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Abstract: Semantic-rich speech emotion recognition has a high degree of popularity in a range of 

areas. Speech emotion recognition aims to recognize human emotional states from utterances con-

taining both acoustic and linguistic information. Since both textual and audio patterns play essential 

roles in speech emotion recognition (SER) tasks, various works have proposed novel modality fus-

ing methods to exploit text and audio signals effectively. However, most of the high performance 

of existing models is dependent on a great number of learnable parameters, and they can only work 

well on data with fixed length. Therefore, minimizing computational overhead and improving gen-

eralization to unseen data with various lengths while maintaining a certain level of recognition ac-

curacy is an urgent application problem. In this paper, we propose LGCCT, a light gated and 

crossed complementation transformer for multimodal speech emotion recognition. First, our model 

is capable of fusing modality information efficiently. Specifically, the acoustic features are extracted 

by CNN-BiLSTM while the textual features are extracted by BiLSTM. The modality-fused represen-

tation is then generated by the cross-attention module. We apply the gate-control mechanism to 

achieve the balanced integration of the original modality representation and the modality-fused 

representation. Second, the degree of attention focus can be considered, as the uncertainty and the 

entropy of the same token should converge to the same value independent of the length. To improve 

the generalization of the model to various testing-sequence lengths, we adopt the length-scaled dot 

product to calculate the attention score, which can be interpreted from a theoretical view of entropy. 

The operation of the length-scaled dot product is cheap but effective. Experiments are conducted 

on the benchmark dataset CMU-MOSEI. Compared to the baseline models, our model achieves an 

81.0% F1 score with only 0.432 M parameters, showing an improvement in the balance between 

performance and the number of parameters. Moreover, the ablation study signifies the effectiveness 

of our model and its scalability to various input-sequence lengths, wherein the relative improve-

ment is almost 20% of the baseline without a length-scaled dot product. 

Keywords: entropy invariance; multimodal speech emotion recognition; cross-attention; gate  

control; lightweight model; computational affection 
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1. Introduction 

Emotion plays a key role in interpersonal communication [1], wherein not only lin-

guistic messages but also acoustic messages convey individual emotional states. In many 

areas, such as human–computer interaction (HCI) [2], healthcare and cognitive sciences, 

much emphasis has been placed on developing tools to recognize human emotion in vocal 

expressions [3]. Recent booming advances in deep learning also promote the development 

of emotion recognition [4], a research field enabling machines to identify human emotion. 

Meanwhile, application requirements push the progress of lightweight models with high 

performance. 

Focusing on acoustic features, a number of works have contributed to improving the 

performance of speech emotion recognition. Based on low-level descriptors (LLDs) in 

short frames, acoustic feature representations are extracted by deep learning networks, 

such as a convolutional neural network (CNN) [5], recurrent neural network (RNN) [6], 

etc. Some variant module architectures like CNN-LSTM [7], have also been developed to 

extract feature sequences and capture temporal dependencies. 

Undoubtedly, linguistic information and acoustic information matters to speech 

emotion recognition [8]. Thus, both textual modality and audio modality should be taken 

into account to accomplish the task of multimodal emotion recognition. For audio modal-

ity, the process of feature extraction resembles that in unimodal speech emotion recogni-

tion. For textual modality, word-embedding models like GloVe [9] are commonly utilized. 

What makes multimodal emotion recognition more challenging than unimodal emo-

tion recognition is the process of modality fusion. Some early works concatenate different 

features as the input to the deep neural network [10]. To fuse the modalities in a deeper 

level, the standard transformer architectures [11] are widely extended to aggregate 

knowledge from one modality to the other, and, in this way, the learned modality-fused 

representation is enhanced [12,13]. 

Notwithstanding improvements made by prior works, the proportion of the modal-

ity-fused representation is seldom considered. To tackle this problem, we apply the gate-

control mechanism [14] to the cross-attention module to decide whether to keep the source 

modality information or override the target modality information.  

Most of the high performance of existing models are dependent on a great number 

of learnable parameters [15,16], ignoring the potential application in some promising ar-

eas like human–computer interaction (HCI), which requires real-time and light models. 

