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Abstract: Recent results by the authors on proton diffractive dissociation (single, double and central)
in the low-mass resonance region with emphasis on the LHC kinematics are reviewed and updated.
Based on the previous ideas that the contribution of the inelastic proton–Pomeron vertex can be
described by the proton structure function, the contribution of the inelastic Pomeron–Pomeron vertex
appearing in central diffraction is now described by a Pomeron structure function.
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1. Introduction

Proton and deuteron diffractive dissociation was intensively studied in the past century
at FNAL and CERN-ISR. The relevant experimental results and their phenomenological
interpretation were covered in a large number of papers, see Refs. [1–3] and references
therein. Recent LHC-related developments are discussed, e.g., in Refs. [4–6]. The basic idea
behind these and similar studies is the identification of the exchanged Pomeron with a flux
emitted by the diffractively scattered proton [7].

A different point of view was taken in Refs. [8–11], where, following C.A. Jaroszkiewicz
and P.V. Landshoff [12], the unknown inelastic proton–Pomeron (pP) vertex was associated
with the deep inelastic scattering (DIS) photon–nucleon structure function (SF), known
from the experiments at HERA. In doing so, G.A. Jaroszkiewicz and P.V. Landshoff [12]
used a high-energy, Regge-behaved formula for the DIS SF, leaving outside the low-energy
(missing mass) resonance structure. Resonances were included in this formalism in a series
of papers [8–11], where, by duality, the high-energy behaviour of the SF was replaced by
its low-energy (missing mass) SF, dominated by direct channel non-linear complex Regge
trajectories, producing finite-width resonances. Now we extend the structure function
formalism to the inelastic Pomeron–Pomeron (PP) vertex to model central diffractive
processes.

Diffractive dissociation is interesting and important for many reasons. One is that
new experimental data are expected from the ongoing LHC run, especially in the central
region, which will help us fix the remaining freedom/flexibility of the models. On the other
hand, the predictions of the model may guide experimentalists in tuning their detectors.
Furthermore, it is important to remember that the high energies, typical of the LHC make
it possible to neglect—in most of the kinematical configurations—the contribution from
secondary reggeons and allow us to use Regge factorisation and concentrate on the nature
of the Pomeron.
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The paper is organised as follows: in Section 2 models of differential cross-sections of
the diffractive processes, including elastic scattering as well as single, double and central
diffractive dissociation are constructed. In Section 3, the treatment of the pP and PP vertices
is introduced based on the formalism of structure functions. The calculated integrated
cross-sections for processes with diffractive dissociation, including fits to the available
measured data, are presented in Section 4. The calculated differential cross-sections are
presented in Section 5. Our results and the conclusions are summarised in Section 6.

2. Differential Cross-Sections

In this section, we summarise and update the basic formulae for elastic scattering,
single diffractive dissociation and double diffractive dissociation (elaborated in a series of
papers [8–11,13]), we also extend the formalism based on the use of structure functions to
central diffractive dissociation and mixed processes. This is an important step on the way
towards the elaboration of a unique and adequate language and relevant set of variables
and measurables, understandable and convenient both for theorists and experimentalists.

Figure 1 shows the main topologies appearing in diffractive dissociation under discus-
sion. It may serve also as a guide to relevant equations that follow.

p

p

p

∆µ(s) =
s

0
1
(s′)ds′.

The transverse displacement (x(s), y(s)) of a proton at a distance s from the IP is related to
its transverse origin (x∗, y∗) and its momentum vector (expressed by the horizontal and vertical
scattering angles Θ∗

x and Θ∗
y, and by ξ = ∆p/p) at the IP via the above optical functions and

the horizontal dispersion Dx(s) of the machine:

y(s) = vy(s) · y∗ + Ly(s) · Θ∗
y

x(s) = vx(s) · x∗ + Lx(s) · Θ∗
x + ξ · Dx(s). (1)

As a consequence of the high ∗, the beam size at the IP is large (σ∗
beam ∼ √ ∗), which reduces

the luminosity for such a running scenario. To eliminate the dependence on the transverse
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Figure 1. Diffraction: elastic scattering (EL); single (SD), double (DD) and central (CD) dissociation;
mixed central and single dissociation (CDS); mixed central and double dissociation (CDD).

