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Abstract: A turnout switch machine is key equipment in a railway, and its fault condition has an
enormous impact on the safety of train operation. Electrohydraulic switch machines are increasingly
used in high-speed railways, and how to extract effective fault features from their working condition
monitoring signal is a difficult problem. This paper focuses on the sectionalized feature extraction
method of the oil pressure signal of the electrohydraulic switch machine and realizes the fault
detection of the switch machine based on this method. First, the oil pressure signal is divided
into three stages according to the working principle and action process of the switch machine, and
multiple features of each stage are extracted. Then the max-relevance and min-redundancy (mRMR)
algorithm is applied to select the effective features. Finally, the mini batch k-means method is used to
achieve unsupervised fault diagnosis. Through experimental verification, this method can not only
derive the best sectionalization mode and feature types of the oil pressure signal, but also achieve the
fault diagnosis and the prediction of the status of the electrohydraulic switch machine.

Keywords: electrohydraulic switch machine; oil pressure signal; sectionalized feature extraction;
fault detection; mRMR; unsupervised clustering

1. Introduction

In a railway, a switch machine is track switch equipment that makes train transfer from
one track to another, and it is an important signal device to ensure the train operation safety.
A switch machine is often eroded under a poor working environment with high intensity
and heavy load, which leads to fault occurrence. The fault of switch machines may cause
serious accidents, such as train derailment and capsizing, resulting in heavy casualties
and property losses. Fault detection of switch machines is very important for railway
transportation safety. However, for a long time, the fault detection of switch machines
mainly depends on the expert knowledge and experience of railway workers, or adopts
a simple threshold setting method, which not only are inefficient but also bring a heavy
workload to railway workers, which often leads to misjudgment.

Recently, many fault diagnosis methods combining a support vector machine (SVM),
fuzzy logic system, artificial neural network (ANN), and others have been constantly
appearing. Asada [1] proposed an effective approach for accurately classifying several
fault modes combined with a wavelet transform and support vector machines to detect
faults of an AC point machine. In [2], support vector machines with a Gaussian kernel
were used to diagnose a fault of an electric switch machine, which verified the features
obtained with principal components analysis (PCA) getting better results than the existing
features. Moreover, an SVM-based fault detection approach was proposed to identify
the fault states of a switch machine based on the electric current curve, and the envelope
and morpheme match algorithm were applied to predict the fault of a switch machine in
this approach [3]. The type-1 and singleton fuzzy logic system trained by the conjugate
gradient method was proposed by de Aguiar [4] to realize fault diagnosis by different
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classifiers based on the current signal of an electric switch machine, which could offer a
higher convergence rate and performance. Further, de Aguiar [5] used the set-membership
concept derived from the adaptive filter theory in the type-1 and singleton/nonsingleton
fuzzy logic systems so that the model convergence speed was improved and computation
complexity was reduced, and then he demonstrated that the upper and lower singleton
type-2 fuzzy logic system was a more effective classifier for an electric switch machine
fault [6]. The long- and short-term memory (LSTM) and the deep wavelet scattering
transform (DWST) were explored for classifying various switch degradations, and the
feasibility of a dataset captured under the service conditions was demonstrated in [7]. A
hybrid fault diagnosis (HFD) method was adopted to identify a fault based on the current
curves of a railway switch machine in [8]. A locally connected autoencoder was employed
to automatically capture high-order features in order to solve the fault diagnosis problem
with no training steps based on the current signal of an electric point machine [9]. DAG-
SVMs were applied to intelligently detect a fault after extracting characteristics based on
the action current signal of an electric switch machine, and the experiment showed that
the accuracy of classification after Kalman filter pretreatment was better than that of direct
classification in [10]. The artificial intelligent methods, such as RNN (recurrent neural
network), CNN (convolutional neural network), autoencoder, and other deep learning
methods, were adopted for feature extraction and fault diagnosis in industrial fields [11–13].
More and more intelligent fault diagnosis methods were applied in various engineering
areas, which could achieve diagnosis accurately. Additionally, the methods provided a
reliable basis for fault detection of the switch machine.

