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Abstract: We investigate the irreversible entropy production of a qubit in contact with an environment
modelled by a microscopic collision model in both Markovian and non-Markovian regimes. Our
main goal is to contribute to the discussions on the relationship between non-Markovian dynamics
and negative entropy production rates. We employ two different types of collision models that do or
do not keep the correlations established between the system and the incoming environmental particle,
while both of them pertain to their non-Markovian nature through information backflow from the
environment to the system. We observe that as the former model, where the correlations between
the system and environment are preserved, gives rise to negative entropy production rates in the
transient dynamics, the latter one always maintains positive rates, even though the convergence
to the steady-state value is slower as compared to the corresponding Markovian dynamics. Our
results suggest that the mechanism underpinning the negative entropy production rates is not solely
non-Markovianity through information backflow, but rather the contribution to it through established
system-environment correlations.

Keywords: entropy production; open quantum systems; collision models

1. Introduction

The quest to describe and understand the dynamics of a quantum system that is
interacting with its environment is a very important and central topic in physics that goes
under the name of the theory of open quantum systems [1]. The mathematical structure of
the traditional approach in the description of open quantum systems is, in general, quite
involved both at the level of deriving the equations governing the system dynamics and at
the level of solving them. Collision models, introduced as far back as in 1963 [2], provide
an alternative approach that is simple, clear, and versatile to track the time evolution of
the open system as well as, to some extent, the environment. In recent years, collision
models have been somehow “re-invented” [3,4] and heavily utilized in addressing many
different problems, ranging from modelling memory effects in open system dynamics [5–9]
to studying thermodynamics of quantum processes [10–13]. We direct the interested reader
to the following reviews and references therein: [14–16].

In particular, we are interested in the relationship between non-Markovianity and
the irreversible entropy production during open system dynamics, which has been a topic
of intense debate over the last years [17–27] and naturally extends to the discussions on
the violations of the Landauer bound [28–32]. It is a well-established fact that Markovian
quantum dynamics, which can be described by a completely positive trace preserving
(CPTP) map, lead to a positive rate of entropy production as proven by Spohn’s inequal-
ity [33]. On the other hand, in case of non-Markovian dynamics, the positivity of the
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entropy production rate is not always guaranteed due to the fact that conditions required
by the Spohn’s inequality to hold may not apply. In fact, it has been shown in Refs. [18–21]
that non-Markovianity can lead to negative entropy production rates, while Refs. [22,23]
attempt to put forward a more general approach in understanding the relationship between
these two phenomena. However, a unified and clear understanding of the relationship
between non-Markovian dynamics and entropy production rate is still missing [22,34].

In this work, we consider a single thermal system qubit interacting with a thermal
environment embodied by a stream of qubits at a temperature different than that of the
system in a collision model framework. By tuning the interactions between environmental
qubits, we can control the non-Markovianity in the dynamics of the system qubit, where in
the absence of such interactions we recover the Markovian limit. The intra-environment
interactions result in non-Markovian dynamics through two mechanisms: (i) by passing the
system information that flows into the environment particle to the parts of the environment
which have not interacted with the system yet, but will do so in the future, and (ii) in
addition to (i), by establishing correlations between the system and aforementioned parts of
the environment [35]. Taking advantage of the versatility of the collision model framework,
we employ two different strategies in the non-Markovian regime of the time evolution,
in which we either keep the correlations established between the system and the next
environmental unit or erase them. We examine the entropy production by describing the
dynamics of our system using both of these strategies and try to pinpoint the cause of
negativity in its rate by comparing the results we obtain.

The rest of the paper is organized as follows. In Section 2, we describe the collision
model framework and explain the two strategies using which we investigate the rela-
tionship between non-Markovianity and entropy production. We then continue with the
introduction of the non-Markovianity measure we utilize and explicitly show that both of
our strategies exhibit non-Markovian dynamics in Section 3. In Section 4, we present our
main results on the entropy production and its rate and discuss their behavior in relation
to non-Markovian dynamics, considering the two different approaches we described. We
point out several subtleties in calculating the entropy production in a collision model in
Section 5 and conclude in Section 6.

