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Abstract: In this paper, we propose a distributed secure delegated quantum computation protocol,
by which an almost classical client can delegate a (dk)-qubit quantum circuit to d quantum servers,
where each server is equipped with a 2k-qubit register that is used to process only k qubits of the
delegated quantum circuit. None of servers can learn any information about the input and output
of the computation. The only requirement for the client is that he or she has ability to prepare four
possible qubits in the state of (|0〉+ eiθ |1〉)/

√
2, where θ ∈ {0, π/2, π, 3π/2}. The only requirement

for servers is that each pair of them share some entangled states (|0〉 |+〉+ |1〉 |−〉)/
√

2 as ancillary
qubits. Instead of assuming that all servers are interconnected directly by quantum channels, we
introduce a third party in our protocol that is designed to distribute the entangled states between
those servers. This would simplify the quantum network because the servers do not need to share a
quantum channel. In the end, we show that our protocol can guarantee unconditional security of the
computation under the situation where all servers, including the third party, are honest-but-curious
and allowed to cooperate with each other.

Keywords: quantum computation; secure delegated computation; distributed architecture

1. Introduction

Quantum computing has been extensively studied from theory to practice [1,2]. It is
widely accepted that noisy intermediate-scale quantum (NISQ) computers may be available in
the coming decades [3]. However, the limited quantum memory of NISQ devices means that
they may not have the capability to deal with large-scale quantum information processing.
This is obviously a severe constraint, as many practical problems, e.g., machine learning, usually
require immense memory overhead. A feasible way to overcome this obstacle is to utilize
distributed architecture for quantum computations [4]. That is, using a group of small-scale
quantum computers interconnected by classical and quantum networks to implement large-
scale quantum computation tasks. However, considering the tremendous cost of building
a quantum computer, it is not likely that ordinary consumers will be able to afford an
NISQ computer in the foreseeable future. In fact, it is widely believed that the role of
quantum computers is similar to today’s classical supercomputers, which means only a few
organizations or enterprises can have quantum computers at their disposal. Thus, for ordinary
customers, a better way to access quantum computers is to delegate their computations to the
companies that offer quantum computing as cloud services. Indeed, this computation pattern
has been applied in today’s Internet, e.g., IBM Quantum platform [5].

Delegated quantum computation is actually closely related to distributed quantum
computation [4]. The client-to-server pattern in delegated computation naturally belongs
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to the category of distributed quantum computation. A class of delegated quantum com-
putation protocols are constructed under the framework of measurement-based quantum
computation (MBQC) [6–8], which is driven by a sequence of single-qubit measurements
on some specific entangled state, where the entangled resource is also a basic module in
the distributed quantum computation. Another class of delegated quantum computation
protocols are obtained using the technique quantum computing on encrypted data (QCED) [9]
or quantum homomorphic encryption (QHE) [10]. Although QCED and QHE are distinct
concepts, the basic idea behind them is identical. Both of them use the quantum one-time
pad to encrypt the input and output states but use different the methods to achieve the
non-Clifford gates. Nevertheless, most schemes use the entangled states as the ancillary
resources, for example [10–12].

Both distributed quantum computation and delegated quantum computation have
been investigated broadly; see references [13–21] and [6,11,22–28], respectively. Typically,
the distributed architecture for quantum computation makes use of photons as flying qubits
between computational nodes, where each node is equipped with a quantum computer.
The flying qubits are usually used to generate entangle states between distinct servers (i.e.,
nodes). By means of quantum entanglement, the non-local operations, such as controlled-
NOT gate, can be done between two distant servers. Note that the quantum computer in
each server is not necessarily an optical quantum computer; it can be made up of some other
quantum system [29], such as ion traps or cloud atoms. Related experiments have been
successfully demonstrated (see references [30,31]). Recently, researchers also investigated
the possibility of simulating large-scale quantum systems in a hybrid quantum-classical
manner [32]. That is, using a classical computer combined with a small quantum computer
to simulate a large quantum computer [33]. However, the computational model consid-
ered in [32,33] is slightly different from the traditional model of circuit-based quantum
computation. In this paper, we will not consider the method in [32], but rather the quan-
tum entanglement to implement the non-local operation. In general, delegated quantum
computation refers specifically to the secure delegated quantum computation (SDQC), which
requires that no one except the client can obtain the right input and output of the computa-
tion. Typically, the client is required to have some basic quantum capacities, for example,
preparing some single qubits or performing single-qubit measurements. In [34], the au-
thors proposed a more rigorous SDQC protocol, which they called universal blind quantum
computation (UBQC). The new protocol can guarantee that not only the input and output
but also the computation itself, i.e., the algorithm, are unknown to the server. Although it
seems that UBQC is more secure than SDQC, they are equivalent. That is, SDQC can be
converted into UBQC [35]. As delegated quantum computation protocols effectively release
the quantum resources in the client side, related experimental demonstrations have rapidly
been implemented using the linear optics components (see References [9,25,36,37]).