The intelligent fault diagnosis methods were also applied to some special electric
switch machines, such as ZD6 and S700K. The similarity function was defined by the
Fréchet distance, action current template curves were built, and the fault diagnosis method
according to the greatest curve similarity was constructed for a ZD6 switch machine in [14].
In [15], the railway turnout intelligent fault detection algorithm was proposed based on
a BP neural network by analyzing the characteristics of action current curves for a ZD6
switch machine. A senior Bayesian model based on rough set theory was applied to
detect the fault of an S700K switch machine, which effectively enhanced the speed and
accuracy of fault diagnosis [16]. The wavelet packet energy entropy was used for switch
machine fault detection based on the three-phase alternating current of an S700K switch
machine [17]. Grey correlation analysis and a neural network were combined to obtain
better detection results based on power curves of an S700K electric switch machine [18].
A fuzzy clustering analysis method based on the action power curve was proposed to
achieve the fault detection of an S700K switch machine, which could accurately extract
fault features and support simultaneous detection of multiple faults [19]. In [20], ensemble
empirical mode decomposition (EEMD) based on the power curve of an S700K switch
machine was proposed to decompose a signal, and the fuzzy clustering analysis algorithm
was used to realize fault classification, which were more fully characterized fault signals.
Variational mode decomposition (VMD) and the kernel fuzzy c-means (KFCM) clustering
algorithm were employed to classify the fault types of an S700K switch machine based
on the power curve, whose better classification results were obtained by adding kernel
functions [21]. FCM and hidden semi-Markov models (HSMMs) were combined to quickly
and accurately identify the health status based on the power data of an S700K switch
machine [22].

However, there are other types of switch machine, which are applied in different
railway passenger stations, freight stations, and marshalling stations. An electrohydraulic
switch machine is a new type of switch machine that has appeared in China since the 1980s,
which is suitable for the development trend of a high-speed railway. An electrohydraulic
switch machine uses hydraulic transmission, and hydraulic oil is generally utilized as a
working medium. Additionally, the oil pressure signal contains a lot of useful information
about operation and the fault status of an electrohydraulic switch machine. Zhou [23]
applied grey correlation theory to the intelligent fault detection of turnouts based on the oil
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pressure signal of a ZYJ7 electrohydraulic switch machine. For the existing fault detection,
the expert system [24] is hard for acquiring knowledge and needs a lot of prior knowledge of
railway staff; the Kalman filtering method [25] can only be successful in a part of the dataset;
a reliable and reasonable prior probability has to be provided for a Bayesian network [26],
in which determination is very difficult; a support vector machine [3] is a binary classifier
in principle, which is very sensitive to feature selection; and a neural network [7] needs
numerous samples for training to avoid misdetection. However, unsupervised clustering
methods can support multiple fault detections and effectively improve performance, which
do not need to be trained and be provided with many prior parameters. Most of the
literature has focused on the fault detection of electric switch machines based on the
current or power signal. However, there is a pressing need for feature extraction and fault
detection research works for electrohydraulic switch machines with more application and
promotion of speed-up turnouts in the future. The features from oil pressure signal time
series can effectively provide information reflecting the fault status and obtain a better
detection effect for an electrohydraulic switch machine. However, the oil pressure signal
of an electrohydraulic switch machine includes plenty of fault characteristics, which is
nonstationary and difficult to extract. Besides, existing methods of extracting a feature
directly from the whole signal and sectionalizing averagely a feature extraction are not able
to extract effective feature information from the signal.

For the above reasons, a novel fault detection method for an electrohydraulic switch
machine based on the sectionalized feature extraction according to the best time ratio from
the oil pressure signal is proposed in this paper. The rest of the paper is organized as
follows: Section 2 describes the principles and the framework of the proposed approach.
The effectiveness and accuracy of the fault detection method based on sectionalized fea-
ture extraction are illustrated by experiments in Section 3. Finally, some conclusions are
summarized in Section 4.

