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Abstract: Quantum digital signatures (QDS) are able to verify the authenticity and integrity of a
message in modern communication. However, the current QDS protocols are restricted by the funda-
mental rate-loss bound and the secure signature distance cannot be further improved. We propose
a twin-field quantum digital signature (TF-QDS) protocol with fully discrete phase randomization
and investigate its performance under the two-intensity decoy-state setting. For better performance,
we optimize intensities of the signal state and the decoy state for each given distance. Numerical
simulation results show that our TF-QDS with as few as six discrete random phases can give a
higher signature rate and a longer secure transmission distance compared with current quantum
digital signatures (QDSs), such as BB84-QDS and measurement-device-independent QDS (MDI-QDS).
Moreover, we provide a clear comparison among some possible TF-QDSs constructed by different
twin-field key generation protocols (TF-KGPs) and find that the proposed TF-QDS exhibits the best
performance. Conclusively, the advantages of the proposed TF-QDS protocol in signature rate and
secure transmission distance are mainly due to the single-photon interference applied in the measure-
ment module and precise matching of discrete phases. Besides, our TF-QDS shows the feasibility of
experimental implementation with current devices in practical QDS system.

Keywords: quantum digital signature; twin-field key generation protocol; discrete-phase-randomized
source

1. Introduction

Digital signature is one of the kernel sciences behind classical cryptography [1]. It is
particularly significant in modern communication as it can be used in a variety of applica-
tions, such as electronic mail, software distribution and financial transactions. The security
of classical digital signature is guaranteed by computational difficulty assumption, which,
however, will no longer be secure with the rapid development of quantum algorithms [2–4].
A full-fledged treatment for this issue towards quantum digital signature (QDS) [5] that
paves a way to realize signature with information theory security is presented.

The first quantum signature protocol was introduced in 2001 [6], which can be consid-
ered as the original form of QDS. In general, earlier signature protocols [7–12] may impose
several restrictions on QDS, such as non-destructive state comparison, long-time quantum
memory and secure quantum channel, for obtaining a secure quantum signature. However,
in practice, these requirements cannot be fully satisfied, resulting in security loopholes of
real-life implementation. Subsequently, some practical QDS protocols [13–18] that do not
attach these restrictions had been proposed and experimentally demonstrated.

For QDS protocols, a general scenario is that QDS can be divided into two assignments:
distribution stage and messaging stage. The former uses the quantum part of quantum
key distribution (QKD), i.e., key generation protocol (KGP), to distribute keys for users
without further classical post-processing. The latter allows two receivers to verify the
authenticity of a signature declaration. During the distribution stage, a KGP, such as
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BB84-KGP [19,20] or measurement-device-independent KGP (MDI-KGP) [21–24], will be
adopted to generate correlated keys between users. However, the performance of both
KGPs is restricted by the fundamental rate-loss limit (referred to as PLOB bound) [25,26],
which is equal to −log2(1− η), where η is the channel transmittance; this implies that the
key generation rate can only vary with the channel transmittance linearly, asymptotically as
1.44η bits per channel use. Some newly proposed QKD protocols with better performance
have accordingly improved the performance of KGPs, since KGP is regarded as a part of
QKD. Recently, twin-field QKD (TF-QKD) protocol [27] has been proven to be capable of
overcoming the PLOB bound. The reason is that the single-photon interference utilized
in TF-QKD enables the key rate scale with the square root of the channel transmittance.
Subsequently, various variants of original TF-QKD were designed and implemented for
overcoming the PLOB bound [28–39].