The differential cross-section of elastic proton–proton scattering (EL) is:

dσEL
dt

= AELβ2(t)β2(t)|η(t)|2
(

s
s0

)2αP(t)−2
, (1)

where s and t are the Mandelstam variables. Ai with i = EL and, later in the text, i ∈ {SD,
DD, CD, CDS, CDD} are free parameters of dimension [Ai] = mb/GeV2, including also
normalisation constants. The proton–Pomeron coupling squared is: β2(t) = ebt, where b
is a free parameter and b ≈ 1.97 GeV−2 determined in Ref. [13]. The Pomeron trajectory
is αP(t) = 1 + ε + α′t, where ε ≈ 0.08 and α′ ≈ 0.3 GeV−2 [13]. The signature factor is
η(t) = e−i π

2 αP(t); its contribution to the differential cross-section is |η(t)|2 = 1, therefore we
ignore it in what follows. We set s0 = 1 GeV2 for simplicity.

The differential cross-section of proton–proton single diffraction (SD) is:

2 · d2σSD

dtdM2
X
= ASDβ2(t)W̃Pp

2 (M2
X , t)

(
s

M2
X

)2αP(t)−2

, (2)
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where W̃Pp
2 (M2

X , t) is related to the proton SF, Fp
2 (M2

X , t) (see Section 3 for details).
From Figure 1, the differential cross-section of proton–proton double diffraction

(DD) is:

d3σDD

dtdM2
XdM2

Y
= ADDW̃Pp

2 (M2
X , t)W̃Pp

2 (M2
Y, t)

(
ss0

M2
X M2

Y

)2αP(t)−2

, (3)

where W̃Pp
2 (M2

X , t) is the same function as that used in the SD reaction, with correspond-
ing arguments.

Accordingly, the differential cross-sections of proton–proton central diffraction (CD),
central diffraction with single diffraction (CDS) and central diffraction with double diffrac-
tion (CDD) are:

d4σCD
dt1dt2dξ1dξ2

= ACDβ2(t1)β2(t2)W̃PP
2 (M2

Z, t1, t2)ξ
1−2αP(t1)
1 ξ

1−2αP(t2)
2 , (4)

2 · d5σCDS

dt1dt2dξ2dξ2dM2
X
= ACDSβ2(t2)W̃

Pp
2 (M2

X , t1)W̃PP
2 (M2

Z, t1, t2) (5)

×ξ
1−2αP(t1)
1

(
s0

M2
X

)2αP(t1)+2

ξ
1−2αP(t2)
2 ,

d6σCDD

dt1dt2dξ2dξ2dM2
XdM2

Y
= ACDDW̃Pp

2 (M2
X , t1)W̃

Pp
2 (M2

Y, t2)W̃PP
2 (M2

Z, t1, t2) (6)

×ξ
1−2αP(t1)
1

(
s0

M2
X

)2αP(t1)+2

ξ
1−2αP(t2)
2

(
s0

M2
Y

)2αP(t2)+2

,

where W̃PP
2 (M2

X, t) is the contribution of the inelastic PP vertex to the differential cross-
section related to the Pomeron SF, FP

2 (M2
Z, t) as explained in Section 3.

If there are two incoming protons with four-momenta p1 and p2, then ξ1 p1 four-
momentum is carried by one of the two Pomerons and ξ2 p2 four-momentum is carried
by the other one. Consequently, the squared mass of the centrally produced system is:
M2

Z = (ξ1 p1 + ξ2 p2)
2 = (ξ2

1 + ξ2
2)m

2
p +2ξ1ξ2(s/2−m2

p), where mp is the mass of the proton.
Using the fact that m2

p � s, one has: M2
Z ≈ ξ1ξ2s.

Note also that t1 and t2 are connected to the virtualities of the colliding Pomerons:
Q2

1 = −q2
1 = −t1 and Q2

2 = −q2
2 = −t2, where Q1 and Q2 are the virtualities and q1 and q2

are the four momenta of the Pomerons.