2. Materials and Methods
2.1. Sectionalized Feature Extraction

In order to extract the features of the different action states in the switching process,
the original oil pressure time series is divided into multiple intervals, and the feature pa-
rameters of each interval are calculated. In contrast to the method of directly extracting the
statistical parameters of the entire oil pressure curve, this method of sectionalized feature
extraction allows for the preservation of both the detailed feature information for each
interval and the entire signal. According to the working principle of the electrohydraulic
switch machine, the whole switching process is mainly divided into three stages: unlocking,
conversion, and locking. Each stage is completed by a different working principle, so
it makes sense to study the time ratio of the oil pressure signal sectionalization. Based
on the working principle and practical experience, this paper proposes the “three-stage
method” for the sectionalization of the oil pressure signal, with a sectionalized time ratio of
30%–60%–10%, which divides the entire oil pressure signal into three stages according to
this time ratio, as shown in Figure 1.

The process of feature extraction in each interval is to map the original oil pressure
signals into the fault feature space. The time domain features can reflect the energy
distribution and various effects of the signal and effectively represent the action states of
the switch machine. In order to describe the state of the oil pressure signal for each interval,
the following statistical features are used in this paper, and their calculation formulas are
shown in Table 1.

We suppose that the original oil pressure signal is x(i), where i = 1, 2, . . . , Ns, Ns
denotes the signal length. ∆t means the sampling interval. The mean value x represents the
average magnitude of the signal segment. The variance (Var) describes the fluctuation range
of the signal near its mean value. The kurtosis (Ku) can well describe the distribution pattern
of signal variables. The peak-to-average ratio (PAR) reflects the extreme degree of the peak
in each signal interval. The impulse indicator (IM) is used to express the accumulation
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effect of the oil pressure signal. These feature indicators describe the characteristics of the
original oil pressure signal from different aspects. They can quantitatively reflect the degree
of signal dispersion, changes, and asymmetry in each interval and play an important role
in the fault detection of an electrohydraulic switch machine.
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Figure 1. Three stages of the oil pressure signal.

Table 1. Calculation formulas for extracting five types of time series features.

Feature Type Calculation Formula Significance of Feature

Mean x = 1
Ns

∑Ns
i=1 x(i) Reflect the mean amplitude

Variance (Var) σ2 = 1
Ns−1 ∑Ns

i=1 (x(i) − x)2 Represent the deviant trend of
signal near the mean value

Kurtosis (Ku) Ku = ∑Ns
i=1 (x(i)− x)4

(N s− 1)σ3

The distribution pattern of
signal variables

Peak-to-average ratio (PAR) PAR =
√

Ns max|x(i)|
∑Ns

i=1 |x (i)|
The extreme degree of peak
value in the signal segment

Impulse (IM) IM =∑Ns
i=1 x(i)∆t The cumulative effect of signal

2.2. Feature Smoothing

The oil pressure feature set inevitably contains a lot of noise and the random fluctuation
caused by the non-stationarity of the oil pump, internal equipment, and environment. In
addition, some of the extracted feature values change drastically, while others vary with
small numerical fluctuations, which leads to the features with large fluctuations playing
a more critical role than the others. Locally weighted regression (LWR) smoothing is a
regression method used to smoothen a volatile time series. It is a nonparametric method
where least squares regression is performed in localized subsets, which makes it a suitable
candidate for smoothing any fluctuating numerical vector. LWR is superior to ordinary
smoothing methods in filtering random changes and revealing feature trends [27].