In general, TF-QKD systems with decoy-state method [38–42] require users to emit
coherent states with a continuous-phase-randomized source (CPRS); however, this is
difficult to achieve in practice and may open a security loop. Remarkably, this issue can
be solved by discrete-phase-randomized source (DPRS) instead and a rigorous security
proof was already presented by Cao et al. [43]. The recently proposed TF-QKDs with
discrete-phase-randomized source [44,45] closed the gap between theory and practice, and
can be implemented with current optical devices. In particular, Zhang et al. [44] proposed
a TF-QKD variant with M phase slices both in the code mode and the test mode. Currás-
Lorenzo et al. [45] put forward a discrete-phase-randomized TF-QKD protocol with only
two phases in the code mode, which provides a higher key rate than that in [44] since
its key rate is not restricted by the sifting factor. Inspired by this work, we propose a
practical discrete-phase-randomized TF-QDS protocol. In fact, TF-QDS is a kind of MDI-
QDS performed at the single-photon level. We use a numerical approach to derive the
bounds on parameters in the asymptotic case. For each given distance, we optimize the key
rate over the signal intensity and decoy intensity of coherent pulses, and fix the vacuum
intensity. For comparison, we plot the simulation results of various QDSs under the same
experimental parameters and find that our TF-QDS can achieve higher signature rate and
longer transmission distance compared with BB84-QDS [13] and MDI-QDS [16], when
the number of discrete phase slices M ≥ 6. The TF-QDS improves on current QDSs by
overcoming the PLOB bound.

In addition, we compare the performance of our TF-QDS with two possible TF-QDSs
constructed by two different KGPs: KGP with CPRS [38] and KGP with DPRS [44]. These
two newly constructed protocols are called TF-QDS with CPRS and TF-QDS with DPRS,
respectively. The simulation results demonstrate that our TF-QDS with M = 6 can exceed
the performance of TF-QDS with CPRS due to the exact matching of phases. Its signature
rate is 5–15 times that of TF-QDS with CPRS when the transmission distance ranges from
100 km to 300 km, and the maximum signature distance obtainable can be increased by 5%.
Furthermore, we compare the performance between our TF-QDS and TF-QDS with DPRS
for four different M. The results show that, for the same M, our method can achieve better
performance in terms of both signature rate and secure distance. The reason for this is that
in our protocol, only two phases are encoded in the code mode and the key generation rate
is not restricted by M. On the other hand, the increase of M tightens the upper bound of
Eve’s side information estimated in the test mode. Therefore, for our protocol, the signature
rate increases with M. However, in TF-QDS with DPRS, M phases are encoded in the code
mode, so its signature rate tends to zero with the increase of M, which is caused by the
filtering factor.

In this work, we devote Section 2 to the description of our TF-QDS. We review the TF-
KGP [45] in Section 3. In Section 4, the security analysis is carried out. We give numerical
simulation results in Section 5, and summarize our work in Section 6.
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2. TF-QDS Protocol with Fully Discrete Phase Randomization

We consider a simple structure for our TF-QDS protocol to sign a one-bit message: a
signer, Alice, generates a signature declaration with TF-KGPs performed by Alice–Bob and
Alice–Charlie in the key distribution stage, and then transmits it to one of two receivers
(Bob and Charlie), say Bob. Bob first verifies the signature and then forwards it to Charlie
who then further verifies its authenticity in the messaging stage. The detailed process for
our TF-QDS is illustrated in Figure 1. It is therefore clear that at most one party is dishonest
in such a tripartite setting. If there is more than one dishonest party, then the real protocol
will actually fail. We describe our TF-QDS protocol as follows.
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Figure 1. Schematic diagram of our TF-QDS. Alice and Bob (Alice and Charlie) prepare discrete-phase-
randomized weak coherent-state pulses with a phase modulator (PM1). Intensity modulator (IM) is
used to generate decoy states and PM2 is used to encode key bits. All the modulations are combined
with random number generators (RNGs). The encoded pulses are attenuated by an attenuator (Att)
and then sent out to the measurement site Eve. Alice’s and Bob’s (Alice’s and Charlie’s) pulses
interfere at a 50:50 beam splitter (BS). The interference result is recorded with two single-photon
detectors (SPDs). The solid lines represent the quantum channels (QCs) through which Alice and Bob
(Alice and Charlie) use KGP to distribute keys. The dotted lines represent the authenticated classical
channels (CCs) through which parties exchange and transmit some classical message. A TF-QKD
link is shared between Bob and Charlie for performing the symmetrization of keys in full secrecy.

