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Abstract: There is an increasing interest in machine learning (ML) algorithms for predicting patient
outcomes, as these methods are designed to automatically discover complex data patterns. For
example, the random forest (RF) algorithm is designed to identify relevant predictor variables out
of a large set of candidates. In addition, researchers may also use external information for variable
selection to improve model interpretability and variable selection accuracy, thereby prediction
quality. However, it is unclear to which extent, if at all, RF and ML methods may benefit from
external information. In this paper, we examine the usefulness of external information from prior
variable selection studies that used traditional statistical modeling approaches such as the Lasso, or
suboptimal methods such as univariate selection. We conducted a plasmode simulation study based
on subsampling a data set from a pharmacoepidemiologic study with nearly 200,000 individuals,
two binary outcomes and 1152 candidate predictor (mainly sparse binary) variables. When the
scope of candidate predictors was reduced based on external knowledge RF models achieved better
calibration, that is, better agreement of predictions and observed outcome rates. However, prediction
quality measured by cross-entropy, AUROC or the Brier score did not improve. We recommend
appraising the methodological quality of studies that serve as an external information source for
future prediction model development.

Keywords: calibration; machine learning; sparsity; variable selection

1. Introduction

A central aim for medical researchers is developing fit-for-purpose prediction models
of prognosis outcomes [1–3]. With recent advances in prediction modeling, researchers
now have available a wide range of approaches to choose from that can be grouped
into two categories. For example, “data modeling” approaches set up a model structure
describing the assumed data generating mechanism, using the observed data to estimate
the parameters of that model—most of the traditional statistical modeling approaches
belong to this category. In contrast, “algorithmic modeling” does not assume a stochastic
data model, and comprises a variety of mostly nonparametric techniques, which use the
observed data to find a function of the input to predict the output—many of these methods
are referred to as machine learning (ML). The resulting function may be difficult to describe
in terms of classical model structures and parameters but is designed to improve prediction
accuracy compared to traditional models. This is often achieved using methods such as
cross-validation (CV) to balance accuracy of predictions and overfitting [4]. While there are
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two distinct modeling cultures, there is no sharp distinction between them, and they share
the common aim to minimize prediction error (comparing [2] and p. 223, [5]).

These methodology advancements have enabled the estimation of such prediction
models in cases where the number of candidate predictor variables exceeds the number of
observations. Efficient software is available to perform prediction modeling on large data
sets within seconds using model fitting techniques based on data modeling or algorithmic
modeling. Models are tailored to allow for direct variable selection (e.g., the Least Absolute
Selection and Shrinkage Operator, Lasso, or statistical boosting [6,7]). These approaches
select smaller variable subsets, improving the interpretability of results.

The traditional data modeling approach defines a suitable model structure that consists
of: (1) a set of (candidate) predictor variables, (2) an often linear additive formula that
weighs and combines the values of those predictors into a score and (3) an assumed
distribution of the outcome given that score. Traditional inference techniques such as
p-values or information criteria may then be used to iteratively reduce the set of predictor
variables or extend the model with interactions or nonlinear terms [8–10]. Naturally, the
assumed model structure represents a plausible mechanism that captures the outcome
variability as observed in the data. Hence, model development is usually guided by the
knowledge of domain experts (i.e., domain expertise). Also, the results from previous related
studies (i.e., background knowledge) guide the selection of candidate predictors and their
functional form in the model [11].

Algorithmic modeling approaches such as ML do not require similar assumptions as
these approaches are designed to discover patterns from the observed data automatically.
As a consequence, it has been argued that ML approaches require more training data to
obtain prediction models that are as reliable as traditional modeling approaches [12]. More-
over, even if an ML algorithm is able to identify relevant predictor variables from a larger
candidate set automatically, incorporating external information in the selection process
may improve interpretability, variable selection accuracy, and consequently, prediction
performance. This has been demonstrated using traditional modeling approaches, for in-
stance, Bergerson et al. [13] proposed a weighted Lasso approach combining a penalty with
weights based on external information. However, it is unclear to which extent, if at all, non-
parametric algorithmic modeling approaches may benefit from using external information
derived from prior studies, especially if those studies used traditional statistical modeling
approaches, or even applied suboptimal methodology. Therefore, we investigated whether
background knowledge generated by traditional modeling approaches, in particular a
preselection of the predictor variables performed in previous studies by Lasso regression or
by univariate selection, may help inform the design of ML models to obtain more accurate
predictions. We focused on methods for binary outcomes in the setting where the number
of candidate predictors is large but generally smaller than the number of observations. To
investigate the benefit of background information applied with ML methods, we study the
widely applied random forest (RF) [4,14].