The process of LWR smoothing is simply defined as follows: First, the feature data
are divided into small intervals with a sliding window, linear fitting is performed through
weighted least squares within the interval, and the fitted value of the focal point in each
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interval is obtained. Then, this process is repeated continuously with the window sliding
for all the feature data. Finally, the centers of these regression curves are connected to form
a complete regression curve. LWR can remove error points polluted by noise and random
fluctuation. LWR adds weight to the ordinary least squares, and the points near the fitting
point should have a greater impact on the fitting value. Let us assume that we use LWR
to smoothly fit a curve of (yj, zj) in each window, where j = 1, . . . , n. The weighted linear
regression is calculated according to the loss function L of Equation (1):

L(θ, h) =
n

∑
j=1

wj

(
zj − θyj−h

)2
(1)

where θ =
∑ w2

j (y− y)(z− z)

∑ w2
j (y− y)2 denotes the gradient, and h = z− θy denotes the constant for

each linear fitting.
It is necessary to determine the distances from the points within each interval to the

fitting point
∣∣∣y0 − yj

∣∣∣ and find the largest distance max(yj). The weight can be obtained
according to Equation (2):

wj(y0) = W


∣∣∣y0 − yj

∣∣∣
max

(
yj

)
 (2)

The function W can choose a quadratic function (B function) or cubic function (C func-
tion). The C function is commonly used in the first iteration, and the B function in the
second iteration [28]. The calculation formula of the C function is formulated as follows:

W(ρ) =

{ (
1− ρ3)3, for|ρ|< 1

0, for|ρ| ≥ 1
(3)

where ρ is described as:

ρ =

∣∣∣y− yj

∣∣∣
max

(
yj

) (4)

LWR is employed to remove drastic changes, noise, and spike information and to
improve the accuracy of fault classification.

2.3. Min-Max Normalization Processing

There are different unit dimension features that cannot make an evaluation in such
a multidimension system. Therefore, in order to ensure the reliability of the results, it is
necessary to normalize the oil pressure feature set. The normalization processing scales the
data to a specific interval within a certain range. The purpose is to remove the unit limit
of data and transform all the features into a nondimensional data. Here, we use min–max
normalization to map the smoothed oil pressure feature set to domain (0–1). Min–max
normalization can be calculated as:

T =
Q−min(Q)

max(Q)−min(Q)
(5)

where Q means the smoothed oil pressure feature set. T denotes the min–max normalization
result of Q.

2.4. Feature Reduction Based on the Max-Relevance and Min-Redundancy Algorithm

To reduce the computational complexity, traditional methods are to directly reduce
the dimensions of the feature. Related methods include local linear embedding (LLE), local
preserving projection (LPP), principal component analysis (PCA), and so on. These methods
reduce the feature’s dimensions through space mapping [29]. In [30,31], the authors
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defined feature relevance and divided features into three categories: strong relevance
features, weak relevance features, and irrelevant features. Among the above features, strong
relevance features must be retained; otherwise, they will seriously affect the classification
performance. The weak relevance features are not required, but sometimes they are
necessary, so they need to be selected according to the situation [32]. Nevertheless, the
irrelevant features need not be kept, instead, they need to be removed.

If two features are completely related, they are mutually redundant features. We
brought the idea of the max-relevance and min-redundancy (mRMR) algorithm in [33]; that
is, the feature with the highest relevance with the target classification label c is selected, and
then features with high redundancy are removed. Here, the relevance usually uses mutual
information (MI) as a common indicator to define the relevance of variables. Relevance is
the average value of the mutual information (MI) between the feature Au and the categorical
label c. I(Au; c) is used to represent the mutual information. The max-relevance can be
obtained by the following equation:

max D(T), D =
1
|T| ∑

Au∈T
I(Au; c) (6)

where max D refers to the feature set with maximum relevance to the classification label; u
is 1,2, . . . ,N; and N represents the number of features after smoothing and normalization.

The features selected by maximum relevance are likely to have some redundant
features, the removal of which will have no effect on the classification result but will
significantly reduce the computational effort of the classification algorithm. The selection
and removal of mutually exclusive features using minimum redundancy is expressed as:

min R(T), R =
1

|T|2 ∑
Au,Av∈T

I(Au, Av) (7)

where min R refers to the feature set with minimum redundancy. Av denotes the features
in the feature set, v = 1, 2, . . . , N, v 6= u. Here, a different algorithm from the traditional
mRMR is considered to obtain the best features, integrating the optimization of max D and
min R as follows:

•maxτ(D, R), τ(D, R) =
D

R + 0.01
(8)

where max τ(D, R) denotes the result of the mRMR algorithm. Adding 0.01 to the R value
is to avoid the inability to calculate when R is 0.