2.1. Distribution Stage

1. For each message m = 0 or 1, Alice and Bob use the discrete-phase-randomized TF-
KGP [45] to generate keys of length nk, Alice holds the key KAB

m and Bob holds the key
KB

m. Similarly, Alice and Charlie perform the discrete-phase-randomized TF-KGP [45]
to generate keys KAC

m and KC
m, respectively. The detailed steps for key distribution can

be found in Section 3. Alice’s signature for m is Sigm = (KAB
m , KAC

m ).
2. For each m, Bob and Charlie perform the symmetrization of keys. That is, Bob (Char-

lie) randomly chooses half of the bits in his key KB
m (KC

m), called KB
m, f orward (KC

m, f orward),
and then sends these bits to Charlie (Bob) using an authenticated classical channel.
The remaining bits in KB

m (KC
m) are named KB

m,keep (KC
m,keep). After the symmetriza-

tion of keys, Bob’s and Charlie’s keys are denoted as SB
m = (KB

m,keep, KC
m, f orward) and

SC
m = (KC

m,keep, KB
m, f orward) respectively; therefore, Alice cannot distinguish whether

a key is Bob’s or Charlie’s, which guarantees the security against repudiation. In
addition, Bob (Charlie) can only obtain half of KC

m (KB
m), which guarantees the security

against forging.
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2.2. Messaging Stage

1. For signing a one-bit message m, Alice sends the signature declaration (m, Sigm)
to Bob.

2. Bob checks and records the number of mismatches between the declaration Sigm and
his key SB

m. Particularly, Bob separately calculates the number of mismatches for the
key KB

m,keep that received directly from Alice and the key KC
m, f orward that forwarded by

Charlie. If the number of mismatches for both parts is fewer than Sa(nk/2), he accepts
the signature, where Sa < 1/2 is a small threshold determined by experimental
parameters and a desired security level.

3. Bob then forwards (m, Sigm) to Charlie.
4. Charlie checks the number of mismatches between Sigm and SC

m. The verification
method is similar to that performed by Bob, except with a different threshold Sv,
where 0 < Sa < Sv < 1/2. If the number of mismatches for KC

m,keep and KB
m, f orward

is fewer than Sv(nk/2), Charlie accepts Sigm as the original signature generated by
Alice. It is worth noting that two different thresholds Sa and Sv are required to ensure
the non-repudiation of QDS protocol.

3. TF-KGP

TF-KGP, as a part of QDS, is performed in pairs separately by Alice–Bob and Alice–
Charlie to distribute keys without further error correction and privacy amplification. This
section takes Alice and Bob as an example to review the TF-KGP with fully discrete phase
randomization [45]. The distributed keys among Alice and Bob correspond to the keys KAB

m
and KB

m described in Section 2.

3.1. Preparation

See the tasks below for the states of Alice’s and Bob’s delivering to Eve depending
on their chosen mode for transmission. Alice and Bob choose the code mode and test
mode randomly. The code mode is used for key generation and the test mode is used for
parameter estimation. For the code mode, Alice (Bob) prepares a bit ka (kb) randomly and
generates a coherent state |(−1)ka

√
µ〉 (|(−1)kb

√
µ〉), where µ is the signal intensity. For

the test mode, Alice (Bob) prepares a discrete-phase-randomized coherent state |
√

βaeiθa〉
(|
√

βbeiθb〉), which is modeled by a random intensity βa (βb) ∈ {β0, β1, µ} (β0 = 0 is a
vacuum intensity and β1 is a decoy intensity) and a random phase θa (θb) = 2πm/M
(m ∈ {0, 1, 2, . . ., M − 1} and M is number of dividing the phase interval [0, 2π) into
slices [32]).

3.2. Measurement

An untrusted intermediate node, Eve, performs the single-photon interference on the
incoming pulses through a 50:50 BS followed by two detectors SPD0 and SPD1. A successful
round corresponds to only one detector being clicked, and is unsuccessful otherwise. Eve
then announces the successful rounds publicly.