Based on the above observations, in this paper we formally propose a distributed
secure delegated quantum computation protocol that allows a half-classical client who can
only prepare special single qubits to implement a large-scale quantum circuit on several
quantum servers interconnected by entangled channels. Each server only has a limited
quantum memory so that it can only compute a fraction of the delegated circuit. Moreover,
during the computation, servers get nothing about the input and output of the computation.
We also give a detailed security proof for our protocol. The rest of this paper is organized
as follows. Section 2 introduces some basic preliminaries and notation. Section 3 presents
the basic modules for delegated quantum computation. Section 4 gives the complete
distributed delegated quantum computation protocol. Section 5 analyzes the security of
our protocol. The last section discusses some remaining problems in our work.
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2. Preliminaries and Notation

We assume that readers are familiar with the basics of quantum computation. In this
work, we will use the following basic quantum gates:

Z |s〉 = eisπ |s〉 , (1)

X |s〉 = |s⊕ 1〉 , (2)

H |s〉 = 1√
2

(
|0〉+ eisπ |1〉

)
, (3)

P |s〉 = ei s
2 π |s〉 , (4)

T |s〉 = ei s
4 π |s〉 , (5)

CZ |s, t〉 = eistπ |s, t〉 , (6)

where s, t ∈ {0, 1} and i =
√
−1; P and T refer to the phase gate and the π/8 gate,

respectively; and CZ denotes the controlled-Z gate. In order to analyze conveniently, we
also introduce the Z-rotation operator defined as follows:

Rz(α) =

(
e−i α

2 0
0 ei α

2

)
, (7)

where α ∈ [0, 2π) is referred as the rotation angle. Regardless of the global phases, we can
see that Z ≡ Rz(π), P ≡ Rz(

π
2 ), and T ≡ Rz(

π
4 ). We use |+ϕ〉 to denote the following

single qubit:

|+ϕ〉 =
|0〉+ eiϕπ |1〉√

2
, (8)

where we consider ϕ ∈ [0, 2π). It is clear that, up to an unimportant global phase,
Rz(α) |+ϕ〉 ≡ |+(ϕ+α)〉. Thus, ϕ is also called as the rotation angle. By this definition,
we can see that |+〉 = |+0〉 and |−〉 = |+π〉. Note that for any θ ∈ [0, 2π) the states |+θ〉
and |+(θ+π)〉 comprise a basis, thus we can define a single-qubit measurement operator
as follows:

M(θ) = ∑
s∈{0,1}

(−1)s |+(θ+sπ)〉 〈+(θ+sπ)|, (9)

where θ is referred as the measurement angle in this case, and s ∈ {0, 1} denotes the classical
measurement outcome. Specifically, s = 0 if the post-measurement state is |+θ〉, otherwise
s = 1. Finally, in this work we will also use a special two-qubit entangled state defined
as follows:

|H〉 = |0〉 |+〉+ |1〉 |−〉√
2

, (10)

which can be prepared by applying a CZ gate on two qubits |+〉 |+〉.

3. Secure Delegated Quantum Computation

In this work, the delegated quantum computation model we adopt is from [38],
in which the authors improved the original QCED protocol [11] in two aspects. First,
the quantum capacities of clients are further reduced. In theory, they only need to prepare
the qubits |+ϕ〉, where ϕ ∈ {0, π