2.5. Proposed Framework

The process of fault detection of an electrohydraulic switch machine based on the
oil-pressure-signal-sectionalized feature extraction method is illustrated in Figure 2. The
process is described as follows:

Step 1: Collecting the oil pressure signals from the left and right sides of the oil cylinder of
an electrohydraulic switch machine;
Step 2: Sectionalizing the oil pressure signal according to the time ratio (30%–60%–10%) for
three stages;
Step 3: Calculating five types of time domain features of each segment for the oil pres-
sure signal;
Step 4: Smoothing the features by locally weighted regression (LWR) and normalizing the
smoothed features by min–max normalization;
Step 5: The max-relevance and min-redundancy (mRMR) algorithm is employed to elimi-
nate redundant features and obtain the optimal fault feature set;
Step 6: The mini batch k-means clustering method is used to achieve the fault detection of
the electrohydraulic switch machine.
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3. Experiments

The faults of the electrohydraulic switch machine being studied in this paper are
mainly mechanical faults. Common mechanical faults include mechanical resistance, oil
cylinder action not in place, oil cylinder in place with contact point not closed or rebound
broken indication, and so on. Several common fault types and cause analysis are shown in
Table 2. Meanwhile, the position of a switch machine is classified to normal position and
reverse position, that is, from normal position to reserve position and reserve position to
normal position. Turnout not locking and not unlocking are two common faults of railway
turnouts, because the existence of a stuck phenomenon and the increase in resistance result
in the failure of switch machines to work normally.

Table 2. Mechanical fault types and cause analysis of an electrohydraulic switch machine.

Fault Types Fault Cause Analysis

Mechanical Faults

Not locking or not unlocking
The switch rail is stuck with the basic rail; the sliding board
is severely suspended and the friction force is large; the lock

hook and the action rod are severely rubbed.
There is abnormal resistance in the

unlocking phase
There are a few foreign objects and insufficient oil injection

on the normal position locking position of locking iron.
There is abnormal resistance in the

locking phase
There are a few foreign objects and insufficient oil injection

on the reverse position locking position of locking iron.

There is a mechanical jam during the
conversion phase

The stiffness degradation of the outer locking device is too
severe, or there is a foreign matter on the sliding board,

which causes excessive resistance of the turnout
during conversion.

Unclosed contact point causes loss of
turnout representation

The gap adjustment does not meet the standard, which
causes the fault of the moving contact conversion.

3.1. Data Description

A measuring device was used to collect oil pressure signals from an electrohydraulic
switch machine. The measuring device consisted of an acquisition instrument, oil pressure
sensors, and a computer. The signals were collected by deploying an oil pressure sensor
on the left and right sides of the oil cylinder of the switch machine. The collected data
of the sensors were transmitted to the acquisition instrument, which then was sent to the
computer. The sensors collected approximately 1000 sets of oil pressure signals during the
action process of the electrohydraulic switch machine with a sampling frequency of 50 Hz,
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an acquisition time of 12 s, and a measurement range of 0 to 14.8 MPa. In the experiments,
five types of faults are made: fault-free (normal–reverse), fault-free (reverse–normal),
turnout not locking (reverse–normal), turnout not locking (normal–reverse), abnormal
resistance in the locking stages (normal–reverse), as shown in Figure 3. The fault labels and
corresponding action states of the electrohydraulic switch machine are shown in Table 3.
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Table 3. Fault labels and action states of an electrohydraulic switch machine.