Thus, a lightweight model is necessary to improve the feasibility and practicability of the 

application of speech emotion recognition. Additionally, the transformer may have diffi-

culty generalizing to a sequence with a different length than the fixed ones while training, 

which impair the performance under actual HCI scenarios. To handle this problem, we 

follow prior works [17], just multiplying attention logits by a hyperparameter, and justify 

it from a view of entropy. 

In this paper, we propose LGCCT, a lightweight gated and crossed complementation 

transformer for multimodal speech emotion recognition. First, we utilize CNN-BiLSTM 

and BiLSTM [18] to extract audio features and textual features, respectively. Then the 

cross-attention module reinforces one modality feature with the other, and the gate mech-

anism functions as a flow control unit to balance the proportion of the two modalities and 

the length-scaled dot-product operation enhance the generalization to unseen sequence 

length. Finally, the fully connected layers followed by the transformer encoder layers pre-

dict the emotion.  

Our contribution can be summarized as follows. 

 We propose a model to fuse the text-modality and audio-modality representation 

and learn the mapping from modality-fused representation to emotion categories.  

 We adopt length-scaled attention module to improve the performance of the model 

when applied to various testing sequence length and theoretically interpret the de-

termination of the scaled hyperparameter from a view of entropy. 
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 We apply a gate-control mechanism to the traditional cross-attention module. The 

effectiveness is verified by the ablation study. 

 We reach a balance between the performance and the number of parameters (only 

0.432M). Experiments are conducted on the CMU-MOSEI dataset [19]. The experi-

ments also prove the generalization of our model to unseen sequence length. Com-

pared with the baseline without a length-scaled dot product, the relative improve-

ment is about 20%. 

2. Related Works 

Some early works for unimodal speech emotion recognition use traditional machine 

learning methods, such as a hidden Markov model [20], decision tree [21], and support 

vector machines [22]. With the development of deep learning methods, deep neural net-

work (DNN)-based models in speech emotion recognition have thrived, like convolu-

tional neural networks (CNN), recurrent neural networks (RNN) and long-short-term 

memory (LSTM) networks [6,7]. Some early works construct utterance-level features from 

segment-level probability distributions, and the extreme learning machine learns to iden-

tify utterance-level emotions [23]. Ref. [24] proposes a DNN-decision tree SVM model to 

extract the bottleneck features from confusion degree of emotion. CNNs mostly use spec-

trograms or audio features such as mel-frequency cepstral coefficients (MFCCs) and low-

level descriptors (LLDs) as the inputs, followed by fully connected layers to predict the 

emotions [25]. RNN- and LSTM-based models take the temporal features into considera-

tion and tackle this problem through sequence modeling [26]. Hybrid models like CNN-

BiLSTM have also been adopted to effectively learn the information that represents emo-

tions directly from conventional audio features [7,27]. Recently, the attention-based mod-

els and transformers have made significant progress in a range of fields [28,29]. Attention 

modules are used to learn the short-time frame-level acoustic features that are emotionally 

relevant, so that the temporal aggregated features can serve as more discriminative rep-

resentation for classification [6]. Ref. [28] incorporates muti-task learning with attention-

based hybrid models to better represent emotion features. 

Emotion recognition in natural language processing (NLP) is also called sentiment 

analysis [30]. Early works take as input word embeddings, such as GloVe [9] and 

word2vec [31]. RNNs are capable of encoding the relations between sentences and cap-

turing semantic meaning to distinguish sentiment better [32]. TextCNN [33] is a well-

known convolutional neural network for sentence classification and is also widely applied 

to sentiment analysis [34]. The idea of attention is also popular in NLP. Ref. [21] uses a 2-

D matrix to represent the embedding and introduces self-attention to extract an interpret-

able sentence embedding. In recent years, transformer-based self-supervised pretrained 

models, like BERT, thrive in NLP [11,35]. An increasing number of works take pretrained 

models as an encoder and get great performance boost [36,37]. 

