 + λ

2ω2 β2
. (A23)

We can further prove the optimal linear Gaussian random policies in the remaining
steps reduce to the optimal deterministic privacy-preserving LQG policies based on the
same arguments.
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