3. The Inelastic Pp and PP Vertices

Following Refs. [8–10], we write the Pomeron–proton vertices as:

W̃2
Pp
(M2

X , t) ≡
WPp

2 (M2
X , t)

2mp
, (7)

where:

WPp
2 (M2

X , t) =
Fp

2 (M2
X , t)

ν(M2
X , t)

, Fp
2 (M2

X , t) =
−t(1− x)

4πα(1− 4m2
px2/t)

σ
Pp
t (M2

X , t) , (8)

σ
Pp
t is the total Pomeron–proton cross-section, mp is the mass of the proton, α is the fine

structure constant,

x ≡ x(M2
X , t) =

−t
M2

X − t−m2
p

, (9)
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and
ν(M2

X , t) =
−t

2mpx(M2
X , t)

. (10)

The total Pp cross-section is:

σ
Pp
t (M2

X , t) = σ
Pp
t,0 (M2

X) + σ
Pp
t,res(M2

X , t), (11)

where:

σ
Pp
t,0 (M2

X) = σ0τ8(M2
X)

(
M2

X
s0

)ε

, (12)

and, according to the optical theorem,

σ
Pp
t,res(M2

X , t) =
8π

PCM MX
=m APp

res(M2
X , t̃ = 0) , (13)

with σ0 = 2.82 mb or 7.249 GeV−2 [6],

τ(M2
X) =

e−M2
X/m2

0 − 1

e−M2
X/m2

0 + 1
, m2

0 = 1 GeV2,

PCM ≡ PCM(M2
X , t) =

M2
X −m2

p

2(1− x)

√
1− 4m2

px2/t

M2
X

,

where x is defined by Equation (9). In σ
Pp
t,0 (M2

X), τ(M2
X) to the power of 8 is included. This

provides a sharp enough suppression for σ
Pp
t,0 (M2

X) in the kinematical region where no
dissociation occurs, M2

X < (mp + mπ0)2, and also in the low M2
X region where dissociation

occurs but resonances do not appear.
Note that t 6= t̃. t is connected to the virtuality of the radiated particle, the Pomeron,

in the pp→ Xp process, Q2 = −q2 = −t, where q is the four-momentum of the Pomeron.
t̃ is the squared four-momentum transfer in the Pp → Pp process. Hence, by the optical
theorem, σ

Pp
t,res = =m APp

res(M2
X , t̃ = 0) up to normalisation, where =m APp

res is the imaginary
part of the Pp scattering amplitude that includes the resonances. According to Refs. [8,9],
the latter is given as:

=m APp
res(M2

X , t̃) = ∑
J

[ f (t̃)]J+3/2=mαN∗(M2
x)

(J − <eαN∗(M2
x))

2 + (=m αN∗(M2
x))

2 , (14)

where αN∗ is the nucleon trajectory,

f (t̃) = (1− t̃/t0)
−2, (15)

and t0 = 0.71 GeV2.
The explicit form of the nucleon trajectory is given in Refs. [8,10]. Resonances on this

trajectory appear with total spins J = 5/2, 9/2, 13/2, . . .
The contribution from the PP vertex to the differential cross-section is:

W̃2
PP
(M2

Z, t1, t2) ≡
FP

2 (M2
Z, t1, t2)

νP(M2
Z, t1, t2)

, (16)

where:

FP
2 (M2

Z, t1, t2) =
νP|t1|

4π2α
√
(νP)2 − t1t2

σPP
t (M2

Z, t1, t2) , (17)

is the Pomeron structure function based on the structure function of the virtual photon
given in Ref. [14], and
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νP ≡ νP(M2
Z, t1, t2) =

1
2

(
M2

Z − t1 − t2

)
. (18)

The total PP cross-section is:

σPP
t (M2

Z, t1, t2) = σPP
t,0 (M2

Z) + σPP
t,res(M2

Z, t1, t2), (19)

where σPP
t,0 is identified by σ

Pp
t,0 as in Ref. [6],

σPP
t,res(M2

Z, t1, t2) =
8π

PCM

√
M2

Z

Im APP
res(M2

Z, t̃ = 0) , (20)