Considering the fact that audios are composed of not only speech but also textual 

content, which can be extracted from the audio-based data, multimodal approaches using 

acoustic and lexical knowledge have also been explored. To further improve the accuracy, 

approaches that fuse audio, video and text are also a hot topic. There are mainly three 

kinds of future fusion strategies: attention-based feature fusion, GNN-based feature fu-

sion [38–40] and loss-function-based feature fusion. For attention-based strategies, Ref. 

[18] proposes the bi-bimodal fusion network (BBFN) that performs fusion and separation 

on pairwise modality representations. Ref. [41] combines multi-scale CNN, statistical 

pooling unit and an attention module to exploit both acoustic and lexical information from 

speech. Ref. [13] proposes a multimodal transformer with the cross-modal attention mech-

anism to address this problem in an end-to-end manner. With such an idea, Ref. [42] uses 

both cross-modal attention and self-attention to propagate information within each mo-

dality. Ref. [43] designs a novel sparse transformer block to relieve the computational bur-

den. Refs. [44,45] do the feature-fusion task by transferring it to a bi-modal translation 

task. For GNN-based strategies, Ref. [46] uses GCN to explore a more effective way of 
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utilizing both multimodal and long-distance contextual information. For loss-function-

based strategies, Ref. [47] hierarchically maximizes the mutual information in unimodal 

input pairs and between the multimodal fusion result and the unimodal input in order to 

maintain task-related information through multimodal fusion 

However, these methods ignore the fact that speech emotion recognition is needed 

mostly for real-time applications. Besides improving the accuracy by stacking models and 

arithmetic power, other factors such as being lightweight and showing efficiency and 

scalability to testing sequences with unfixed lengths are also necessary for practical appli-

cations. Thus, we will focus on reducing the number of parameters and improving the 

generalization to different testing sequences while maintaining performance. 

3. Methodology 

In this section, we will introduce the architecture of our network shown in Figure 1. 

The audio sequences are encoded by CNN-BiLSTM, while the text sequences are encoded 

by BiLSTM. Then the cross-attention module is utilized to fuse one modality representa-

tion into another modality representation respectively. The integration of the original-mo-

dality and the fused-modality representation is then controlled by the retain gate and the 

compound gate. The length-scaled coefficient is introduced while calculating the attention 

matrix to improve the generalization to different lengths, the validity of which will be 

illustrated from a view of entropy. To enhance the feature representation, the stacked 

transformer encoder is followed, and the classification is completed by the fully-connected 

layers. We will then illustrate our model in detail. 

 

Figure 1. The overall architecture of LGCCT. CNN−BiLSTM and BiLSTM extract acoustic features 

and text features respectively. At the heart of the model, the cross−attention module with a 

gate−control mechanism fuses the modality information. The transformer encoder layers reinforce 

the modality-fused representation. 

3.1. Text Encoder 

We denote the text sequence as �� = {��
�, ��

�, ⋯ , ��
� } ∈ ℝ�×��

, where �� denotes the 

word embedding dimension and � denotes the length of the sequence. ������ is ap-

plied to capture the textual contextual dependencies. 

�� = ������(��)  (1)

where �� = {ℎ�
� , ℎ�

� , ⋯ , ℎ�
� } ∈ ℝ�×����

; ��  is the encoded feature representation, and ��� 

is the dimension of the hidden states. 

3.2. Audio Encoder 

We denote the audio sequence as �� = {��
�, ��

�, ⋯ , ��
�} ∈ ℝ�×��

, where ��  denotes 

the dimension of low-level acoustic features and � denotes the length of the sequence. 

For convenience, we set the length of the audio sequence equal to that of the text sequence 

(namely, �� is equal to ��). Convolution layers are designed to extract high-level feature 

representation. Specifically, we use ����1� to integrate the temporal information. 
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����
� = ����1�(��)  (2)

Then the ������ takes ����
�  as input and outputs the audio contextual feature rep-

resentation. 