The remainder of the manuscript is organized as follows. In Section 2, we briefly
introduce the prediction methods considered in this paper and outline a typical prognos-
tic research question arising in pharmacoepidemiologic research which motivated our
investigation. We describe a large data set connected to the research question which has
many common properties of Big Data. The data set is characterized by consisting of mainly
binary predictor variables with extremely unbalanced distributions and two roughly well-
balanced binary outcome variables. This data set will be used as the basis of a complex
plasmode simulation, which will be explained subsequently. After reporting the results of
our simulation in Section 3, the final Section 4 concludes with a discussion.



Entropy 2022, 24, 847 3 of 16

2. Materials and Methods
2.1. Methods to Train Models
2.1.1. Logistic Regression

The logistic regression model predicts the expected value of a binary outcome variable
Y ∈ {0, 1} by a linear combination of p predictor variables X1, . . . , Xp as follows:

Pr(Y = 1) = expit
(

β0 + β1X1 + . . . + βpXp
)

(1)

where expit(x) = exp(x)/{1 + exp(x)}. The popularity of the logistic regression model
may stem from the fact that the regression coefficients β1, . . . , βp can be interpreted as
the log odds ratios with respect to the occurrence of an event (Y = 1) associated with
a unit difference in X1, . . . , Xp. The parameter β0 corresponding to a constant X0 = 1
serves to calibrate the model such that the sum of model predictions equals the sum of
outcome events. The model parameters β0, . . . , βp are usually estimated by maximizing the
logarithm of the likelihood, that is, the logarithm of the joint probability of the observed
outcomes given the predictor variables and the model:

`(β; x, y) = ∑
i

yi log(π̂i) + (1− yi) log(1− π̂i),

where π̂i denotes the estimated probability of Y = 1 and yi the observed outcome for
observation i. Predictions can be obtained by plugging in the estimates of β0, . . . , βp and
the observed values of the predictors X1, . . . , Xp for an individual into (1). In order to
accommodate the nonadditive effects of predictors in the model, one can define further
predictor variables as product terms of other predictors. Moreover, the nonlinear effects
of continuous predictors can be considered by defining a set of nonlinear transformations
of a continuous predictor as further predictor variables. Polynomial transformations,
various types of spline bases and fractional polynomials are common choices for this
task [11]. To include variable selection into the logistic model, we will contrast the following
two approaches.

Univariate selection: In real studies, it is not clear up front which variables should be
used as predictors. Although not recommended, and despite there being no theoretical
justification for it, univariate preselection is still a popular method to reduce the number
of variables to include [15,16]. Here, each candidate predictor variable is evaluated in
a univariable logistic regression model as the only predictor variable. Those predictors
that exhibit a “significant” association with the outcome variable Y are considered for
the multivariable model. The significance level α determines how many variables will be
included and is often set to 0.05 or 0.20.

Lasso logistic regression: In order to avoid overfitting or overparametrization of a model
by estimating too many parameters from a data set with a limited number of observations,
regularization approaches were developed. One of the most popular approaches is the
Lasso which is able to handle regression problems in which the number of predictors
approaches or even exceeds the number of observations. Here a penalty term is subtracted
from the log-likelihood, equal to a multiple of the sum of absolute regression coefficients,
such that the penalized log-likelihood becomes

`∗(β; x, y) = `(β; x, y) + λ ∑
j

∣∣β j
∣∣ (2)

The multiplier λ is a hyperparameter in model fitting which is often optimized by
minimizing cross-entropy by CV.

2.1.2. Random Forest

An RF is an ensemble of classification or regression trees in which each tree is grown
on a bootstrap resample of the data set [17]. The number of trees in the ensemble is a
model parameter. Each tree is constructed recursively: at a given node observations are
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split into two distinct subsets resulting in two child nodes. This procedure is repeated as
long as each node contains a minimum number of observations (in which case it is called
a terminal node), constituting a user-chosen parameter of an RF. At each node, the split
procedure considers a random subset of the variables in the data set, the size of which is
another parameter of the model and is often set to

√
p (rounded to the next largest integer

value), where p is the number of input variables. For each candidate variable, an optimal
split point is selected based on a loss function chosen by the user. Among all candidate
variables, the one is chosen that optimizes the loss function at its optimal split point. To
obtain predictions for an observation the predictions from each tree for that observation
are averaged across the ensemble.

While the procedure above is very generic, probability RFs according to Malley et al. [18]
were designed to not only provide accurate discrimination but also consistently estimate
probabilities of Y = 1. In the case of a binary outcome, they use the Gini index measuring
node impurity as the splitting criterion, so that the distribution within the child nodes is more
homogenous than in the parent node. Furthermore, the minimum node size is set to 10%, and
no pruning of the individual trees is performed. A binary prediction in each tree is obtained as
a majority vote in the terminal node, and these predictions are then averaged over the whole
ensemble to obtain the final probability estimate.