3.3. Sifting

Alice and Bob exchange their intensity and mode through an authenticated classical
channel and retain data from those in which they have used the same mode. For rounds of
code mode, Alice and Bob generate sifted keys kA and kB. By disclosing L bits of sifted keys,
they can calculate the quantum bit error rate (QBER), Ek = (1/L)∑ kr

A ⊕ kr
B, where kr

A and
kr

B denote Alice’s and Bob’s exposed bits respectively, after which they are discarded. The
remaining nk bits in kA and kB are Alice’s and Bob’s final keys KAB

m and KB
m, respectively. It

is necessary for Bob to flip his bits corresponding to rounds with SPD1 clicked. For rounds
of test mode, Alice and Bob calculate the gains {Qβ} in which they both select the same
intensity and the same phase θa = θb, and the gains {Q−β } in which they select the same
intensity and the opposite phase θa = θb ± π.
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3.4. Parameter Estimation

Alice and Bob use the gains {Qβ} and {Q−β } to separately estimate the phase error
rates eph,same and eph,di f f according to the numerical method (see Appendix A), where
eph,same (eph,di f f ) indicates the phase error rate of successful code mode rounds in which
Alice and Bob use the same (opposite) phase.

4. Security Analysis

We followed the method in Ref. [46] to estimate Eve’s smooth min-entropy [47] on
Bob’s reserved key KB

m,keep, and then use it to bound the probability that Eve makes errors
less than a certain value.

Eve can obtain some information from parameter estimation and mode declaration.
Here, we define κ and ζ as the classical information disclosed during parameter estimation
and mode declaration, respectively. KB

m, f orward is the extra information leaked to Eve under
the case that Charlie is Eve. All these information is defined on one quantum system living
in the Hilbert space, which is a combination of the following elements: κ, ζ and KB

m, f orward,
as well as Eve’s ancilla quantum system following her general attack. The information that
Eve obtains about KB

m,keep is summarized as E. Then, Eve’s smooth min-entropy with access
to E is given by

Hεk
min(K

B
m,keep|E) ≥

nk
2
(1− IAE), (1)

where the inequality holds up to log2(1/εk). Here, IAE denotes the information leaked to
Eve, which can be bounded by the phase error rates eph,same and eph,di f f as

IAE ≤
1
2

h(eph,same) +
1
2

h(eph,di f f ), (2)

where h(x) is a Shannon binary entropy function h(x) = −x log2 x− (1− x) log2(1− x).
The phase error rates cannot be directly observed from experiments, their estimation can
be found in Appendix A. With the upper bound on IAE, we can further evaluate Eve’s
smooth min-entropy.

Secondly, according to the proposition in Ref. [16], the upper bound on the average
probability that Eve’s eavesdropping makes at most r errors with the given smooth min-
entropy is

〈p〉 ≤
r

∑
t=0

( nk
2
t

)
2−H

εk
min(K

B
m,keep |E) + εk. (3)

Furthermore, for large nk, the probability for Eve to make fewer than r errors for any g > 0
is given by

P(Eve makes fewer than r errors) := p ≤ g, (4)

except with probability at most

εF :=
1
g
(2−

nk
2 [(1−IAE)−h(2r/nk)] + εk). (5)

Thus, we can determine the condition that Eve can make fewer than r errors with a non-
negligible probability as

(1− IAE)− h(2r/nk) > 0. (6)

If this condition is met, the probability of Eve making fewer than r errors will be arbitrarily
small by increasing the length of signature. We define pE as:

(1− IAE)− h(pE) = 0. (7)
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A physical interpretation behind Equation (7) is that pE is the minimum error rate that Eve
makes when guessing Bob’s key except with negligible probability εF. The upper bound on
QBER between Alice’s and Bob’s keys is Ek. Therefore, as long as the condition of pE > Ek
is satisfied, we can obtain a secure signature by increasing nk, which means that

(1− IAE)− h(Ek) > 0. (8)

For demonstrating the security of TF-QDS protocol, we aim to show that the following
three inherent properties for signature systems can be guaranteed [48].