Fault Labels Action States

0 Fault-free (normal–reverse)
1 Fault-free (reverse–normal)
2 Turnout not locking (reverse–normal)
3 Turnout not locking (normal–reverse)
4 Abnormal resistance in the locking stage (normal–reverse)

3.2. Experiment I

The purpose of this fault clustering experiment was to evaluate the fault identification
results of different sectionalized modes of feature extraction. The scheme not only extracted
the most important feature types, but also identified the classes of fault clustering. At first,
in order to be able to extract more valid information, the sectionalized mode of three stages
with the time ratio (30%–60%–10%) and the five feature parameters proposed in Section 2.1
were applied for feature extraction, and in total, 15 × 2 = 30 features were extracted
from oil pressure signals of the left and right cylinder, which was named as Dataset I. In
order to verify the validity of our method, the following features of different sectionalized
types were extracted for comparative analysis. The five features extracted directly from
the whole sequence of the oil pressure signal formed Dataset II, and the same features
were computed on the two and three oil pressure signal segments that were sectionalized
averagely composing Datasets III and IV. Moreover, the features were smoothed and
normalized with a uniform smoothing window width of 10, and the max-relevance and
min-redundancy (mRMR) algorithm was used to eliminate redundant features and derive
the optimal feature set. The extracted feature sets from the four datasets after mRMR are
shown in Tables 4–7 as follows:

Table 4. The feature set of Dataset I after mRMR.

Dataset I Interval Stage Feature Types

Left oil pressure
Segment I Var/IM
Segment II
Segment III Mean/Ku/PAR

Right oil pressure
Segment I Mean/IM
Segment II Mean/PAR
Segment III PAR

Table 5. The feature set of Dataset II after mRMR.

Dataset II Interval Stage Feature Types

Left oil pressure Whole Mean/PAR/IM
Right oil pressure Whole IM

Table 6. The feature set of Dataset III after mRMR.

Dataset III Interval Stage Feature Types

Left oil pressure Segment I Mean
Segment II Mean/Var

Right oil pressure Segment I Var/PAR
Segment II Ku/IM

Mini batch k-means clustering was used for clustering analysis in the experiments.
The traditional k-means algorithm is used to calculate the distance from all sample points
to all centers of mass. If the feature dimension of the sample is too large, the k-means
algorithm will be very time-consuming. The mini batch k-means algorithm is an optimized
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variant of the k-means algorithm in which a small subset of data is randomly selected for
each training to reduce computation time while optimizing the aim function.

Table 7. The feature set of Dataset IV after mRMR.

Dataset IV Interval Stage Feature Types

Left oil pressure
Segment I Mean/PAR
Segment II Ku/PAR/IM
Segment III

Right oil pressure
Segment I PAR/IM
Segment II Mean/PAR/IM
Segment III

In order to better display data characteristics, PCA was used to reduce the dimension
of feature sets to 2. The batch size was set to 100, and the other parameters were fixed in the
experiments. Table 8 represents the variations of the DBIs (Davies–Bouldin index) [34] with
the number of clusters ranging from 2 to 10 by mini batch k-means for different datasets.
The corresponding optimal cluster numbers for each DBI are indicated in bold font. As it is
seen in Table 8, only Dataset I determined the right cluster number, and the other datasets
were unable to determine the number of the right clusters. After determining the right
cluster numbers, the clustering results for different datasets are shown in Figure 4. As it is
clear in Figure 4 and Table 8, the proposed method has recognized the five different clusters
in Dataset I. It was made clear that this proposed method of sectionalized feature extraction
performed particularly well in the visualization of clusters.

Table 8. Variations of the DBIs with the number of clusters for different datasets.

DBI
The Number of Clusters

2 3 4 5 6 7 8 9 10

Dataset I 0.400 0.206 0.221 0.201 0.290 0.348 0.408 0.459 0.855
Dataset II 0.795 0.630 0.465 0.433 0.302 0.344 0.380 0.524 0.551
Dataset III 0.248 0.181 0.158 0.286 0.372 0.583 0.369 0.351 0.437
Dataset IV 0.777 0.173 0.102 0.281 0.500 0.947 0.691 0.812 0.573

The green cluster (fault-free (reverse to normal)) and the purple cluster (fault-free
(normal to reverse)) were always close to each other in Figure 4, suggesting that the two
clusters represented similar real meanings for the normal state of an electrohydraulic
switch machine.