An attractive feature of RFs is the estimation of variable importance using out-of-
bag data. Since the variable importance based on the Gini index is known to attribute
higher importance to predictors with more splitting points (e.g., continuous variables or
categorical variables with more than two categories), alternative approaches, for example,
based on permutations of the individual predictors, are preferred [19].

2.2. Methods to Evaluate Performance of Model Predictions

In order to evaluate how well a model predicts the outcome, several performance
measures are available [20]. Given the model predictions π̂i, their logit transformations
η̂i = log[π̂i/(1− π̂i)] and the true outcome values yi in a validation set; i = 1, . . . , N; we
considered the following performance measures:

• Area under the receiver operating characteristic curve (AUROC) or concordance
statistic: Ei:yi=0, j:yj=1 I(π̂i < π̂j); ideal value 1

• Brier score: E(yi − π̂i)
2; ideal value 0

• Calibration slope: slope of a logistic regression of yi on η̂i; ideal value 1
• Cross-entropy: −∑

i
[yi log(π̂i) + (1− yi) log(1− π̂i)]; ideal value 0

2.3. Motivating Study

As a motivation for our research, we considered a pharmacoepidemiologic research
question in which data on prescriptions of medicines and on hospitalizations were used
to prognosticate the adherence to the prescription of a particular blood-pressure-lowering
medicine. The research question arose during the conduct of the study of Tian et al. [21] but
was not further considered by the authors. In particular, out of a registry of prescriptions
and hospitalizations run by the Austrian social insurance institutions, a data set with all
new prescriptions of lisinopril, an angiotensin converting enzyme inhibitor, that were filled
between 2009 and 2012 in Austria was assembled. Patients were included if they filled
a prescription of lisinopril following a wash-out period of at least 180 days. After that
index prescription, patients were followed until they filled another prescription of the
same substance or until six weeks after the index prescription, whatever happened earlier.
Patients in whom the wash-out period of 180 days preceding the index prescription or the
outcome assessment window of six weeks following the index prescription were not fully
represented in the database were excluded, and also patients who died within 6 weeks from
index prescription were excluded. The outcome of interest was treatment discontinuation:
patients who did not fill a prescription within six weeks were considered as ”discontinuing
treatment” (Y = 1), and patients who filled a prescription within 6 weeks as ”continuing”
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(Y = 0). The purpose of the prediction model was to identify patients who are at risk for
discontinuation of the lisinopril therapy.

The full data set consisted of 198,895 index prescriptions from 198,895 different patients
and 1151 candidate predictors. Demographic descriptors, “recent” prescriptions and
hospitalizations (within 14 days before the index prescription) and “previous” prescriptions
and hospitalizations (from 180 days to 14 days before index prescription) were available
as predictors. Prescriptions were recorded on the basis of the anatomical-therapeutical-
chemical classification of level 2 [22] and for hospitalizations, the discharge diagnoses were
coded as ICD-10 codes. Moreover, the occurrence of any hospitalization in the ”recent” and
”previous” time windows and the occurrence of any hospitalization longer than 14 days in
those windows constituted four further binary variables. A data dictionary for the data
set is available in Section S1 of the supplemental material. Apart from age in years and
year of prescription, all variables were binary and their levels were coded as 0 (absent) and
1 (present). The distribution of the proportions of level 1 for all binary variables is depicted
in Figure 1. The majority of binary predictor variables were sparse; the median of their
averages was 1/1530, and the first and third quartiles were 1/3371 and 1/112, respectively.
The outcome status “discontinuation” occurred with a relative frequency of 0.558.
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Figure 1. Motivating study: prevalence of 1150 binary predictors.

Fitting an RF with the default settings of the R function ranger::ranger on three-
fourths of the data and evaluating predictions in the remaining fourth we obtained an
AUROC of 0.646 and a calibration slope of 1.11. Figure 2 and Table S1 show the distribution
of Gini variable importance values across the variables.
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Figure 2. Motivating study: Bar chart indicating the distribution of permutation-based predictor
importance values (increase in prediction error by permuting a predictor) in an RF model based on
150,000 individuals. Predictors are ordered by descending importance with more important predictors
shown on the left. Permutation predictor importance values were estimated using out-of-bag data
in the RF procedure. Here, 537 predictors with negative importance values are not shown. The
20 variables with the highest importance values are provided in Supplemental Table S1.

2.4. Setup of the Plasmode Simulation Study

A plasmode simulation study based on the observed properties of the motivating
study was performed. The description of the simulation study follows the structured
reporting scheme ADEMP as recommended by Morris et al. [23].

2.4.1. Aims

The aim of our plasmode simulation study was to evaluate different strategies to
incorporate background knowledge generated from “preceding studies” in a newly devel-
oped ML-based prediction model in a “current study” with respect to the performance of
the resulting model in a validation set. In particular, we considered several strategies to
preselect predictor variables for the prediction model.