�� = ������(����
� )  (3)

where �� = {ℎ�
�, ℎ�

�, ⋯ , ℎ�
�} ∈ ℝ�×����

 is the encoded feature representation, and ���  is 

the dimension of the hidden states. 

3.3. Cross-Attention Module 

As shown in Figure 1, we use the transformer encoder to generate modality-fused 

representation so that the two kinds of modality information are fused bidirectionally. 

Herein, we define the source-modality representation as �� ∈ ℝ�×��
 and the target mo-

dality representation as �� ∈ ℝ�×��
, where {�, �} ∈ {�, �}. The process of modality fusion 

can be formulated as follows. 

� = �� × ��   (4)

� = �� × ��  (5)

� = �� × ��  (6)

where � ∈ ℝ�×��
 is the query matrix, � ∈ ℝ�×��

 is the key matrix' � ∈ ℝ�×��
 is the 

value matrix, and × denotes matrix multiplication. Specifically, we set ��, ��, �� equal 

to the dimension of target modality ��, denoted as � in the following. The source mo-

dality is transformed to the pair of key and value information while the target modality is 

transformed into the query information. 

Then the fused-modality representation �� ∈ ℝ�×��
 is calculated by length-scaled 

dot-product attention. 

� =  ������� �
����

√�
�  (7)

�� = A�  (8)

where ������� operation is applied to the dimension of sequence; � ∈ ℝ�×� is the at-

tention matrix, and � is a hyperparameter to enable well length generalization, which 

will be illustrated in the next section. 

Following the cross-attention module, layer normalization is designed to attend to 

original modality in the other modality. 

ℎ�→� = ��(�� + ��) (9)

where �� means layer normalization. 

To aggregate the feature representation, a fully connected feed-forward network is 

utilized after the cross-attention module. 

��→� = ���ℎ�→� + ���(ℎ�→�)�  (10)

where ��� means fully connected feed-forward network. The overview of cross-atten-

tion module is provided in Figure 2. 
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Figure 2. Cross-attention module fuses the modality information. 

3.4. Entropy Invariance for Attention Operation 

Following [17,48], we introduce a constant � to improve the length generalization of 

attention operation, which can be interpreted from the perspective of entropy. In real-

world applications, the length of an input sequence can be arbitrary, although the length 

is fixed during the training phase. The attention weight of the same token calculated in 

Equation (7) is supposed to converge to the same value independent of the length. From 

the view of entropy, we can consider the uncertainty as the degree of attention focus and 

revisit Equation (7) as follows. 

��� =
�

���∙��

∑ �
���∙���

���

  (11)

ℋ� = − � ���

�

���

log ���  (12)

where �� ∈ ℝ�  is the �-th query vector in the input sequence; �� ∈ ℝ�  is the �-th key 

vector. �� ∙ �� is the dot product of these two vectors, reflecting the similarity of the two 

vectors, and ���  is the attention score between the �-th token and �-th token in the se-

quence with total length of �. It should be noted that ��� is actually the element at row � 

and column � in the attention matrix �. ℋ� is the entropy of the �-th token.  

We can take the attention score as uncertainty. Specifically, the entropy is zero when 

the attention is attended to only one token, and the entropy is log � when the attention is 

distributed uniformly. Then we provide an approximate theoretical justification for the 

determination of hyperparameter �. Equation (12) can be rewritten as: 

 ℋ� =  log � ����∙��

�

���

− � � �������∙��

�

���

= log � + log
1

�
� ����∙��

�

���

− � � �������∙��

�

���

(13)

Here the second term can be approximated as: 

log
1

�
� ����∙��

�

���

≈ log exp �
1

�
� ��� ∙ ��

�

���

� = log ��� ∙ ��
�������   (14)

Based on the hypothesis that the softmax operation can be used as a continuous, dif-

ferentiable approximation to argmax [49], the third term can be approximated as: 



Entropy 2022, 24, 1010 7 of 16 
 

 

� � �������∙��

�

���

≈ � max
�����

�����∙��� (15)

Therefore, we have: 

ℋ� ≈ log � − � � max
�����

�����∙��� − log ��� ∙ ��
�������� (16)

To mitigate the influence of the sequence length n, � ∝  log �. For convenience, we 

set � as log �. Equation (7) can be redefined as follows: 

� =  ������� �
��� ����

√�
�  (17)

In this way, the contribution of the input token is more stable so that the attention 

matrix is theoretically more robust to the variation of input length. We determine the 

value of �, and the next procedure is the same as mentioned above. 