PCM ≡ PCM(M2
Z, t1, t2) =

M2
Z−t1

2
(

1+ t2
2νP

)√ 1+t1t2/(νP)2

M2
Z

and νP is given by Equation (18). Based

on Ref. [15]:

=m APP
res(M2

Z, t̃) = ∑
i= f ,P

∑
J

[ fi(t̃)]J+2=m αi(M2
Z)

(J −<e αi(M2
Z))

2 + (=m αi(M2
Z))

2
, (21)

where the index i runs over the trajectories, which contributes to the amplitude. For all
trajectories, we sum over the states with full spins J. The fi(t̃) is the pole residue and given
by Equation (15) for all trajectories uniformly. Note that t̃ is the squared four-momentum
transfer in the PP → PP process while t1 and t2 are connected to the virtualities of the
colliding Pomerons.

The PP→ M2
Z Pomeron–Pomeron channel couples to the Pomeron and the f -meson

by the conservation of the quantum numbers. The explicit form of the Pomeron trajectory
can be found in Ref. [13], while that of the f -meson trajectories are given in Ref. [15]. At
the present stage of research we include only glueballs lying on the Pomeron trajectory.
Ordinary mesons will be added in a forthcoming study.

4. Integrated Cross-Sections

In this section, integrated cross-sections for the SD, DD and CD reactions are pre-
sented. Numerical calculations for CDS and CDD processes are postponed to a later
study.

For SD we have:

2σSD =
∫ M2

X max

M2
X min

dM2
X

∫ tmax

tmin

dt 2 ·
dσ2

SD
dM2

Xdt
, (22)

where M2
Xmin = 1.4 GeV2 [4], M2

Xmax = 0.05s GeV2, tmin = −∞ and tmax = 0 GeV2

(practically tmin = −1 GeV2). The result is shown in Figure 2 with ASD = 0.063+0.043
−0.020

mb/GeV2 resulting from a fit to the experimental data. The theoretical uncertainties in
Figure 2 are correlated with the errors in the data.

For DD one has [4]:

σDD =
∫ M2

X max

M2
X min

dM2
X

∫ M2
Y max

M2
Y min

dM2
Y

∫ tmax

tmin

dt
dσ3

DD
dM2

XdM2
Ydt

, (23)

where M2
Xmin = 1.4 GeV2, M2

Xmax = 0.05ss0/M2
Ymin GeV2, M2

Ymin = 1.4 GeV2, M2
Ymax =

0.05ss0/MY
2
min GeV2, s0 = 1 GeV2, tmax = 0 GeV2 and tmin = −∞ . The result is shown in

Figure 3 with ADD = 9+8.0
−6.5 × 10−5 mb/GeV2 resulting from a fit to the experimental data.
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Figure 2. Integrated SD cross-section. The shaded area corresponds to the uncertainty arising from
the normalisation parameter ASD.
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the normalisation parameter ADD.
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For CD it is convenient to use the variables ∆η = ln s
M2

Z
(pesudorapidity-gap) and ηc

(the center of the centrally-produced system in pesudorapidity, η) [3,4]:

d4σCD
dt1dt2d∆ηdηc

= ACDβ2(t1)β2(t2)W̃PP
2

(
se−∆η , t1, t2

)
(24)

×e
1
2 [αP(t1)−1][∆η+ηc ]e

1
2 [αP(t2)−1][∆η−ηc ] .

Now, the integrated cross-section for CD is:

σCD =
∫ t1max

t1min

dt1

∫ t2max

t2min

dt2

∫ ∆ηmax

∆ηmin

∫ ηcmax

ηcmin

d4σCD
dt1dt2d∆ηdηc

, (25)

where t1min = t2min = −∞, t1max = t2max = 0 GeV2, ∆ηmin = 3, ∆ηmax = ln(s/s0), s0 = 1
GeV2, ηcmin = − 1

2 (∆η − ∆ηmin) and ηcmax = 1
2 (∆η − ∆ηmin) [6].