Additionally, the external metrics for the accuracy of the results were evaluated. To
improve the experiment analysis, we reran mini batch k-means with 10 different initial
random seeds, mean shift with 10 different eps, and density-based spatial clustering of
applications with noise (DBSCAN) with 10 different bandwidths. Mean shift and DBSCAN
were applied to compare the validity of different clustering methods. The average of
accuracy and root-mean-square error (RMSE) for different datasets after clustering are
shown in Table 9 and Figure 5. The confusion matrix for Dataset I is shown in Figure 6.
The proposed method based on mini batch k-means had the best average of accuracy
and the lowest RMSE for diagnosis results. This verifies that the sectionalized feature
extraction method corresponding to the three stages (30%–60%–10%) has the best clustering
performance for fault detection compared with other modes.

3.3. Experiment II

To verify whether the features obtained after eliminating redundant features with
mRMR would have better performance on the clustering effect, the remaining features
except for the selected features (Dataset I) with mRMR composed Dataset V. Table 10 lists
the features of Dataset V. Similarly, the DBIs with the clustering number ranging from 2 to



Entropy 2022, 24, 848 11 of 17

10 by mini batch k-means are calculated in Table 11. As shown in Figure 7, Dataset V was
unable to determine the numbers of the right clusters.
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Figure 4. Clustering results of the optimal clustering number for different datasets after mini batch
k-means: (a) Dataset I, (b) Dataset II, (c) Dataset III, and (d) Dataset IV.

Table 9. Average of accuracy and RMSE for different datasets after clustering.

Different
Datasets

Mini Batch K-Means Mean Shift DBSCAN Average

Average of
Accuracy (%) RMSE Average of

Accuracy (%) RMSE Average of
Accuracy (%) RMSE Accuracy (%) RMSE

Dataset I 98.723 0.001 96.331 0.005 94.604 0.015 96.553 0.007
Dataset II 64.605 0.120 47.482 0.006 76.259 0.005 62.782 0.044
Dataset III 95.370 0.023 84.299 0.047 82.104 0.008 87.258 0.026
Dataset IV 93.957 0.063 93.237 0.029 87.691 0.020 91.628 0.037
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Figure 6. Confusion matrix for Dataset I with the proposed method after mini batch k-means.

Table 10. The feature set of Dataset V after mRMR.

Dataset V Interval Stage Feature Types

Left oil pressure
Segment I Mean/Ku/PAR
Segment II Mean/Var/Ku/PAR/IM
Segment III Var/IM

Right oil pressure
Segment I Var/Ku/PAR
Segment II Var/Ku/IM
Segment III Mean/Var/Ku/IM

Table 11. Variations of the DBIs with the number of clusters for different datasets.

DBI
Number of Clusters

2 3 4 5 6 7 8 9 10

Dataset I 0.400 0.206 0.221 0.201 0.290 0.348 0.408 0.459 0.855
Dataset V 0.504 0.187 0.182 0.286 0.742 0.799 0.665 0.718 0.940
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The experiment results were obtained by the average of 10 trials based on mini batch
k-means. The validity of the proposed method was compared with different clustering
methods. The diagnosis results for different datasets after clustering are shown in Table 12.
Mini batch K-means had the best accuracy and the lowest RMSE compared with the other
two clustering methods. As shown in Figure 8, the redundant feature information removed
affects the clustering, and the features of Dataset I selected by mRMR are the optimal
fault features.
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Table 12. Average of accuracy and RMSE for different datasets after clustering.