3.5. Gate Control 

Based on the idea of close and open access of information flow [14], the gate unit is 

introduced to our network architecture. Some of the original-modality information should 

be attended to the fused-modality information. 

��→� = ��→� × �� + �� × ��  (18)

where �� ∈ ℝ�×� represents the learnable integrate gate, and �� ∈ ℝ�×� represents the 

learnable retain gate. With learnable weights, the integrate gate decides how much fused 

information should be combined, and the retain gate decides how much original infor-

mation should be preserved. 

3.6. Classification 

The transformer encoder layer is then employed, taking the concatenation of bidirec-

tional modality information as input, as shown in Figure 3. Eventually, the classification 

is performed by fully connected feed-forward network. 

�� = ���������������([��→�, ��→�])�  (19)

where [∙,∙] denotes the concatenation of bidirectional modality information; transformer 

denotes the transformer encoder layer, and �� denotes the predicted emotion category. 
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Figure 3. The architecture of the Transformer. 

4. Results 

In this section, we evaluate our model on CMU-MOSEI [19]. The implementation de-

tails and the experimental results are illustrated in this part. 

4.1. Dataset and Metrics 

CMU-MOSEI is a human multimodal sentiment-analysis dataset consisting of 23,453 

sentences from YouTube videos, involving 1000 distinct speakers and 250 topics. The gen-

der in the dataset is balanced (57% male to 43% female). The average length of sentences 

is 7.28 s, and acoustic features are extracted at a sampling rate of 20 Hz. Each sample is 

labeled by human annotators with a sentiment score from −3 to 3, including highly nega-

tive, negative, weakly negative, neutral, weakly positive, positive and highly positive. 

The train/validation/test splits are provided by the CMU Multimodal Data SDK, 

wherein the same speaker does not appear in both train and test splits to ensure speaker 

independency. The length of the aligned sequences is 50. Using P2FA [50], the audio 

stream is aligned with the word along the timestep, within which the two modality fea-

tures are averaged. For the text modality, the transcripts are processed with pre-trained 

GloVe [9] word embeddings, and the embeddings are 300-dimensional vectors. For the 

audio modality, the low-level 74-dimension vectors are extracted by COVAREP [51], in-

cluding 12 Mel-frequency cepstral coefficients (MFCCs), pitch tracking and voiced/un-

voiced segmenting features, glottal source parameters, peak slope parameters and max-

ima dispersion quotients.  

Consistent with the previous works [12,52], we adopt the metrics of 7-class accuracy 

(from strongly negative to strongly positive), binary accuracy (positive/negative senti-

ments) and F1 score (harmonic mean of the binary precision and recall). Specifically, the 

predicted digit will be rounded first. For 7-class accuracy, the predicted digit will be com-

pared with the annotated sentiment score from −3 to 3. For binary accuracy, the predicted 

digit will be classified to positive or negative sentiment according to its positivity and 

negativity. The F1 score is the harmonic mean of the binary precision and recall. 
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4.2. Implementation Details 

Our LGCCT is implemented by Pytorch [53] and optimized by Adam [54], with a 

learning rate 1 × 10−3, 40 epochs, a decay rate of 0.1 after 20 epochs, batch size of 24, a 

gradient clip of 1.0 and an output dropout rate of 0.1. The other hyperparameter men-

tioned in Section 3 are shown in Table 1. The dimensions of the hidden states � in the 

transformer are unified to 30. 

Table 1. Detailed dimensions of LGCCT. 