2.4.2. Data Generating Mechanisms

Our motivating study was used as the basis of this simulation study. The study data
set is considered as the “population” and serves to define training sets for two preceding
studies and a current study, and a validation set is used for evaluating the performance of the
models developed in the current study. The data set contains the outcome variable treatment
discontinuation (Y). To also cover situations with a stronger association of the outcome variable
with the predictors, we simulated a second outcome variable as follows. First, we divided the
complete data set randomly into four approximately equally sized disjoint subsets. Second,
we fit an RF using three subsets as the training data set with all available predictor variables.
This step was repeated for all four combinations of subsets. Third, we predicted the outcome,
that is, we computed the predicted probabilities of discontinuation based on the RF models in
the respective remaining fourth of the data set, and transformed the predicted probabilities
into log odds. Fourth, we multiplied the log odds with a constant of 3.5 and back-transformed
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these “reinforced” log odds into “reinforced” probabilities. Fifth, for each observation, we
sampled a new binary outcome variable based on Bernoulli distributions with parameters
equal to the reinforced probability of that observation. This outcome variable, Ystrong, was
further considered as another target of prediction models. The relative frequency of the status
“event” for Ystrong was 0.634, and the RF achieved a cross-validated AUROC of 0.801 and a
calibration slope of 1.17.

We defined 10 scenarios by varying the sample size (4000, 2000, 1000, 500, 250) and the
predictability of the outcome variable (weak or strong). In each scenario, the same sample
size was used for the two preceding studies and the current study. The validation set had a
fixed size of 10,000 observations and was also redrawn at each iteration of the simulation.
Due to the sparsity of most binary predictor variables, they were likely to comprise only a
single value in the simulated samples. The likelihood for such degenerate distributions
increased with decreasing sample size. Hence the number of useable candidate predictors
grew with sample size, which is typical for Big Data problems.

We considered 1000 independent replications in each scenario.

2.4.3. Estimands and Other Targets

The estimands in this study were the predictions from the model trained with the
data from the “current study” evaluated in the validation set. Moreover, for descriptive
purposes, we also recorded the number of predictor variables selected in the preceding
studies and the number of non-degenerate predictor variables.

2.4.4. Methods

The first preceding study was analyzed using Lasso logistic regression, selecting
the penalty parameter by optimizing the 10-fold cross-validated deviance (the default in
cv.glmnet of the R package glmnet [24]). The second preceding study was analyzed by
fitting a logistic regression model with all predictors that were significant at a level of 0.05
in univariate logistic regression models.

The current study was analyzed using an RF with five different models (M1–M5) to
consider background knowledge, depending on which set of variables was used as input
for the RF:

• All variables (M1, naïve RF);
• Those variables that were selected by the Lasso in the preceding study 1 (M2);
• Those variables that were selected by the Lasso in preceding study 1 and univariate

selection in preceding study 2 (M3);
• Those variables that were selected by the Lasso in preceding study 1 or univariate

selection in preceding study 2 (M4);
• Those variables that were selected by the “better performing” model. This model was

determined by applying the model from preceding study 1 (Lasso) and the model
from preceding study 2 (univariate selection) unchanged on the data of the current
study and comparing the resulting area under the ROC. The model with the higher
AUROC was considered the “better performing” model. (M5)

If the set of input variables contained variables that were degenerate in the current
study, then these degenerate variables were not used by the RF. The five RF models were
then applied to the validation set to compute the performance measures.

In case Lasso or univariate selection selected no variables, we assumed that back-
ground knowledge was not available as if the corresponding preceding studies had never
been published. Consequently, we proceeded as follows:

• If for M2 no variables were selected, we used all candidate predictors instead (no
preceding variable selection);

• If for M3 the intersection was the empty set, we used the result of M4;
• If for M4 the union of the variable sets was the empty set, we used all predictors;
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• If for M5 one of the models was empty, we used the predictors from the other model as
input; if none of the preceding studies selected any predictors we used all predictors
in the current study.

2.4.5. Performance Measures

As performance measures, we considered the AUROC, Brier score, calibration slope
and cross-entropy introduced in Section 2.2. These measures were computed in each
replication and were then summarized by their respective means and standard devia-
tions or, in the case of the calibration slope, with the mean squared values of their log-
arithms across the replications of each scenario [25]. The latter quantity directly eval-
uates the deviation of the log calibration slope from its ideal value of zero. For the
cross-entropy, we evaluated the maximum contribution in the validation set given by
max

i
{−[yi log(π̂i) + (1− yi) log(1− π̂i)]}.

2.4.6. Pilot Study

The simulation study was first conducted with 100 replications for feasibility, then
repeated with 1000 replications.

2.4.7. Software

We used the statistical software R (version 4.0.4) and the following software packages
and functions to fit the models:

• Logistic regression: glm with argument family=binomial(link=logit);
• Lasso logistic regression: selection of penalty and model fitting with glmnet::cv.glmnet

(version 4.1-3, [24]);
• Random forest: ranger::ranger (version 0.13.1, [14]) with option probability=TRUE

to obtain a probability RF.