2 , π, 3π
2 }. Second, the security of the protocol can be still

guaranteed even if some information is leaked to servers.
First of all, we specify that the client’s input is encoded in X basis. That is, en-

coding 0 and 1 as |+〉 and |−〉, respectively. Let x = x1x2 · · · xn ∈ {0, 1}n be the n-bit
classical input string, then the corresponding encoded input state can be expressed as
|+xπ〉 ≡ |+x1π〉 |+x2π〉 · · · |+xnπ〉. For simplicity, we abbreviate |+xπ〉 as |+x〉. The univer-
sal gate set we consider is U = {X, Z, P, T, H, CZ}. Note that this gate set is not minimal
because X, Z, and P can be obtained from {T, H}. Despite that, additional basic gates can
effectively decrease the circuit complexity.
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Now suppose the client’s input state is |+x〉, where x ∈ {0, 1}n. In [38], the client
uses the random operator Xai

i Zbi
i Pci

i to encrypt each qubit |+xi 〉, where xi ∈ {0, 1}, and
ai, bi, ci ∈ {0, 1} are referred as the encryption keys, and for any operator U we define U0 = I
and U1 = U. The subscript i in Xi, Zi, and Pi is used to denote that the corresponding gate
is applied on the ith qubit (hereinafter referred to as qubit i). Similarly, the subscript i in
ai, bi, ci is used to denote that the corresponding encryption keys are related to qubit i. We
can check that this encryption scheme is a quantum one-time pad (see Equation (11)), thus
it provides an information-theoretical security for any qubit ρ.

1
4 ∑

a,b,c∈{0,1}
XaZbPcρP3cZbXa =

I
2

. (11)

In theory, to achieve this encryption, the client needs to perform random gates Pc, Zb,
and Xa on the state ρ in sequence. However, for the qubit |+xi 〉, it can be easily verified that

Xai Zbi Pci |+xi 〉 ≡ |+ϕi 〉 , (12)

where ϕi = (−1)ai (xi + bi +
ci
2 )π mod 2π ∈ {0, π

2 , π, 3π
2 }. Thus, instead of preparing

|+xi 〉 then encrypting it by Xai
i Zbi

i Pci
i , the client can directly generate the encrypted qubit.

Specifically, given the ith input bit xi ∈ {0, 1}, the client randomly chooses the correspond-
ing encryption keys ai, bi, ci ∈ {0, 1}, then computes the value ϕi = (−1)ai (xi + bi +

ci
2 )π

mod 2π. Finally, the client prepares the qubit |+ϕi 〉 as the encrypted qubit i.
After preparing all encrypted input qubits, the client sends them to the server. The

server then performs the delegated quantum circuit U on the encrypted qubits. Here,
the circuit U is known to both client and server (they can negotiate in advance via a
classical channel). We assume that this circuit has been decomposed into a sequence of
basic gates from the gate set U. That is, U = UmUm−1 · · ·U2U1, where each Ui ∈ U and the
positive integer number m is the total number of gates. The following identities, which all
hold up to an irrelevant global phase, can be easily verified.

Xi(Xai
i Zbi

i Pci
i ) ≡ (Xai

i Zbi⊕ci
i Pci

i )Xi, (13)

Zi(Xai
i Zbi

i Pci
i ) ≡ (Xai

i Zbi
i Pci

i )Zi, (14)

Pi(Xai
i Zbi

i Pci
i ) ≡ (Xai

i Zai⊕bi
i Pci

i )Pi, (15)

Ti(Xai
i Zbi

i Pci
i ) ≡ (Xai

i Zai⊕bi⊕(aici)
i Pai⊕ci

i )Ti, (16)

CZi,j(Xai
i Zbi

i Pci
i X

aj
j Z

bj
j P

cj
j ) ≡ (Xai

i Z
aj⊕bi
i Pci

i X
aj
j Z

ai⊕bj
j P

cj
j )CZi,j, (17)

It follows from Equations (13)–(17) that the basic gates X, Z, P, T, CZ are commutable
with the encryption operator XaZbPc, although the encryption keys may need to be up-
dated. For example, Equation (13) indicates that performing an Xai

i Zbi
i Pci

i followed by an
Xi is equivalent to performing an Xi followed by an Xai

i Zbi⊕ci
i Pci

i . Thus, the client only
needs to update the value of bi such that bi := bi ⊕ ci. The cases for Zi, Pi, Ti, and CZi,j
follow the same reason. The related updating rules of encryption keys are shown in
Equations (14)–(17). Note, however, that the commutativity noted above is not suited for
the Hadamard gate H, as there is no HPc ≡ Pc′H for any c, c′ ∈ {0, 1}. In [38], the authors
proposed a quantum teleportation scheme that they called the H-gadget (see Figure 1) so
as to implement the H gate in a similar manner. Specifically, the client needs to prepare
two ancillary qubits |+αi 〉 , |+βi 〉 and a measurement angle θi, where αi and βi are chosen
randomly, whereas θi can be determined by the following way.
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( )
i