2. Collision Model

Within the simplest, Markovian collision model framework, the dynamics of an open
system particle S is described by sequential and brief interactions (collisions) with an
environment that consists of a stream of particles {Ei}N

i=1. Following this interaction,
the environmental particle is discarded and the system moves on to interact with a fresh
environmental particle. Non-Markovianity can easily be introduced into this picture by
adding an interaction between the environmental particles [5], in particular, between the
particle that has just interacted with the system and the upcoming one. In this way, it
becomes possible to partially recover the system information that is lost into the environ-
ment at a later time during the dynamics, which has been identified as one of the central
mechanisms driving the memory effects as we will explain in the next section. The time
evolution of the system can then be obtained iteratively, repeating the steps described above
and keeping track of the system state. The highly emphasized and appreciated versatility
of collision models lies in this generality; one can change the number of particles in the
system or environment, fix the type of the interactions between them in a suitable way for
the problem under consideration, etc.

Our model consists of a single system qubit and a stream of environment qubits, all of
which are initialised in a thermal state at different temperatures with

ρS
0 =

e−βS HS

tr
[
e−βS HS

] , ρ
Ei
0 =

e−βE HE

tr
[
e−βE HE

] , (1)

where HS = h̄ωSσz, HE = h̄ωEσz with σz is the Pauli operator, and βS = 1/kBTS and
βE = 1/kBTE are the inverse temperatures for the system and environment, respectively.
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The subscript of ρ refers to the collision number, while its superscript is the particle label.
Throughout this work, we will assume that the system and environment qubits are resonant,
i.e., ωS = ωE. In addition, we also suppose that initially the global state of the system and
the environment is in a product form given by ρSE

0 = ρS
0
⊗N

i=1 ρ
Ei
0 .

The time evolution is governed by the consecutive application of two unitary operators
that describe the system-environment and the intra-environment interactions, where the
presence of the latter is necessary for introducing non-Markovianity into the dynamics.
In particular, both of these unitaries are given by a partial SWAP operator, which are
expressed in the following form:

US,Ei (ν) = cos(ν)1+ i sin(ν)S , (2)

UEi ,Ei+1(ε) = cos(ε)1+ i sin(ε)S ,

where 1 is the 4× 4 identity operator, and S is the SWAP operator in the energy eigenbasis
(σz) of the two interacting particles given by

S =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

. (3)

In Equation (2), while the unitary evolution operator in the first line describes the system-
environment interactions, the operator in the second line describes the intra-environment
interactions, where ν and ε characterize the strength of these interactions, respectively.
When either ν or ε attains the value π/2, one has a perfect SWAP operation between
the two qubits. The intra-environment interaction strength ε can be tuned to change the
nature of the process from Markovian to non-Markovian; that is, memory effects can be
introduced and controlled through this parameter. If no intra-environment collisions take
place, i.e., ε = 0, then such a process corresponds to a Markovian one, also known as the
quantum homogenization [3–5].

Following Refs. [5,9], we consider two different strategies to describe the dynamics
of our model in the non-Markovian regime. In both of the strategies we utilize in this
work, on the ith step of the time evolution, the system-environment and intra-environment
interactions take place by consecutive applications of US,Ei (ν) and UEi ,Ei+1(ε), respectively.
The subtle, yet crucial, difference between the two strategies is whether the established
correlations on the (i− 1)th step between the system and Ei is carried over to the ith step
or not, which can be summarized as follows:

Strategy 1 Before moving on to the next collision, we erase all the correlations between
each ingredient of the model. In this case, the system state after the ith step of the
considered model is given by

ρS
i+1 = trEi ,Ei+1

[
UEi ,Ei+1US,Ei

(
ρS

i ⊗ ρ̃
Ei
i ⊗ ρ

Ei+1
i

)
U †

S,Ei
U †

Ei ,Ei+1

]
, (4)

where ρ̃
Ei
i = trS[ρ

SEi
i ]. Note that ρ̃

Ei
i still contains some amount of information related

to the system particle due to its interaction with the (i − 1)th environment in the
previous iteration.