The results are shown in Figure 4 with ACD = 0.066+0.124
−0.54 mb/GeV2. The value of

this normalisation parameter is obtained using the relation σCD ≈ (2σSD)2

σ
pp
tot

based on Regge

factorisation. The uncertainty is obtained by the calculated uncertainty of 2σSD and the
total experimental uncertainty of σ

pp
tot [16] at 7 TeV.

Δη =ln s

M
Z
2 > 3

100 500 1000 5000 104
0

1

2

3

4

5

6

s [GeV]

σ
C
D
[m
b
]

Figure 4. Integrated CD cross-section. The shaded area corresponds to uncertainties inherent in the
normalisation parameter ACD.

5. Predictions for Differential Cross-Sections

This section is devoted to our predictions for SD, DD and CD multiple differential
cross-sections at

√
s = 14 TeV in the low-mass region.

The MX dependence of SD double differential cross-section is shown in Figure 5.
The visible peaks correspond to nucleon resonances: N∗(1680), N∗(2220) and N∗(2700).
Figure 6 shows the squared momentum transfer dependence of this cross-section: a peak
at low-|t| followed by the usual exponential decrease. The shaded areas around the curves
show the uncertainty of the calculations following from the uncertainty of the normalisation
parameter.
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Figure 5. Mass dependence of the SD double differential cross-section.
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Figure 6. Squared momentum transfer dependence of the SD double differential cross-section.

The MX and MY dependence of the DD triple differential cross-section is shown
in Figure 7 as a surface. Similar to SD, the peaks correspond to nucleon resonances:
N∗(1680), N∗(2220) and N∗(2700). Figure 8 is a “slice” of Figure 7 corresponding to a
fixed MX showing the uncertainty of the calculation originating from the uncertainty of the
normalisation parameter.
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Figure 7. Mass dependence of the DD triple differential cross-section.
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Figure 8. Same as Figure 7 calculated at MX = 1.68 GeV.

The ∆η dependence of the CD quadruple differential cross-section is shown in Figure 9.
The visible peaks correspond to glueball resonances lying on the Pomeron trajectory:
JPC = 2++, 4++ and 6++. Mesons will be included in a forthcomng study.
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Figure 9. Pseudorapidity-gap dependence of the CD quadruple differential cross-section.

6. Summary

In this paper, we presented updated results on modelling single and double diffraction
as well as novel results on modelling central diffraction. The modelling is based on Regge
factorisation accompanied by the identification of the contributions of inelastic vertices by
structure functions.

We stress that one of the main unknown objects is the inelastic Pp vertex. As men-
tioned in the Introduction, in most of the papers on the subject, e.g., in Refs. [1–5], one
associates (following the ideas of Ref. [7]) the Pomeron with a flux radiated by the incoming
proton. The authors of Refs. [8–10], following [12], take a different viewpoint and identify
the inelastic Pp vertex with the proton SF, known from deep-inelastic electron–proton
scattering [17]. In Refs. [8–11], this SF is specified by the direct-channel resonance diagrams
dominated by relevant baryon trajectories producing excited nucleon states (mainly N∗

resonances).
A completely novel result of this paper is the identification of the inelastic PP vertex

with a Pomeron SF. The Pomeron SF is constructed based on the virtual photon SF [14] in
a way it can contain mesonic and glueball resonances. The treatment of the inelastic PP
vertex is crucial in central diffractive dissociation (diagrams 4–6 in Figure 1). They contain
a subdiagram corresponding to collision of two Pomerons (or, more generally, reggeons).
Construction of amplitudes describing scatting of virtual hadrons (by “virtual hadrons” we
mean states lying on the Pomeron (or any reggeon) trajectory) is of course an open problem.
Our present approach is one possibility, although experimental data on central diffraction
is needed for justification or for further guide in theoretical developments.

Finally, we highlight that the main part of the dynamics in diffractive dissociation is
carried by the Regge trajectories, i.e., nonlinear complex functions. The construction of
explicit models of such trajectories is a basic part of this approach, deserving further studies.
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