4.1. Robustness

In the messaging phase, Bob would reject Alice’s signature declaration when the mis-
match rate between nk/2 bits received from either Alice or Charlie and Alice’s declaration
is higher than Sa. The QBER (mismatch rate) Ek between Alice’s and Bob’s keys can be
estimated by utilizing L bits. According to the Serfling inequality [49], we can obtain the
upper bound on QBER as follows:

Ek ≥ Ek + τ(
nk
2

, L, εP), (9)

where

τ(
nk
2

, L, εP) =

√
( nk

2 − L + 1) ln( 1
εP
)

Lnk
. (10)

This suggests that the upper bound on QBER is true except with a small probability εP.
The failure probability decays exponentially in the parameter L for any fixed value of the
function τ. We set Ek := max{Ek,B, Ek,C}, where Ek,B and Ek,C correspond to the upper
bounds on QBERs for Alice–Bob and Alice–Charlie, respectively. Here, we should make Sa
greater than Ek, except with probability of at most εP, so the probability of an honest abort
is restricted to

P(honest abort) ≤ 2εp. (11)

4.2. Non-Repudiation

Non-repudiation means that the signature declaration generated by an original signa-
tory is accepted by one receiver but rejected by the other.

For repudiation, the number of mismatches between Alice’s declaration Sigm and Bob’s
key SB

m must be less than Sa(nk/2), and that between Sigm and Charlie’s key SC
m must be

greater than Sv(nk/2). This suggests that Alice should make Bob accept her signature and
make Charlie reject her signature. That is, a necessary condition for successful repudiation
is that the mismatch rate between Sigm and SB

m is not equal to that between Sigm and SC
m.

In this protocol, the symmetrization of keys performed between Bob and Charlie makes
their respective keys contain an equal error rate, resulting in security against repudiation.
According to the results in Ref. [13], the probability of Alice’s successful repudiation can be
bounded as

P(repudiation) ≤ 2exp[−1
4
(Sa − Sv)

2nk], (12)

where

Sa = Ek +
PE − Ek

3
, Sv = Ek +

2(PE − Ek)

3
. (13)

4.3. Unforgeability

Forgery attack performed by a dishonest internal user is considered in our analysis
since it is more convenient for insiders to perform a forgery attack than external attackers.
Suppose that Bob wants to forge Alice’s signature: he needs to transmit Charlie a forged
signature and make the number of mismatches contained in the forged signature fewer
than Sv(nk/2). As mentioned above, Ek is the upper bound on QBER between Alice’s and
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Charlie’s keys, and pE indicates the minimum error rate that Bob makes errors associated
with Charlie’s key. When Equation (8) holds, we choose Sv such that Ek < Sv < pE. This
suggests that there is a higher probability for Charlie to accept Alice’s original signature.
On the contrary, Charlie will likely reject Bob’s forged signature, since the probability of Bob
creating a forged signature with an error rate fewer than Sv is restricted by Equation (4) as

P(Bob makes fewer than Sv(nk/2) errors) := p ≤ g, (14)

except with probability at most εF. If the estimation of parameters Ek and eph (containing
eph,same and eph,di f f ) fails, which separately occur with probabilities εP and εph, then we
think for simplicity that Bob can successfully forge Alice’s signature. Thus, the probability
of Bob’s successful forging can be bounded as

P(forge) ≤ g + εF + εP + 2εph. (15)

This equation is valid for any choice of parameters greater than zero. The probability for
Bob to forge a signature can be arbitrarily small by increasing nk.

In summary, the security level is bounded as

ξ = max{P(honest abort), P(repudiation), P(forge)}. (16)

5. Numerical Simulation

In this section, we give simulation results for TF-QDS with two-intensity decoy-state
method in the asymptotic scenario. The channel model given in Ref. [45] is employed to
obtain observable gains and QBERs for TF-KGP. For simplicity, we assume that the channel
is symmetrical for each pair of parties. For each given distance, we optimize the key rate
over the signal intensity µ and the decoy intensity β1 of coherent pulses, and fix the vacuum
intensity β0 = 0.