Strategy 2 We keep the state of ρ
SEi
i untouched and use it as it is in the next iteration. Now,

the system state after the ith step of the model is given as

ρS
i+1 = trEi ,Ei+1

[
UEi ,Ei+1US,Ei

(
ρ

SEi
i ⊗ ρ

Ei+1
i

)
U †

S,Ei
U †

Ei ,Ei+1

]
. (5)

Clearly, in such a case, any correlations established between S and Ei on the (i− 1)th
step, i.e., before they directly interact, are carried over to the ith step.
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The mechanism behind the non-Markovianity has two different origins: (i) the system
information passed on to the incoming environment, and (ii) correlations that are estab-
lished between the system and the incoming environment. While in Strategy 1, the only
mechanism for information backflow, i.e., non-Markovianity, is (i), in Strategy 2, we have
contributions coming from both (i) and (ii).

3. Quantifying Non-Markovianity

The characterization and quantification of non-Markovianity in open quantum systems
have been topics of very broad interest for more than a decade now [36,37]. Numerous mea-
sures of non-Markovianity have been proposed in the recent literature that claim to identify
the memory effects in the dynamics of open systems using various different techniques.

In our study, we consider one of the most well-known and widely used non-Markovianity
quantifiers, known as the BLP measure [38]. In this approach, memory effects originating
from the non-Markovian character of the open system dynamics are recognized through
the distinguishability of open system states based on the trace distance between them.
The trace distance between two density operators ρ1 and ρ2 is defined as

D(ρ1, ρ2)=
1
2
||ρ1−ρ2||1=

1
2

tr
[
(ρ1−ρ2)

†(ρ1−ρ2)
]1/2

, (6)

where ||.||1 is the trace norm. In particular, the variations in the distinguishability between
two arbitrary initial open system states throughout the dynamics are interpreted as the
flow of information between the open system and its surrounding environment. If the
distinguishability between two arbitrary initial states of the open system monotonically
decreases during the dynamics of the system, i.e., dD/dt < 0, then there is a one-way loss
of information from the open system to the environment, which indicates a memoryless
and thus Markovian evolution. On the other hand, if the distinguishability undergoes
temporary revivals throughout the time evolution such that dD/dt > 0, it means that there
exists a backflow of information from the environment to the open system, giving rise to
the non-Markovian memory effects in the dynamics.

On the basis of the above-mentioned interpretation, the degree of non-Markovianity
of an open quantum system dynamics can be quantified as [38]

N = max
ρ1(0),ρ2(0)

∫
Ḋ>0

dD
dt

dt, (7)

where the optimization in the above equation should be performed over all possible initial
state pairs ρ1(0) and ρ2(0) of the open system in principle. Since we will consider a collision
model to describe the open system dynamics in our work, the dynamics occurs in discrete
time steps. As a matter of fact, here we evaluate the degree of non-Markovianity using a
discretized version of Equation (7) as first considered in Ref. [39],

N = max
ρs

1,0,ρs
2,0

∑
i

[
D(ρs

1,i, ρs
2,i)− D(ρs

1,i−1, ρs
2,i−1)

]
, (8)

where the index i denotes the collision number in the model.
In Figure 1, we display the behavior of the trace distance considering the two strate-

gies we investigate in this work. Clearly, both of them exhibit non-Markovian behavior,
as expected from earlier works [5,8], with the degree of non-Markovianity being signifi-
cantly higher in Strategy 2 due to the nature of the dynamics that keeps the established
system-environment correlations. We are now ready to study the behaviour of the en-
tropy production in both of these non-Markovian models that are different in a slight,
but crucial way.
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Figure 1. Trace distance as a function of the number of collisions. While the dashed black lines show
the behavior of the Markovian limit of both strategies, solid, blue lines display the behavior of the trace
distance in the non-Markovian regime. Insets in both of the plots show the non-Markovianity measure,
which is the sum of the amount of increases in the trace distance throughout the dynamics. The model
parameters are chosen as TE = 1, system-environment interaction strength ν = 0.05× π/2, and all
particles in the model are resonant ωS = ωE = 1. For non-Markovian dynamics, intra-environment
interaction strength is chosen as ε = 0.95× π/2. The initial state pair used in the calculation of the
non-Markovianity measure is given by the eigenstates of the Pauli operator σx.