Notation Meaning Value 

� Aligned input-sequence length 50 

�� Word-embedding dimension 300 

�� Audio feature dimension 74 

��� Encoded text feature dimension by BiLSTM 32 

��� Encoded audio feature dimension by CNN-BiLSTM 32 

� Hidden state dimension 30 

� Length-scale logits log50 

The hardware environment for running is as follows: CPU: Intel(R) Xeon(R) Silver 

4210R @ 2.40 GHz; GPU: NVIDIA Quadro RTX 8000; system running environment: Ub-

untu 18.04.6. 

4.3. Baselines 

EF-LSTM. Early fusion LSTM concatenates the inputs from different modalities as 

the input to a single LSTM and classifies the feature vectors. 

LF-LSTM. Late fusion LSTM describes each modality information separately, and the 

fusion takes place at the decision level. 

RAVEN [55]. The proposed recurrent attended variation embedding network is com-

posed of three parts, including nonverbal subnetworks, gated modality-mixing network 

and multimodal shifting. 

MCTN [56]. The cyclic translation mechanism based on RNN is designed to learn 

joint representations. 

MulT [12]. This model uses the cross-modal transformer, namely a deep stack of sev-

eral cross-modal attention blocks, to fuse different modalities. 

MISA [16]. Based on LSTM and pretrained BERT [35], MISA projects each modality 

to two subspaces. 

BBFN [15]. The BERT encoder is utilized to obtain feature representation, which is 

then fused by transformer-like modules. 

4.4. Comparison with Baseline Models 

As shown in Table 2 and Figure 4, our model shows superiority in the balance be-

tween parameters and performance and maintains the higher F1 score than almost all 

models with limited number of parameters. ����  denotes 7-class accuracy; ����  de-

notes binary accuracy, and �1 denotes the �1 score. In terms of performance, our model 

outperforms the other models in ���� and �1 score, except for BBFN, which utilizes the 

BERT encoder, requiring a large number of trained parameters and memory space. It is 

noteworthy that the axis of parameters in Figure 4 omits the range from 1.4 M and 110.4 

M, and, thus, the required parameters for BBFN and MISA are huge. Considering the bal-

ance between parameters and performance, the model scale is enlarged by more than 110 

M parameters for about 4% absolute performance improvement, indicating the imbalance 

tradeoff between performance and computational complexity. Besides, in almost all met-

rics, our model performs better than the three models trained with tri-modality infor-

mation, learning richer modality information. In terms of the number of parameters, our 
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model ranks only second to MCTN. However, the ���� and �1 scores of our model are 

much higher than that of MCTN, by more than 2%, while the ���� is slightly worse than 

that of MCTN by 0.14%. Although the parameters of LSTM-based models are low, perfor-

mance is also limited, and our LGCCT surpass them on almost all of the metrics. This is 

partly due to the fact that they do not take into account the interactions between the mo-

dalities, just concatenating the modalities. Our model adopts efficient modules, such as 

cross-attention and a gate-control mechanism, to fuse the modality information and main-

tain the balance between the source modality and target modality. The experiments indi-

cate the effectiveness of our model. 

Table 2. The performance and the number of parameters on the CMU-MOSEI dataset. 

Method #Params(M) ����(%) ��(%) ����(%) 

MulT 0.961 48.2 80.2 79.7 

MCTN 0.247 47.64 78.87 77.86 

MISA ** 110.915 53.31 80.81 80.26 

BBFN ** 110.548 51.7 85.5 85.5 

EF-LSTM * 0.56 47.4 78.2 77.9 

LF-LSTM * 1.22 48.8 80.6 80.6 

RAVEN * 1.19 45.5 75.4 75.7 

LGCCT (ours) 0.432 47.5 81.0 81.1 

* with tri-modality, namely audio, video and text. ** with pretrained BERT. 

 

Figure 4. Comparison of the �� score of different models on CMU-MOSEI. The proposed LGCCT 

achieves the best performance with an order of magnitude smaller model size. 