Different
Datasets

Mini Batch K-Means Mean Shift DBSCAN Average

Average of
Accuracy (%) RMSE Average of

Accuracy (%) RMSE Average of
Accuracy (%) RMSE Accuracy (%) RMSE

Dataset I 98.723 0.001 96.331 0.005 94.604 0.015 96.553 0.007
Dataset V 95.018 0.035 91.259 0.034 84.514 0.013 90.264 0.027
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3.4. Experiment III

There is little research on fault detection methods for electrohydraulic switch machines
now. This paper compared the proposed diagnosis method with the existing techniques
for a fuzzy clustering algorithm [20] and grey relational analysis [24]. We changed the
parameters of the Hamming distance method for a fuzzy clustering algorithm and the
resolution ratio of the relational coefficient for grey relational analysis 10 times. The
average of accuracy and RMSE are calculated in Table 13. The diagnosis results for different
methods are shown in Figure 9. The confusion matrixes for different methods are shown
in Figure 10. Experiment results showed that this proposed method provided higher
accuracy and proved the effectiveness of the fault identification task for the electrohydraulic
switch machine.

Table 13. Average of accuracy and RMSE for different methods.

Different Methods Average of Accuracy (%) RMSE

Proposed method 98.723 0.001
Fuzzy clustering algorithm 97.122 0.009

Grey relational analysis 96.908 0.014
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3.5. Experiment Results Analysis

The experimental comparisons showed that the sectionalized feature extraction method
according to the three action stages (30%–60%–10%) of a switch machine is more robust and
effective for fault clustering than other methods. On the basis of the above sectionalization
mode, it is necessary to choose the optimal features, and the most effective features can be
singled out by mRMR method. Finally, the proposed diagnosis method of electrohydraulic
switch machines based on mini batch k-means had the lowest misdiagnosis rate compared
with other existing methods.

Therefore, it can be found that the proposed intelligent fault detection method can not
only get the optimal features and identify different action states, but also detect faults at
a higher accuracy rate. The effectiveness of the proposed sectionalized feature extraction
method is verified successfully by experiments.

4. Conclusions

The fault detection of the electrohydraulic switch machine based on sectionalized
feature extraction from the oil pressure signal during the working process was proposed
in this paper. The fault detection framework for the electrohydraulic switch machine
was established. First, the whole oil pressure signal was divided into three stages with
the sectionalization time ratio (30%–60%–10%) according to the switching process. Five
features of each stage of the oil pressure signal were computed, and the features were
smoothed and normalized. Then, the mRMR algorithm was used to eliminate redundant
features and derive the optimal feature set. The mini batch k-means clustering method
was applied to achieve the fault detection of the electrohydraulic switch machine. The
contrastive experiments verified the effectiveness and accuracy of the proposed method.

We came to the conclusion that (1) the mean, peak-to-average ratio (PAR), and impulse
(IM) of the oil pressure signal interval stage were superior to other types of features for
the fault identification of an electrohydraulic switch machine, whereas kurtosis (Ku) and
variance (Var) did not perform as well in terms of fault clustering. (2) Moreover, the features
extracted from the unlocking and locking stages outnumbered those of the conversion
stage, which meant the different fault information in each stage. (3) The fault detection
method proposed in this paper, which was based on the unsupervised algorithm, can
realize free-label fault detection in high recognition. The proposed method can provide
support for railway staff without the cost of massive sample data. The experiments verified
that the proposed diagnosis method could accurately identify faults of electrohydraulic
switch machines and reduce economic costs. Due to the limited fault sample data collected
in this paper, we will acquire more comprehensive fault sample data as much as possible in
the next step to further increase the accuracy of the method. In the future, we will improve
the method to fully meet the needs of practical engineering application.
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Abbreviations

The following abbreviations are used in this manuscript:
ANN artificial neural network
CHI Calinski–Harabaz index
DBI Davies–Bouldin index
DWST deep wavelet scattering transform
EEMD ensemble empirical mode decomposition
HSMMs hidden semi-Markov models
IM impulse
KFCM kernel fuzzy c-means
Ku kurtosis
LLE local linear embedding
LPP local preserving projection
LSTM long short-term memory
LWR locally weighted regression
MI mutual information
mRMR max-relevance and min-redundancy
PAR peak-to-average ratio
PCA principal component analysis
SVM support vector machine
Var variance
VMD variational mode decomposition
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