M q

i
q

(0)M

Server
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i i ia b c
X Z P f
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+

i
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i i i
a b c

i
X Z P H f¢ ¢ ¢

i
s

i
s¢

CZ

Figure 1. The H-gadget in Ref. [38], which is designed for implementing an H gate on an en-
crypted qubit i, where si, s′i ∈ {0, 1} are the measurement outcomes and αi, βi ∈ {0, π

2 , π, 3π
2 } are

the rotation angles of two ancillary qubits, and θi ∈ {0, π
2 , π, 3π

2 } is the measurement angle of the
second measurement.

Note that for any αi, βi ∈ {0, π
2 , π, 3π

2 }, we can express them uniquely as follows:

αi = (di +
ei
2
)π, βi = ( fi +

gi
2
)π, (18)

where di, ei, fi, gi ∈ {0, 1}. Thus, the client can first generate random bits di, ei, fi, gi then
compute the values of αi and βi. To determine θi, the client generates a random bit, denoted
by hi∈ {0, 1}, then computes θi such that

θi = [hi ⊕ bi ⊕ di ⊕ (aici)⊕ (sici)⊕ (ciei)]π +
ci ⊕ ei

2
π. (19)

Note also that θi is relevant to the measurement outcome si, which means it can
be determined until the client obtains the first measurement outcome si from the server.
Nevertheless, in theory, all qubits including ancillary qubits can be sent to the server before
the computation begins. Thus, the complete procedure is classically interactive. Finally,
the updating rule for H is shown as follows:

a′i = s′i ⊕ hi, b′i = ai ⊕ si ⊕ fi ⊕ [gi(s′i ⊕ hi)], c′i = gi, (20)

where a′i, b′i , c′i denote the updated encryption keys related to qubit i. The correctness of the
H-gadget is given in the Appendix A. The detailed security proof of the protocol can be
found in [38].

4. Distributed Architecture for Secure Delegated Quantum Computations

In this section, we give a simple scheme to implement the non-local CZ gate between
two quantum servers. Our method uses the entangled state |H〉 (see Equation (10) for
its definition) as ancillary qubits. The similar schemes have been studied intensively,
for example, in [39,40]. The basic circuit is shown in Figure 2a. In the following content, we
first verify the circuit identity shown in Figure 2, then, based on this circuit identity, we
construct a distributed architecture for secure delegated quantum computations.
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H

H

+

+

CZ

CZ

CZ

i

j

is

js

(0)M

(0)M

(a)

isXjsZ

isZ jsX

CZ

i

j

(b)

Figure 2. (a) The basic circuit used to implement a non-local CZ gate on two distant qubits i and j,
where the partial circuit in the red dotted box is used to generate the entangled state |H〉. (b) The
equivalent quantum circuit for (a).

We start with a circuit named X-teleportation [40] (see Figure 3a), which is easy to verify.

CX

f

+

s

Z

s
X f

(a)

CZ

f

+

s

Z

s
X f

H H

(b)

Figure 3. (a) The original X-teleportation in [40]; (b) the X-teleportation that replaces the CX with a
CZ and two H gates. In both circuits, the measurement is performed under Z basis.

First, we substitute a CZ and two H gates for the CX gate, obtaining the equivalent
circuit, as shown in Figure 3b. We then convert the measurement basis from Z to X by the
following identity (see Figure 4), which is also easy to verify. Finally, we obtain a variant of
the X-teleportation that consists of H, CZ, and X-basis measurement, as shown in Figure 5.

s

Z

H = s

X

Figure 4. Measurement identity that converts Z-basis to X-basis.

CZ

f

+

s

X

s
X f

H

Figure 5. The variant X-teleportation consisting of CZ and H gates, where the measurement basis is X.

We now turn back to Figure 2a. Note first that the CZ gate commutes with itself,
thus the circuit can be reorganized, as in Figure 6a. Obviously, the partial circuits in the
red-dotted line and blue-dotted line boxes are exactly the same circuit as the one in Figure 5,
where X = M(0). Therefore, we can see that, after measuring qubits i, j, the rest qubits and
the rest CZ gate comprise the circuit as, in Figure 6b. Finally, we use the following identity
to exchange the positions of X and CZ, which can be easily verified:

CZ · (Xs ⊗ I) = (Xs ⊗ Zs) · CZ, (21)

where s ∈ {0, 1}. Substituting the above identity in Figure 6b and considering the symmetry
of CZ gate, we immediately obtain the desired circuit, as shown in Figure 2b.