4.5. Ablation Study 

To study the effect of different parts on the performance, we conduct some experi-

ments on the CMU-MOSEI dataset. The results are shown in Table 3. First, we evaluate 

the influence of the gate-control mechanism. The ���� drops about 4.6%, indicating the 

effectiveness of the introduced gate units. Second, the audio encoder CNN-BiLSTM and 

text encoder BiLSTM are removed. The LGCCT model outperforms these two models in 

all metrics, suggesting the importance of feature extraction. It is noteworthy that the per-

formance degrades most when the feature encoder is removed, signifying the fact that the 

feature encoder aggregates the original modality information and that the representation 

to the modality-fusing modules is powerful. Finally, the transformer encoder ahead of the 

fully connected layer is removed. The results show that it is necessary to apply the self-

attention module to encode the modality-fused representation. However, the perfor-

mance without a transformer degrades least, but the parameters are cut down most in the 
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ablation study. We assume that the cross-attention operation in the modality-fusing mod-

ule manages to attend to interactions between multimodal sequences, and, thus, the con-

tribution of the last transformer to the performance is restricted. The ablation study im-

plies the function of the components of our model and verifies the contribution of each 

module to the performance. 

Table 3. Ablation study on the CMU-MOSEI dataset. 

Model #Params(M) ����(%) ����(%) ��(%) 

LGCCT 0.432 47.5 81.0 81.1 

w/o gates 0.429 42.9 76.7 76.3 

w/o CNN-BiLSTM & BiLSTM 0.354 40.9 70.7 70.8 

w/o Transformer 0.203 40.3 75.6 78.0 

4.6. Length-Scaled Attention 

To mitigate the problem that the length of the training sequence is fixed while the 

length of the testing sequence may vary, we introduce length-scaled attention. For the 

standard input, the length of the training sequence and the testing sequence are unified 

to 50, which is referred to in Tables 4 and 5. To validate the effectiveness of length-scaled 

attention, we clip the original sequence according to two proportions of the original length: 

80% and 60% of the original one. This experiment configuration yields two other length: 

40 and 30, respectively, denoted in Tables 4 and 5. Then we test/train the variant of LGCCT 

with/without length-scaled attention. Other configurations are kept default. Table 4 

shows great improvement of the model when the length of the training sequence and the 

testing sequence varies, especially at a length of 30. To be specific, when training and test-

ing on data with the same length, the effect of length-scaled attention is not obvious but 

length-scaling outperforms its counterpart by 12.9% and 6.9%, respectively, when training 

and testing on different lengths. A closer look at the result with a length of 30 shows that 

the model without length-scaled attention performs poorly when the testing sequence 

length is 50 but the training one is clipped to 30. For the binary accuracy in Table 4, the 

length-scaled dot product brings the relative improvement of 20%. A similar improve-

ment is also shown in training all test settings with clipped length of 30, wherein the rel-

ative improvement is 11% on accuracy and 30% on the F1 score. Moreover, length scaling 

helps stabilize performance on the F1-score as shown in Table 5, while shorter testing se-

quences lead to serious performance degradation for vanilla attention operation, like a 

57.8% F1 score when testing sequence is cut to 30. Interestingly, the model with length 

scaling does not show superiority over its counterpart without that, which to some extent 

reveals the data efficiency of our LGGCT when the length gap between the training and 

testing sequence is not large. We hypothesize such stable performance occurs because the 

length of text modality and audio modality is not always identical and is forced to be 

aligned, wherein sometimes zero logits are padded to the end of the sequence. This sug-

gests that clipped data may compose of useless zero frames. Furthermore, the variant 

LGCCT with length-scaled attention manages to generalize to the sequence with a length 

different from the training set. 

Table 4. Accuracy comparisons on CMU-MOSEI with different length distributions. 

 All = 50 Part = 30 Part = 40 

Type 
Train All 

Test All 

Train Part 

Test All 

Train All 

Test Part 

Train Part 

Test All 

Train All 

Test Part 

Length scaled 80.8 75.7 65.2 74.4 67.7 

w/o length scaling 81.1 62.8 58.3 77.0 71.9 
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Table 5. F1-score comparisons on CMU-MOSEI with different length distributions. 