4. Entropy Production

As we have outlined in the description of our model, we have an initial thermal system
state that is interacting with a thermal environment through sequential collisions. It is
important to once again emphasize that, the system and the environment states are initially
uncorrelated. The irreversible entropy production in accordance with the second law of
thermodynamics can then be expressed as follows:

Σ = ∆S + β∆Q (9)

where ∆S = S(ρS
N)− S(ρS

0 ) with S(ρ) = − tr(ρ log ρ) reflects the change in the von Neu-
mann entropy, and ∆Q = tr

[
HE(ρ

E
N − ρE

0 )
]

is the heat exchanged with the environment.
Here, ρS

0 and ρS
N , respectively, denote the initial state of the system and the state of it after

the Nth collision takes place.
The dynamical map considered in this work falls inside a very restricted class of

maps, which are known as thermal operations [40,41]. Such operations are characterized
by the presence of a thermal environment and a global fixed point for the system state
such that U(ρS∗ ⊗ ρE)U† = ρS∗ ⊗ ρE is satisfied. Once the former criteria is met, it becomes
possible to guarantee the existence of a global fixed point if the system-environment
interactions are strictly energy preserving, i.e., [U, HS + HE] = 0. Each iteration of our
model, consisting of consecutive applications of two unitary operations, describe the
system-environment and the environment-environment interactions. It is possible to
show that the strict energy conservation criterion is satisfied at each step of the described
dynamics, [UEn+1,En(ν)US,En(ν), HS + HE] = 0, since we also consider resonant system and
environment qubits. Therefore, the global fixed point for our dynamical map is the initial
thermal state of the environment, that is, ρS∗ = ρ

Ei
0 . In other words, independently of

whether the dynamics of our system is Markovian or non-Markovian, the steady-state
of the system ends up being the initial state of the environment qubits. Considering
thermal operations, and also assuming that the global system-environment state is evolving
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unitarily, one can express the entropy production by referring only to the state of the system
in the following way [34]:

Σ =
N

∑
i=1

Σi =
N

∑
i=1

S(ρS
i−1||ρS

∗)− S(ρS
i ||ρS

∗) (10)

= S(ρS
0 ||ρEi

0 )− S(ρS
N ||ρEi

0 )

where S(ρ||σ) = tr(ρ log ρ)− tr(ρ log σ) is the quantum relative entropy. Due to the discrete
nature of the evolution of our model, we expressed the total entropy production as a sum
of the entropy produced at each step, Σi. The entropy production as given by Equation (10)
will be the central quantity in this work. The above expression also holds when the system
is weakly coupled to the environment [1], which is, to a certain degree, similar to the strict
energy conservation condition.

An equally important quantity is the entropy production rate, Σ̇ = dΣ/dt. We follow
a discretization approach for the time derivative of the entropy production similar to what
we have done for the time derivative of the trace distance in the non-Markovianity measure
calculation, and write it as

Σ̇ = Σi − Σi−1. (11)

The entropy production rate Σ̇ is always a positive quantity for Markovian dynamics due
to the Spohn’s inequality [33], which can also be seen from the fact that quantum relative
entropy is a non-increasing function under completely positive trace preserving (CPTP)
maps [42]. However, for non-Markovian dynamics, it has been shown in a number of
works that the entropy production rate can attain negative values throughout the transient
dynamics [17–23,26,27]. In fact, in the vast majority of these studies, the negativity of the
entropy production rate Σ̇ is claimed to be linked to the presence of memory effects due
to non-Markovianity. In what follows, we will show that non-Markovianity originating
from the information backflow alone is not sufficient to obtain negative entropy production
rates, and the correlations between the system and the upcoming environmental particles
are essential.

Figure 2 presents our results on the entropy production in both Markovian and non-
Markovian regimes of the collision models described by Strategy 1 and Strategy 2. We
begin our discussion with Strategy 1, in which, when the intra-environment collisions
are introduced, non-Markovianity of the dynamics is only due to the backflow of system
information that is transferred to the upcoming environment. In Figure 2a, we display the
total entropy production Σ as given by Equation (10) both in Markovian (dashed line) and
non-Markovian cases (solid line), which can observed to be a monotonic as a function of
the collision number. This is clearly reflected in the rate of the entropy production Σ̇, which
remains positive throughout the dynamics, as shown in Figure 2c. Eventually, at the steady-
state, the entropy production Σ for the non-Markovian dynamics converges to that of the
Markovian limit (dashed line), which is an expected result. The only difference between
the Markovian and non-Markovian cases here is the slight slowing down of the entropy
production resulting in the delay of the saturation at the steady-state in the latter one.
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Figure 2. Total irreversible entropy production (a,b) and its rate (c,d) for Markovian (blacked dashed
lines) and non-Markovian (solid blue lines) evolution. The model parameters are chosen as TS = 0.1,
TE = 1, system-environment interaction strength ν = 0.05× π/2, and all particles in the model are
resonant ωS = ωE = 1. For non-Markovian dynamics, intra-environment interaction strength is
chosen as ε = 0.95× π/2.