Considering the encryption operators Xai
i Zbi

i Pci
i and X

aj
j Z

bj
j P

cj
j on qubits i and j, we

can see from Figure 6b that the non-local CZ can be thought to be performed on qubits i, j,

which are encrypted by Xai⊕si
i Zbi

i Pci
i and X

aj⊕sj
j Z

bj
j P

cj
j , thus according to the updating rule
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shown in Equation (17), we immediately obtain the updating rule of the non-local CZ gate
as follows: 

a′i = ai ⊕ si,
b′i = aj ⊕ sj ⊕ bi,
c′i = ci,


a′j = aj ⊕ sj,

b′j = ai ⊕ si ⊕ bj,

c′j = cj.

(22)

H

H

+

+

CZ

CZ

CZ

i

j

is

js

(0)M

(0)M

(a)

isX

jsX

CZ

i

j

(b)

Figure 6. (a) The equivalent form of the circuit shown in Figure 2a. (b) The resulting circuit after
measuring qubits i, j.

Based on the above analysis, we construct a distributed architecture for secure dele-
gated quantum computation, where a classical client equipped with some qubit generator
can delegate an n-qubit circuit to d small-scale quantum servers. Without loss of generality,
we assume that n = dk. In this configuration, each server typically needs a 2k-qubit register
to process k input qubits of the n-qubit circuit. That is, for each qubit in the n-qubit circuit,
the server needs a 2-qubit register to simulate it. To make sure 2k < n, it requires that d > 2.
We show this distributed architecture in Figure 7. Note that there is a special third party in
this distributed architecture, which is used to generate and distribute entangled states |H〉
between all quantum servers. Thus, all servers do not need to be interconnected directly by
a quantum (even classical) channel, as there is no information exchange between servers
during the computation.
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One-way quantum channel

 Two-way classical channel

Figure 7. (a) The distributed architecture for secure delegated quantum computations; (b) the circuits
for a CZ gate between two nonlocal registers i and j; (c) the circuit for an H gate in any register i.
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We give the complete procedure of the protocol in terms of pseudo-code (see
Algorithms 1–3). For simplicity, we use C and {Sq}d

q=1 to denote the client and d servers,
respectively. That is, the qth quantum server is referred to as Sq. As noted, each server
only processes k input qubits of the n-qubit delegated circuit. More specifically, for Sq,
it only processes the qubits indexed by (q − 1)k + 1, (q − 1)k + 2, · · · , qk. Thus, in the
case of no confusion, we also use Sq = {(q − 1)k + 1, (q − 1)k + 2, · · · , qk} to denote
the corresponding qubits. In addition, the delegated circuit U is formally expressed as
U = Upm

m Upm−1
m−1 · · ·U

p1
1 , where pi ⊂ {1, 2, . . . , n} denotes the qubits on which the basic gate

Ui is exerted. For example, if Upi
i is a CZ gate on qubits k and l, then pi = {k, l}. By this

definition, we can see that there must be pi ⊂ Sq if Upi
i is a local gate in Sq, otherwise it

only can be pi ⊂ Sq ∪ Sq′ for some Sq and Sq′ .

Algorithm 1 Distributed Secure Delegated Quantum Computations

Input: x = x1x2 · · · xn // private against all Sq

U = Upm
m Upm−1

m−1 · · ·U
p1
1 // public for C and all Sq

Output: y = y1y2 · · · yn // private against all Sq
1: C generates a, b, c←R {0, 1}n and computes rotation angles (ϕ1, . . . , ϕn) according to

Equation (12), then prepares |+ϕ1〉 . . . |+ϕn〉 as the encrypted input state, finally sends
the qubits (q− 1)k + 1, q(k− 1) + 2, · · · , qk to Sq where q = 1, 2, · · · , d. Specifically, C
sends the qubits 1, 2, · · · , k to S1 then sends the qubits k + 1, k + 2, · · · , 2k to S2, and so
on