We plot the signature rate R as a function of the transmission distance with optimal
values of intensities µ and β1 for a given security level 10−8, as shown by dashed lines in
Figure 2. The signature rate is defined as R = 1/N, where N indicates the total number
of pulses required to sign a 1-bit message given a certain security level. If we set a fixed
security level, then the signature rate can be bounded by Equation (12) with parameters
eph,same(eph,di f f ), Ek and PE. The optimal values of intensity µ with different numbers of
phase slices M against the transmission distance can be found in Figure 3. These optimal
values are obtained by maximizing the key rate of KGP. The experimental parameters used
for numerical simulation refer to a recent experiment [50], which are listed in Table 1. We
also give the simulation results of signature rate without performing any optimization for
comparison. In this case, we plot the signature rate curves with fixed values of all intensities
(µ = 0.06, β1 = 10−4 and β0 = 0), represented by solid lines in Figure 2. As depicted in
Figure 2, numerical optimization yields a significant improvement in transmission distance
compared to nonoptimization, especially when M is relatively small. In particular, the
maximum signature distance reached with intensity optimization increased by more than
two times when M = 4.

Table 1. Parameter setting in simulation. α—loss coefficient of fiber at telecommunication wavelength;
pd—dark count rate of detectors; ηd—detection efficiency of detectors; ed—optical misalignment
error; f —error correction inefficiency.

α pd ηd ed f

0.16 10−8 35% 2% 1.15
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Furthermore, Figure 2 shows the performance of TF-QDS for different M. The maxi-
mum signature distances when M = 8 and M = 12 have only slight differences under the
same experimental parameters, corresponding to 317 km and 325 km, respectively. This
suggests that it is not necessary to increase the number of phase slices to achieve significant
improvements. On the other hand, for M = 4, M = 6 and M = 8, there is a distinct
improvement in terms of signature distance for larger M.

Figure 2. Signature rate vs. the transmission distance with optimal intensities (dashed lines) and
fixed intensities (solid lines) for four different numbers of phase slices M. (M = 4 blue, M = 6 red,
M = 8 green, M = 12 purple).
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Figure 3. Optimal values of the signal intensity µ vs. the transmission distance for four different M.

We perform a numerical simulation of M = 8 to evaluate the potential impact of using
more decoy states in terms of performance. Figure 4 shows the comparison of simulation
results for TF-QDS with different numbers of decoy intensities. The results show that the
signature rate and transmission distance of TF-QDS with two decoy states is close to that of
three [51] (and four) decoy states. Therefore, for our TF-QDS protocol, the two-intensity
decoy state is sufficient for practical usage, and there is no need to introduce more decoy
states for longer transmission distances.
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We compare the performance of our TF-QDS with BB84-QDS and MDI-QDS in Figure 5.
For a fair comparison, we plot the signature rate curves of three QDSs by using the same
experimental parameters without intensity optimization. The channel models given in
Ref. [32] are utilized to calculate gains and QBERs for BB84-QDS and MDI-QDS. As shown
in Figure 5, BB84-QDS shows the highest signature rate when the transmission distance
is less than 45 km. Once the distance is more than 45 km, the signature rate of TF-QDS
exceeds that of BB84-QDS. Compared with MDI-QDS, the signature rate of TF-QDS is
always better than that of MDI-QDS when M ≥ 6. In addition, TF-QDS can obtain a secure
signature at longer transmission distance than BB84-QDS and MDI-QDS when M ≥ 6.
Among these QDS protocols, the maximum signature distance for TF-QDS is 520 km when
M = 12, whereas the maximum signature distances for BB84-QDS and MDI-QDS are
182 km and 334 km, respectively. This is because the measurement module of TF-QDS is
realized with single-photon interference which requires only one photon to survive the loss
of over half of the transmission distance. Twin-field approach overcomes the PLOB bound
and significantly extends the secure signature distance.

Figure 4. Signature rate versus the transmittance distance by using two-intensity (green solid line),
three-intensity (red dotted line) and four-intensity (purple dotted line) decoy-state methods for
M = 8.

Our TF-QDS protocol is built upon the TF-KGP in Ref. [45] where users emit coherent-
states with a discrete-phase-randomized source in the test mode. We can further propose
two possible TF-QDS protocols: TF-QDS with CPRS and TF-QDS with DPRS, which are
separately constructed by KGP in Ref. [38] and KGP in Ref. [44], respectively. We compare
the performance of our TF-QDS with two newly constructed TF-QDSs with the same
experimental parameters given in Ref. [38].