We now turn our attention to the behavior of the same quantities in Strategy 2 dis-
played in Figure 2b,d. As expected, the Markovian limit of this case is identical to that of
Strategy 1, since the two strategies become identical when the intra-environment collisions
are absent. However, there is a striking difference in the non-Markovian limit, where
the entropy production Σ shows fast oscillations in the transient time before flattening
and saturating to the value at the steady-state. Obviously, the highly non-monotonic
behavior of entropy production is reflected in its rate, causing Σ̇ to attain negative val-
ues prior to converging to zero when the system is relaxed into the thermal state at the
environment temperature.

We would like to elaborate on the reason why we have obtained different results
between these two strategies. Despite the undoubtedly non-Markovian character of both
versions of the collision model, the only difference between them is whether to keep the
correlations between the system and the incoming environment or not. To support this
point, after each step of the dynamics, we have checked the reduced states of the incoming
environments in both strategies and seen that they are completely identical. This implies
that, throughout the dynamics, the local state of the environmental qubit just before its
interaction with the system is identical in Strategy 1 and Strategy 2. The only difference
between these two approaches is the fact that the incoming environment is not correlated
with the system in the former and correlated with the system in the latter. Therefore,
we conclude that the cause of negative entropy production rates cannot solely be the
non-Markovian character of the dynamics. The crucial ingredient here is the correlations
between the system and parts of the environment that have not interacted with it yet,
but will do so in the future. Note that this is different from the system-environment
correlations established after the environment qubit has interacted with the system.
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It is interesting to note that, in [43], the authors bound the revivals of the trace dis-
tance from above at time t, using quantities involving established system-environment
correlations at time s with t > s, called precursors of non-Markovianity. They explicitly
demonstrate the implications of their bound using a collision model that has the same
features as our Strategy 2, i.e., when the system and incoming environment particle are
correlated. As a result, the idea of precursors can also be useful in the context of detecting
negative entropy production rates in non-Markovian dynamics.

Finally, we would like to comment on the particular choice of parameters that our
calculations are based on. We deliberately consider a small system-environment interaction
strength throughout this work. The reason behind this is to remain in the weak coupling
regime in order to avoid any peculiarities of thermodynamics in the strong coupling
regime [44]. The intra-environment interaction strength is set such that we are in the non-
Markovian regime of both models in order to be able to make a meaningful comparison
that leads to the main conclusion of this work. In fact, for ε ≤ 0.92× π/2, Strategy 1
becomes Markovian; therefore that parameter region is not of interest for the purposes
of this work. Similarly, when the initial environment temperature TE ≥ 4.0, Strategy 1
is no longer non-Markovian. Hence, within the parameter regions where both models
admit a non-Markovian dynamics, the only limitation of our results comes from the weak
system-environment coupling assumption. Apart from that, although the behavior of
the non-Markovianity and entropy production may show quantitative differences, their
qualitative behavior remains the same for different choices of parameters, and our results
remain intact.

5. Discussion

In this section, we would like to highlight some subtle points in the calculation of
the entropy production in a collision model framework. There are, in fact, equivalent
but different mathematical expressions that the traditional expression for the entropy
production given in Equation (9) can be cast into. One of the most important expressions
has been introduced in Ref. [45] and further developed in [46], which allows us to express
the entropy production in a purely information theoretic form as follows:

Σ = Iρ′SE
(S : E) + S(ρ′E||ρE), (12)

where ρ′E = trS(ρ
′
SE), I(ρAB) = S(ρA)+ S(ρB)− S(ρAB) is the mutual information between

bipartitions A and B of a quantum system. The above expression can be derived by
assuming that the system and environment is initially in a product state, and their global
evolution is described by a unitary operator. This form reflects two distinct contributions
to the entropy production. The first one stems from the correlations established between
the system and the environmental particles throughout the dynamics, while the second
one measures how much the environment is kicked out from equilibrium after interacting
with the system. It is important to note that ρ′E appearing in Equation (12) refers to the
whole environmental state. However, due to the nature of the collision model approach we
follow in this work, each particle that has played its part in the description of the dynamics
by interacting with the system (and with the next environment if the intra-environment
interaction is turned on) is discarded. As a result, at the end of the dynamics, we do not have
access to the whole environment to calculate the mutual information that it shares with the
system particle. On the other hand, note that the mutual information shared between the
system and an environmental particle that has interacted with it asymptotically approaches
to zero as the system particle continues further into the dynamics [9]. This implies that
the effect of discarding the environment particles that interacted with the system particle
early on in the dynamics will have a smaller contribution to the mutual information term.
However, since discarding a quantum system never increases the mutual information [47],
one can only get a lower bound on the entropy production from Equation (12) with
the present setting. Furthermore, the intra-environment collisions we have introduced
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to simulate a non-Markovian evolution complicates the calculation of the second term
appearing in Equation (12). The influence that changes the state of an environmental qubit
is not just its interaction with the system but also the intra-environment interactions that
have a non-negligible effect. One may attempt to circumvent this problem by keeping track
of the change in the state of the both environmental particles that enter into the picture in a
single iteration of the model. Nevertheless, it is important to note that this would only be a
partial solution to the problem of discarding the environment particles.

It is also important to note that there are two critical assumptions behind the deriva-
tion of Equation (12): the initially factorized system-environment state and global unitary
dynamics, which allows the usage of the invariance of the von Neumann entropy under uni-
tary operations. In this work, we indeed start from a factorized initial system-environment
state, and the evolution is governed by unitary operators acting on the them. However,
especially in Strategy 1, we interrupt the overall unitarity of the process by performing
partial trace operations throughout the dynamics. In this sense, it is, in general, not possible
to trace the state of the system+environment back to its initial state, which violates a very
crucial assumption in the derivation of Equation (12).

Finally, we would like to mention that it is possible to reach the same conclusion that
we did regarding the cause of the negative entropy production rates using the traditional
form of the entropy production in Equation (9), by addressing the second term from the
state of the environment, but with caution. Clearly, the heat exchange (or the entropy
flux) between the system and the environment only takes place when they are in contact.
At this point, we have access to the state of the environmental qubit, which allows us to
simply add up the contributions coming from the entropy flux at each step of the model.
The crucial point here is the fact that one needs to look at the change in the state of both
environment qubits that are involved in the description of the dynamics at that particular
point, i.e., ρEiEi+1 at the ith step. Calculating the entropy flux from the change in the state
of the environment qubit that is directly interacting with the system results in incorrect
outcomes, which do not agree with the Markovian limit of the model.

6. Conclusions

We have investigated the relationship between the non-Markovianity of the dynamics
and the behavior of the entropy production during the relaxation of an open system qubit to
a thermal environment using a collision model approach. Taking advantage of the freedom
provided by the collision model framework, we have considered two distinct strategies to
describe the open system dynamics. In particular, we have either carried over or completely
erased the correlations, which have been indirectly established between the system and the
parts of the environment that have not yet directly interacted with the system. While the
latter resulted in a monotonic behavior in the entropy production implying a positive rate,
the former is highly non-monotonic, giving rise to a negative entropy production rate in the
transient time before the system relaxes to the temperature of the environment. This points
out to an important connection between non-Markovianity and entropy production rate:
the non-Markovian character of the open system dynamics alone is not sufficient to result in
a negative entropy production rate; the presence of system-environment correlations is also
necessary. Even though the dynamical model we consider in this work is limited to a qubit
system, environment particles, and thermal operations, we believe that our results have the
potential to contribute to discussions on the origin of the negative entropy production rates
during non-Markovian open system dynamics, which is an open problem to date.
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32. Bylicka, B.; Tukiainen, M.; Chruściński, D.; Piilo, J.; Maniscalco, S. Thermodynamic power of non-Markovianity. Sci. Rep. 2016,
6, 27989. [CrossRef] [PubMed]

33. Spohn, H. Entropy production for quantum dynamical semigroups. J. Math. Phys. 1978, 19, 1227–1230. [CrossRef]
34. Landi, G.T.; Paternostro, M. Irreversible Entropy Production: From Classical to Quantum. Rev. Mod. Phys. 2021, 93, 035008.