All remaining parameters were left at their default values.

3. Results
3.1. Descriptives
3.1.1. Number of Candidate Predictors

Since the candidate predictors had sparse distributions, they were likely to collapse to
degenerate distributions in smaller data sets. The mean (minimum, maximum) number of
non-degenerate variables for sample sizes 4000, 2000, 1000, 500 and 250 were 966 (918, 1002),
810 (773, 845), 638 (598, 702), 480 (432, 529) and 347 (293, 392), respectively.

3.1.2. Selected Predictors in the Preceding Studies

The number of selected variables by Lasso and by univariate selection depended on the
number of candidate predictors but also on sample size. Table 1 provides descriptive statistics.

Table 1. Simulation study: number of selected variables (mean [range]) in preceding studies. N, sam-
ple size. Results are based on 100 replications.

Predictability N Lasso Univariate Selection
(α = 0.05)

Union of Lasso and
Univariate Selection

Intersection of Lasso and
Univariate Selection

Strong 4000 117 [58, 196] 210 [175, 228] 277 [220, 346] 50 [33, 69]
2000 103 [47, 178] 111 [105, 118] 179 [129, 246] 35 [22, 51]
1000 75 [29, 139] 55 [51, 60] 109 [67, 167] 22 [15, 31]
500 56 [11, 112] 27 [25, 30] 71 [32, 130] 12 [8, 17]
250 33 [9, 89] 14 [11, 15] 41 [17, 95] 6 [1, 11]

Weak 4000 68 [22, 152] 84 [60, 102] 130 [81, 212] 22 [13, 35]
2000 55 [11, 151] 52 [35, 76] 93 [56, 174] 15 [7, 25]
1000 37 [0, 131] 30 [17, 45] 60 [29, 144] 8 [0, 18]
500 21 [0, 88] 17 [4, 29] 34 [4, 96] 3 [0, 10]
250 14 [0, 76] 8 [0, 15] 20 [2, 81] 1 [0, 7]
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3.2. Comparison of Performance

Under weak predictability, the naive RF, that is, the RF not using any background
knowledge (M1), resulted in the best performing models at validation for any sample
size (see Tables 2–4 for mean cross-entropy, mean AUROC and mean Brier score and
Tables S2–S10 for the numerical values of mean calibration slope, MSE of log calibration
slope, maximum contribution to cross-entropy and standard deviations of all measures).

Table 2. Simulation study: mean cross-entropy achieved by Lasso models and RF models with
different preselection of variables in preceding studies for M1: no preselection; M2: preselection based
on Lasso; M3: preselection based on intersection of Lasso and univariate selection; M4: preselection
based on union of Lasso and univariate selection; M5: preselection based on optimum of the Lasso
and univariate model. Results are based on 1000 replications. Bold numbers indicate optimal model
in a scenario.

Predictability Sample Size Lasso M1 M2 M3 M4 M5

Strong 4000 5081 5050 4962 4990 5024 5045
2000 5152 5116 5034 5073 5090 5122
1000 5253 5195 5126 5185 5178 5236
500 5396 5296 5255 5368 5298 5419
250 5599 5428 5455 5609 5466 5581

Weak 4000 6621 6595 6606 6633 6625 6644
2000 6660 6624 6662 6688 6677 6707
1000 6713 6662 6733 6751 6749 6796
500 6777 6711 6816 6839 6850 6897
250 6846 6767 6894 6957 6959 6987

Table 3. Simulation study: mean AUROC achieved by Lasso models RF models with different
preselection of variables in preceding studies for M1: no preselection; M2: preselection based on
Lasso; M3: preselection based on intersection of Lasso and univariate selection; M4: preselection
based on union of Lasso and univariate selection; M5: preselection based on optimum of the Lasso
and univariate model. Results are based on 1000 replications. Bold numbers indicate optimal model
in a scenario.

Predictability Sample Size Lasso M1 M2 M3 M4 M5

Strong 4000 0.809 0.812 0.818 0.813 0.811 0.809
2000 0.803 0.807 0.812 0.805 0.805 0.801
1000 0.794 0.802 0.803 0.794 0.797 0.790
500 0.780 0.795 0.789 0.775 0.785 0.773
250 0.760 0.785 0.767 0.744 0.769 0.756

Weak 4000 0.627 0.630 0.628 0.623 0.623 0.620
2000 0.619 0.624 0.617 0.611 0.614 0.609
1000 0.606 0.615 0.601 0.593 0.603 0.596
500 0.587 0.605 0.579 0.562 0.586 0.577
250 0.569 0.592 0.562 0.547 0.563 0.556
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Table 4. Simulation study: mean Brier score achieved by Lasso models and RF models with different
preselection of variables in preceding studies for M1: no preselection; M2: preselection based on
Lasso; M3: preselection based on intersection of Lasso and univariate selection; M4: preselection
based on union of Lasso and univariate selection; M5: preselection based on optimum of the Lasso
and univariate model. Results are based on 1000 replications. Bold numbers indicate optimal model
in a scenario.