Firstly, we compare the simulation results of our TF-QDS and TF-QDS with CPRS in
Figure 6. Remarkably, the results show that our TF-QDS with only six discrete phase slices
can exceed the performance of TF-QDS with CPRS. In detail, our protocol can achieve a
secure signature at the maximum transmission distance of 408 km with M = 6, while the
maximum transmission distance for TF-QDS with CPRS is 388 km. Besides, its signature
rate increases by more than one order of magnitude since 69 km. The reason for this
improvement is that a tighter bound on the phase error rate can be obtained, since the
phase post-selection in discrete version makes the users’ phases exactly matched.
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Figure 5. Results of our TF-QDS, BB84-QDS and MDI-QDS.

Figure 6. Results of our TF-QDS and TF-QDS with CPRS.

Furthermore, we compare the performance between our TF-QDS and TF-QDS with
DPRS for different M. Both TF-QDS protocols utilize a discrete-phase-randomized source,
with the main difference being that, for the proposed TF-QDS, only two phases rather than
M phases are encoded in the code mode. The simulation results are shown in Figure 7,
where solid lines correspond to the results of our TF-QDS, and dashed lines correspond to
the results of TF-QDS with DPRS. Figure 7 illustrates that our TF-QDS can deliver a higher
signature rate than that of TF-QDS with DPRS for the same phase slice. The fact is that the
signature rate of our protocol increases with M, while the signature rate of TF-QDS with
DPRS approaches 0 as M increases, due to the sifting factor. Furthermore, our TF-QDS can
transmit a longer signature distance when the same signature rate is obtained. The reason
for this is that we can obtain a tighter bound on the phase error rate compared with TF-QDS
with DPRS, as illustrated in Figure 8. Detailed data on signature rate R and transmission
distance for both TF-QDSs are listed in Table 2.
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Figure 7. Results of our TF-QDS and TF-QDS with DPRS for four different M.

Table 2. Comparison of signature rate R and transmission distance for our work and TF-QDS with
DPRS for different M. More general comparison results are shown in Figure 6. The second and third
rows indicate the signature rates of two protocols at 100 km and 200 km, respectively. The fourth row
shows the secure transmission distances when the signature rate is 10−12 and the bottom row gives
the comparison of maximum transmission distances obtainable.

Protocols M = 4 M = 6 M = 8 M = 12

R at 100 km This work 3.37× 10−9 3.66× 10−9 3.50× 10−9 3.42× 10−9

(bits/pulse) TF-QDS with DPRS 1.30× 10−9 2.36× 10−9 2.27× 10−9 2.23× 10−9

R at 200 km This work 2.08× 10−11 9.31× 10−11 8.77× 10−11 8.30× 10−11

(bits/pulse) TF-QDS with DPRS - 5.75× 10−11 5.64× 10−11 5.38× 10−11

Distance This work 222.2 267.7 288.8 291.8
(km) TF-QDS with DPRS 164.8 262.2 281.7 283.9

Maximum This work 231.3 279.4 303.8 313.3
distance (km) TF-QDS with DPRS 171.9 279.3 303.7 313.1
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Figure 8. Comparison the upper bound of phase error rate between our TF-QDS and TF-QDS with
DPRS for M = 12.
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6. Conclusions

We present a TF-QDS protocol with fully discrete phase randomization. Unlike
most previous variants of QDS that emit weak coherent-state pulses with a continuous-
phase-randomized source, our TF-QDS uses a discrete-phase-randomized source instead,
which can be realized with common optical components and further applied in practical
QDS systems. As well as this, the protocol had been proved to be secure against forging
and repudiation.

For better performance, we optimize intensities of signal state and decoy state to
improve the signature rate. We compare the performance of our TF-QDS with BB84-QDS
and MDI-QDS by numerical simulation. The results demonstrate that our TF-QDS can
achieve the best performance in terms of signature rate and secure transmission distance
when the phase slices M ≥ 6. Moreover, we provide a clear comparison between several
possible TF-QDSs constructed by different TF-KGPs and find that our TF-QDS with M = 6
already exceeds TF-QDS with CPRS due to the exact matching of phases. The signature rate
is 5–15 times that of TF-QDS with CPRS when the transmission distance ranges from 100 km
to 300 km, and its maximum signature distance obtainable increases by 5%. Furthermore,
we compare the performance of our TF-QDS with TF-QDS with DPRS for four different M.
The simulation results show that our TF-QDS achieves a higher signature rate and a longer
secure distance than that of the TF-QDS with DPRS for the same M.