 All = 50 Part = 30 Part = 40 

Type 
Train All 

Test All 

Train Part 

Test All 

Train All 

Test Part 

Train Part 

Test All 

Train All 

Test Part 

Length scaled 80.7 76.2 75.3 76.8 74.8 

w/o Length scaled 81.0 77.2 57.8 78.3 72.3 

5. Conclusions 

In this paper, we propose LGCCT, a lightweight gated and crossed complementation 

transformer for multimodal speech emotion recognition. Text encoder BiLSTM and audio 

encoder CNN-BiLSTM are utilized to obtain modality feature expression. At the heart of 

LGCCT, cross-attention modules fuse the modality information with each other, and the 

learnable gate-control mechanism controls the information flow and stabilizes the training 

process. Moreover, we apply length scaling to the attention module to improve the gen-

eralization of the transformer to various testing strings, which can be elaborated from a 

view of entropy invariance. In particular, the attention weight of the same token in the 

attention matrix is supposed to converge to the same value independent of the length. 

From the view of entropy, we can consider the uncertainty as the degree of attention focus. 

The attention scores can be consistent with the length of the input length just by multiply-

ing the hyperparameter �. At the top of the model, the fully connected forward network 

followed by the transformer encoder learns the mapping from modality-fused represen-

tation to emotion categories. In the experiments, we compare our model with baseline 

models on the benchmark dataset and further the ablation study. Our model achieves the 

balance between performance and the number of parameters with only 0.432 M parame-

ters. The results also show the effectiveness of each component, underlying the perfor-

mance and lightweight footprint of our model. Furthermore, the length-scale attention 

does help the model generalize to various sequence lengths under the experiment with 

different sequence lengths. 

From the view of multimodal speech emotion recognition, our method has shown a 

balance between performance and the number of parameters. We attribute this to two 

factors. First, we adopt efficient modules in our network, such as cross-attention and a 

gate-control mechanism. In this way not only can the inter-modality information com-

municate and mingle with each other, but the generated modality-fused information can 

also maintain the balance between the target modality and the source modality. Similar 

efficiency is maintained within the process of feature extraction. Second, we keep the di-

mension of the hidden states low. Just as shown in Table 1, all of the dimension are kept 

approximately 30, except for the input channels. In contrast, many previous works adopt-

ing the BERT encoder [35] have to adjust the input channel to 512 [15,16], far more than 

ours. It is noteworthy that we do not apply any other down-sampling after the feature-

extraction stage, keeping the embedding dimension low and the sequence length the 

same. This design is similar to the classic ideas in computer vision, namely maintaining 

large activation maps while decreasing the quantity of parameters [57]. For a wide neural 

network, not all of the information contained in high-dimensional vectors are useful [58], 

and thus our LGCCT is designed as a narrower network so that the information can be 

more compact. 

From the view of information theory, our entropy-based LGCCT variant is capable 

of generalizing to testing sequences with various lengths. We consider the degree of at-

tention focus as the uncertainty and let the same token converge to the same value inde-

pendent of the length by multiplying the predefined constant �. Since the attention matrix 

is computed by the learnable parameters, the model is supposed to learn the value ideally. 

However, our experiment shows that the model with length-scaling performs more sta-

bly, while the model without length scaling fluctuates in performance. This phenomenon 

indicates that the perspective of entropy really works, and the inductive bias [59] can help 
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the model find better solutions. Actually, the idea of entropy is widely applied to deep 

learning methods. One of the most-typical applications is cross entropy. This criterion 

serves as a loss function to compute the loss between input and target, especially when 

handling a classification problem with multiple classes [60]. More generally, other classic 

perspectives in information theory have been used in deep learning methods [47,61,62]. 

In the future, we will design a more effective gate mechanism, following some gate 

units such as LSTM cell and GRU gates [63]. Furthermore, other modalities like video can 

be considered, so that a tri-modal emotion recognition network can be developed for ap-

plication in realistic scenarios. The effectiveness of length-scaled attention for multimodal 

emotion recognition may shed light on the wider usage of entropy, as well as information 

theory, in the deep learning community. 
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