Predictability Sample Size Lasso M1 M2 M3 M4 M5

Strong 4000 0.167 0.166 0.163 0.164 0.165 0.166
2000 0.170 0.168 0.169 0.167 0.168 0.170
1000 0.174 0.170 0.171 0.171 0.171 0.172
500 0.179 0.177 0.177 0.178 0.176 0.179
250 0.188 0.180 0.184 0.188 0.182 0.186

Weak 4000 0.235 0.234 0.235 0.237 0.235 0.236
2000 0.237 0.235 0.237 0.238 0.238 0.239
1000 0.239 0.237 0.240 0.240 0.241 0.244
500 0.242 0.239 0.245 0.245 0.244 0.247

250 0.245 0.241 0.247 0.250 0.250 0.252

Under strong predictability, naive RF not using background knowledge was among
the optimal methods when evaluating AUROC, Brier score and cross-entropy (Tables 2–4).
Considering the calibration slope, however, the naive RF produced the worst calibrated
models (Figure 3). This was particularly evident when considering the MSE of log cali-
bration slopes, which combines average performance with the variation of performance
(Tables S4 and S5). For this measure, the RF fueled with predictor sets derived from the
union of Lasso and univariate selection performed best at sample size 250. At higher
sample sizes, the RF using the intersection of Lasso and univariate selection outperformed
all others with one exception at sample size 1000, where method M5, the RF using the
preselection based on the “better performing” model (among the Lasso and the univariately
selected model trained in the preceding studies) performed equally well.
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The non-optimality of the naive RF mainly originated in calibration slopes that were
too high, that is, in predictions that were too narrowly scattered around the observed event
rate. This behavior attenuated with increasing sample size, but the mean calibration slope
was still close to 1.3 at N = 4000. With weak predictability, the opposite was observed: at
N = 250, the mean calibration slope was 0.8, and it reached a value close to 1 at N = 4000.
In Figure 3, we compared the mean calibration slopes of the naive RF under weak and
strong predictability to those of the Lasso models, and to those of the RF using background
knowledge in various ways. Unlike the naive RF, mean calibration slopes of the Lasso
were fairly constant and independent of sample sizes, yielding values between 1.02 and
1.22. The calibration slopes of the RF using background knowledge moved towards those
of the naive RF with increasing sample sizes. This behavior led to an improvement of
the calibration slopes at weak predictability but to a paradoxical shift away from 1 with
increasing sample sizes at strong predictability. The mean calibration slopes of the RF
based on the intersection of selected sets (M3) at weak predictability and smaller sample
sizes were impeded by highly influential points, as also suggested by the high standard
deviations of that measure (Table S3).

4. Discussion

This plasmode simulation study evaluated if RFs benefit from the preselection of
predictors from previous studies that employed a different modeling method. In the sim-
ulation, we varied two main drivers of predictive accuracy: the actual predictability of
the outcome and the sample size. A special feature of our study was that the number of
candidate predictors naturally increased with sample size, as the set of candidate predictors
mainly consisted of sparse binary variables. While commonly used measures for predictive
accuracy like the AUROC or the Brier score did not improve when restricting the set of
candidate predictors, RF models achieved better calibration, that is, better agreement of pre-
dictions and observed outcome rates, when the scope of candidate predictors was reduced
based on the knowledge created in previous studies. This was observed when the outcome
was strongly predictable, but not under weak predictability, where the naïve RF was already
the optimal method among the comparators and across all performance measures.

It is remarkable that under strong predictability, the calibration of the naïve RF could be
improved by preselection given that the preselection was not based on measures compatible
with the nonparametric nature of RFs, but rather based on a linear predictor model fitted
with the Lasso, with or without combination with univariate selection. At smaller sample
sizes, the RF benefitted from more generously sized candidate sets, while with larger
samples, it performed best when based on smaller sets defined as the intersection of
Lasso and univariate selection. Interestingly, enriching the candidate set or even blending
the Lasso selection with results from univariate selections did not severely worsen the
RFs. This is in contrast with results from traditional multivariable modeling, where it is
known that because of correlations between predictors, univariate association with the
outcome is neither a necessary nor a sufficient condition for a predictor to be important in
a multivariable context [15]. When training RFs, for each split in each tree, only a random
subset of the predictors is considered and the split is performed in the predictor with the
strongest univariate association with the outcome. Hence, by its construction, a RF may
benefit from choosing from candidate predictors with strong univariate associations.