In summary, the proposed TF-QDS with fully discrete phase randomization is more
feasible in experimental implementation; meanwhile, it is an effective solution for a higher
signature rate over a longer transmission distance.
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Appendix A. Parameter Estimation

Eve’s side information IAE can be bounded by phase error rates eph,same and eph,di f f ;
however, these cannot be observed through experiments directly. Thus, we need to estimate
the upper bounds on eph,same and eph,di f f by using the observable data in the test mode.
Here, we just describe the estimation approach for eph,same since the process is similar for
both terms. According to Ref. [45], eph,same can be written as

eph,same =
1

2psucc,same

〈
λeven

∣∣∣M̂†
ab M̂ab

∣∣∣λeven

〉
, (A1)

where psucc,same is the probability that Alice and Bob use the same phases in a code mode
round and Eve reports a successful detection. More precisely, we describe Eve’s collective
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attack as a two-outcome general measurement {M̂ab, M̂ f
ab} on the photonic systems ab,

where M̂ab (M̂ f
ab) is the Kraus operator corresponding to the announcement of the round

as successful (unsuccessful) and a and b are the photon numbers sent to Eve by Alice and
Bob respectively. |λeven〉 and |λodd〉 are unnormalized states and can be defined as

|λeven〉ab =
M−1

∑
n=0,n∈N0

√
Pβ

n mod M|λ
β
n mod M〉ab, (A2)

|λodd〉ab =
M−1

∑
n=0,n∈N1

√
Pβ

n mod M|λ
β
n mod M〉ab, (A3)

where N0 (N1) is the set of non-negative even (odd) numbers, and

|λβ
n mod M〉ab =

∞

∑
l=0

√√√√ PMl+n|β

Pβ
n mod M

|λMl+n〉ab, (A4)

Pβ
n mod M =

∞

∑
l=0

PMl+n|β, (A5)

with Pn|β is a Poisson distribution. The states |λβ
n mod M〉ab have a slight dependence on the

intensity β, and their yields can be written as

Yβ
n mod M = ||M̂ab|λ

β
n mod M〉||

2. (A6)

The estimation of upper bound on eph,same can be considered an optimization problem and
solved by a linear programming [45] shown in Equation (A7).

max
1

2psucc,same

〈
λeven

∣∣∣M̂†
ab M̂ab

∣∣∣λeven

〉
s.t.

psucc,same =
1
2

〈
λeven

∣∣∣M̂†
ab M̂ab

∣∣∣λeven

〉
+

1
2

〈
λodd

∣∣∣M̂†
ab M̂ab

∣∣∣λodd

〉
,

Qβ =
M−1

∑
n=0

Pβ
n mod MYβ

n mod M, ∀β ∈ Ψ,

Yµ
n mod M ≤ 1, ∀n ∈ {0, . . ., M− 1},

Yβ1
n mod M −Yβ2

n mod M ≤
√

1− Fβ1,β2
n , ∀β1, β2 ∈ Ψ, n ∈ {0, . . ., M− 1},

Yβ
0 mod M ≤ 1−Qβ0 + 2

√
Fβ,β0

0

(
1− Fβ,β0

0

)(
1−Qβ0

)
Qβ0 + Fβ,β0

0

(
2Qβ0 − 1

)
, ∀β ∈ Ψ,

(A7)

where Ψ = {β1, µ} is the collection of all test-mode intensities, but not including vacuum,
and Fβ1,β2

n is given by

Fβ1,β2
n =

∣∣∣〈λ
β1
n mod M|λ

β2
n mod M

〉
ab

∣∣∣2 =

 ∞

∑
l=0

√√√√PMl+n|β1

Pβ1
n mod M

√√√√PMl+n|β2

Pβ2
n mod M

2

. (A8)
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