[CrossRef]
35. Mazzola, L.; Rodríguez-Rosario, C.A.; Modi, K.; Paternostro, M. Dynamical role of system-environment correlations in non-

Markovian dynamics. Phys. Rev. A 2012, 86, 010102. [CrossRef]
36. Breuer, H.P.; Laine, E.M.; Piilo, J.; Vacchini, B. Colloquium: Non-Markovian dynamics in open quantum systems. Rev. Mod. Phys.

2016, 88, 021002. [CrossRef]
37. Rivas, Á.; Huelga, S.F.; Plenio, M.B. Quantum non-Markovianity: Characterization, quantification and detection. Rep. Prog. Phys.

2014, 77, 094001. [CrossRef] [PubMed]
38. Breuer, H.P.; Laine, E.M.; Piilo, J. Measure for the Degree of Non-Markovian Behavior of Quantum Processes in Open Systems.

Phys. Rev. Lett. 2009, 103, 210401. [CrossRef]
39. Laine, E.M.; Piilo, J.; Breuer, H.P. Measure for the non-Markovianity of quantum processes. Phys. Rev. A 2010, 81, 062115.

[CrossRef]
40. Janzing, D.; Wocjan, P.; Zeier, R.; Geiss, R.; Beth, T. Thermodynamic Cost of Reliability and Low Temperatures: Tightening

Landauer’s Principle and the Second Law. Int. J. Theor. Phys. 2000, 39, 2717–2753. [CrossRef]
41. Brandao, F.; Horodecki, M.; Ng, N.; Oppenheim, J.; Wehner, S. The second laws of quantum thermodynamics. Proc. Natl. Acad.

Sci. USA 2015, 112, 3275–3279. [CrossRef]
42. Lindblad, G. Completely positive maps and entropy inequalities. Commun. Math. Phys. 1975, 40, 147–151. [CrossRef]
43. Campbell, S.; Popovic, M.; Tamascelli, D.; Vacchini, B. Precursors of non-Markovianity. New J. Phys. 2019, 21, 053036. [CrossRef]
44. Rivas, A. Strong Coupling Thermodynamics of Open Quantum Systems. Phys. Rev. Lett. 2020, 124, 160601. [CrossRef]
45. Esposito, M.; Lindenberg, K.; den Broeck, C.V. Entropy Production as Correlation between System and Reservoir. New J. Phys.

2010, 12, 013013. [CrossRef]
46. Reeb, D.; Wolf, M.M. An improved Landauer principle with finite-size corrections. New J. Phys. 2014, 16, 103011. [CrossRef]
47. Nielsen, M.; Chuang, I. Quantum Computation and Quantum Information; Cambridge University Press: Cambridge, MA, USA, 2000.

http://dx.doi.org/10.1103/PhysRevLett.115.120403
http://dx.doi.org/10.1103/PhysRevA.99.042106
http://dx.doi.org/10.1103/PhysRevA.103.032201
http://dx.doi.org/10.1038/srep27989
http://www.ncbi.nlm.nih.gov/pubmed/27323947
http://dx.doi.org/10.1063/1.523789
http://dx.doi.org/10.1103/RevModPhys.93.035008
http://dx.doi.org/10.1103/PhysRevA.86.010102
http://dx.doi.org/10.1103/RevModPhys.88.021002
http://dx.doi.org/10.1088/0034-4885/77/9/094001
http://www.ncbi.nlm.nih.gov/pubmed/25147025
http://dx.doi.org/10.1103/PhysRevLett.103.210401
http://dx.doi.org/10.1103/PhysRevA.81.062115
http://dx.doi.org/10.1023/A:1026422630734
http://dx.doi.org/10.1073/pnas.1411728112
http://dx.doi.org/10.1007/BF01609396
http://dx.doi.org/10.1088/1367-2630/ab1ed6
http://dx.doi.org/10.1103/PhysRevLett.124.160601
http://dx.doi.org/10.1088/1367-2630/12/1/013013
http://dx.doi.org/10.1088/1367-2630/16/10/103011

	Introduction
	Collision Model
	Quantifying Non-Markovianity
	Entropy Production
	Discussion
	Conclusions
	References