Under weak predictability, there was no benefit in restricting the candidate set to pre-
dictors selected in preceding studies. Probably, the reason for this was the poor performance
and high instability of the models from the preceding studies in these scenarios. At weak
predictability, a model can hardly safely distinguish between real and irrelevant predictors
as the true predictor-outcome associations are heavily overlaid with noise. Hence, when
using predictors that were included in models derived in previous studies, one should also
pay attention to the predictive performance of those models. Poorly performing models
are probably not so relevant to consider.
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The AUROC has several shortcomings because of its nonparametric construction and
hence should not be used exclusively to evaluate the performance of prediction models.
A high AUROC is achieved by a prediction model as soon as the predictions are correctly
ordered, but for that ordering the absolute predicted probabilities are irrelevant. Hence,
even a prediction model that provides predictions that are uniformly too high or too low,
or are too far off or too close to the marginal outcome rate, may yield a high AUROC.
Consequently, the AUROC may obscure problems with the calibration-in-the-large as well
as calibration problems such as over- or underfit (see Figure 4 for exemplary calibration
plots). However, in the application of a model, the actual accuracy of the predicted
probability for an individual is important, and not so much whether it is larger or smaller
than that of another individual. Also, the Brier score or the cross-entropy cannot reveal local
biases of the prediction model as they average or sum up the prediction error (measured
by different loss functions) over the observations of a validation set. For example, it is still
possible that there are differences in bias and prediction quality between high-risk and
low-risk individuals, which are averaged in these scores.
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Figure 4. Calibration plots (independent validation) for models developed on two data sets of size
N = 250 randomly picked from the plasmode simulation. Observed outcome rates in 10 groups de-
fined by the deciles of the predicted probabilities are plotted against the mean predicted probabilities
in these groups, and the regression line from a logistic model with the log odds of the predicted
probabilities as the only predictor is overlaid. Upper panels: data set with weak predictability, lower
panels: data set with strong predictability. M1 (left): RF with no preselection; M3 (right): RF with
preselection based on the intersection of Lasso and univariate selection in preceding studies.
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Calibration as a measure of predictive performance has not yet received the attention
it deserves in the evaluation of prediction models [26]. In particular, in this study, we
focused on the calibration slope rather than on the calibration in the large. The latter
measure evaluates if the mean prediction matches the observed frequency of the predicted
outcome status, and is of importance particularly if prediction models are transferred to
different target populations. This was not the case in our study and miscalibration in
this sense was not expected. We concentrated our investigation on the calibration slope
instead. Applying an ideally calibrated model for outcome prediction, one can expect that
the predicted probability of the outcome of interest for a subject is similar to the actual
relative frequency of the outcome status in similar individuals. Adequate calibration is thus
related to the local unbiasedness of residuals, which can be easily checked by smoothed
scatterplots of residuals against model predictions. Such plots are central diagnostics in
traditional regression modeling but seem to have fallen into oblivion in many contemporary
validations of prediction models, which are dominated by nonparametric discrimination
measures like the AUROC [27,28].

Already, in his seminal paper on RFs [17], Breiman proposed the iterated estimation of
a RF in order to reduce the number of candidate predictors and improve the performance
of the forest. In particular, he suggested fitting a RF and evaluating the variable importance
for each predictor. In a second run, only the most important predictors from the first run are
included. However, Breiman suggested iterating the application of a RF within a single data
set. In our study, we simulated the preselection of variables in preceding studies, a situation
that prognostic modelers are often confronted with in practice if they screen the literature
on similar preceding studies. Moreover, we mimicked another typical practical situation
that modelers often face: the preselection of variables in preceding studies is often not
compatible with the considered modeling algorithm in the current study, and may even lack
methodological rigor. While the use of background knowledge for preselecting predictors
has been recommended [29], previous studies on the same topic are often a questionable
source if conducted with inferior methodological quality or if poorly reported [30,31].

Previous comparative studies that have evaluated performance at different sample
sizes, in particular simulation studies, have often focused on sets of predictors that did
not differ between sample sizes. Our study mimicked the typical situation when working
with real data sets that the larger the sample size, the more potential predictors can be
considered because sparse predictors are more likely to have degenerate distributions in
smaller samples. As a consequence, there is a natural preselection towards more robust
predictors in smaller samples, and hence some quantities such as the Brier score or cross-
entropy do not decrease proportionally to sample size as one might expect with a constant
predictor set.

We assumed the same sample sizes for the preceding studies and the current study.
This limitation kept the numerical results concise, and an extension is probably not neces-
sary. In a real prediction modeling situation, a researcher might not rely on background
knowledge from “smaller” studies than the current study. In contrast, if predictor sets have
been generated by larger preceding studies, the observed effects on the performance of the
RF will almost certainly amplify.

We used observational data as our “population”, and hence we were unable to say
which predictors were truly important and which were irrelevant for prediction. We tried
to address this limitation by providing variable importance measures for the variables
based on the RF fitted on the full data set. Still, since we do not know the data generating
mechanism, we are unsure if ideally predictors should be combined additively or by means
of more complex models such as those revealed by RFs. Because many predictors were
binary and sparse, additivity is perhaps a plausible assumption. Nevertheless, there could
be predictors that are optimally combined using logical OR links. In our study, the predictor
variables had differing importance values, but one could also consider variations of this
data-generating mechanism. First, there could be a group of only a few variables with high
importance, while all other variables have low importance. Second, all variables could
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have very similar importance. In the first scenario, it is expected that preceding studies
could also identify these important variables even if they used Lasso or univariate selection.
In the main study, this would also be revealed by the RF, even if it was not fueled with
the knowledge from the preceding studies. In the second scenario, when all predictors
are similarly (un)important, the selection in preceding studies may be quite random and
have no relevance for the main study apart from reducing the variable space. However,
these conjectures cannot be proved with our study. By creating a second, artificial outcome
variable in which the association of the predictors with the outcome was reinforced, we
could study how the strength of predictability of the outcome impacts the benefits of using
knowledge from preceding studies.

In our simulation, we assumed that preceding and main studies were sampled from
the same population. This assumption is not always justified in practice, where the cohorts
used in different studies are sampled from different populations, with different distributions
and different predictors being important for predictions in those populations. In such cases,
results from preceding studies will not be fully transferable to the main study. Similarly,
preceding studies’ results will be less informative if based on small samples, as then the
distributions of predictors and their associations with the outcome will vary randomly
between studies.

In our motivating example, many predictors indicated the prescription of particular
substances, and it is plausible that patients with the same etiology may have received
different substances depending on the preferences of the prescribers, leading to a negative
correlation between the substance indicators. In such situations, the elastic net [32] might be
preferred over the Lasso as it does not select only one predictor out of a group of correlated
predictors but tends to include several predictors from such a group. This may provide
more robustness against model instability. Although we did not include the elastic net as
a method performed in preceding studies, our M4 (RF based on the union of Lasso and
univariate selection) may be seen as an approximation to it. By ignoring correlations among
predictors, univariate selection may select more than a single representative from a group
of correlated predictors with similar associations with the outcome. Therefore, its selection
path somehow approximates, for example, the elastic net or the group lasso. Under strong
predictability, M4 indeed often outperformed M2 (RF based on Lasso selection). Under
weak predictability, however, we could not observe any benefits from applying M4, and
then we would also not expect any benefits from using the elastic net instead of the Lasso.

Previously, Heinze et al. [10] pointed out the importance of including predictors with
proven strong associations with the outcome in regression models irrespective of their
observed association with the outcome in the current study. RFs allow the prioritization
of predictors in constructing trees, and a useful and practically relevant strategy may be
to classify predictors by their previous relevance in prediction models. Predictors that
were selected by preceding studies could be prioritized when constructing trees, while
predictors that were not previously used in models may be assigned a lower probability
to be considered for node splits. For example, in the ranger package the parameters
split.select.weights and always.split.variables allow such a distinction between
“strong” and “unclear” predictors, by assigning higher weights to predictors assumed
to be strong, or requesting to always split these variables. It was out of the scope of
this investigation to optimize and derive general recommendations on the use of these
parameters to incorporate background knowledge into RF fitting.

5. Conclusions

Overall, we recommend the use of background knowledge generated by preceding
studies when RFs are considered for developing prediction models. Such knowledge
may greatly help to improve the calibration of RF predictions and particularly to avoid
underfitting. Even preselection that is not fully compatible with the nonparametric RF
construction may be beneficial. However, researchers are advised to critically evaluate
the methodology in such preceding studies, to restrict their consideration to studies in
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which adequate modeling algorithms have been applied, and to focus on studies that
could demonstrate a good performance of their proposed model. In particular, in line with
Sun, Shook and Kaye [15] and Hafermann et al. [31] we advise against considering only
predictors that proved “significant” in univariate selections in a preceding study that could
not demonstrate an appropriate predictive performance of the multivariable model.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/e24060847/s1, Section S1: Data dictionary of the motivating
study. Table S1: Motivating study: permutation based predictor importance for the 20 most important
variables; Table S2: Simulation study, mean calibration slope; Table S3: Simulation study, standard
deviation of calibration slope; Table S4: Simulation study, mean MSE of log calibration slope; Table S5:
Simulation study, standard deviation of MSE of log calibration slope; Table S6: Simulation study:
mean of maximum contribution to cross-entropy; Table S7: Simulation study: standard deviation
of maximum contribution to cross-entropy; Table S8: Simulation study: standard deviation of cross-
entropy; Table S9: Simulation study: standard deviation of AUROC; Table S10: Simulation study:
standard deviation of Brier score. The relevant references are [21,33–35].
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