2: for i← 1, m do
3: if Upi

i ∈ {X, Z, P, T, H} and pi ⊂ Sq for some q ∈ {1, 2, · · · , d} then
4: if Upi

i is not H then
5: Sq performs Upi

i on qubit pi while C updates the encryption
keys of this qubit according to the updating rules shown in
Equations (13)–(16)

6: else
7: C calls the procedure HADAMARD(pi, q) (See Algorithm 2)
8: end if
9: else // Upi

i is a CZ gate on qubits pi
10: if pi ⊂ Sq for some q ∈ {1, 2, · · · , d} then
11: Sq performs Upi

i on qubits pi while C updates the encryption
keys of those qubits according to the updating rule shown in
Equation (17)

12: else // pi ⊂ Sq ∪ Sq′ for some q, q′ ∈ {1, 2, · · · , d}
13: C calls the procedure NONLOCAL-CZ(pi, q, q′) (See Algorithm 3)
14: end if
15: end if
16: end for
17: Each server measures the final k qubits in Z basis, then sends the measurement out-

comes to C // let ỹ ∈ {0, 1}n be the result collected from all servers
18: C computes the output y = ỹ⊕ a. // a is the X encryption keys of the final state
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Algorithm 2 Implement an H gate on qubit i where i is in Sq

1: procedure HADAMARD(i, q) // qubit i is encrypted by Xai Zbi Pci

2: C generates di, ei ←R {0, 1} and computes the angle αi according to Equation (18),
then prepares and sends the ancillary qubit |+αi 〉 to Sq

3: Sq performs Hi and CZ gates on qubit i and |+αi 〉, then measures qubit i and sends
the measurement outcome si to C, finally labels the ancillary qubit as i

4: C generates fi, gi, hi ←R {0, 1} and computes the angles βi and θi according to
Equations (18) and (19), respectively, then prepares the ancillary qubit |+βi 〉 and
sends it with θi to Sq

5: Sq performs a CZ gate on qubit i and |+βi 〉, then measures qubit i with M(θi) and
sends the measurement outcome s′i to C, finally labels the ancillary qubit as i

6: C updates the encryption keys of qubit i according to Equation (20)
7: end procedure

Algorithm 3 Implement a nonlocal CZ gate on qubits i and j where i is in Sq while j is in
Sq′ , that is, {i, j} ⊂ Sq ∪ Sq′

1: procedure NONLOCAL-CZ({i, j}, q, q′) // qubits i and j are encrypted by Xai Zbi Pci

and Xaj Zbj Pcj , respectively
2: C delegates the third party to prepare an entangled state |H〉 and distribute it to Sq

and Sq′ , that is, each server holds one qubit of |H〉 as the ancillary qubit
3: Sq (Sq′ ) performs Hi (Hj) and CZ gates on qubit i (j) and its ancillary qubit, then

measures qubit i (j) and sends the measurement outcome si (sj) to C, finally labels
its ancillary qubit as i (j)

4: C updates the encryption keys of qubits i and j according to Equation (22)
5: end procedure

5. The Security of the Distributed Delegated Quantum Computation

We show that our protocol can guarantee the unconditional privacy of the input and
output of the computation. We only consider that all servers and the third party who serves
as an entanglement resource are honest-but-curious, which means they follow the algorithm
honestly but try to obtain the information about the input and output. For example, they
may record all classical information generated during the computation and cooperate with
each other, even with the third party.

For the input, the conclusion is obvious as the client encrypts each input qubit by
a quantum one-time pad. Therefore, to complete the proof, we only need to prove that
the output state of the computation is also encrypted by a unbiased quantum one-time
pad. In other words, there is no information leakage about the encryption keys during the
computation. From the procedures of Algorithm 1, we can see that only when the client
calls the procedures HADAMARD and NONLOCAL-CZ will there be an interaction between
client and servers. In the other cases, the algorithm is non-interactive, which means there
is no information leakage about the encryption keys from client to server as they do not
exchange any information. Based on this observation, we infer that to prove the privacy
we only need to analyze the procedures that implement the H and the nonlocal CZ gates.

We first consider the procedure HADAMARD(i, q). In the following content, we use S to
denote all servers including the untrusted third party. According to Algorithm 2, we can see
that given the qubit i encrypted by Xai Zbi Pci where i ⊂ Sq, S controls two ancillary qubits
Zdi Pei |+〉 and Z fi Pgi |+〉, and receives a measurement angle θi from C, it also generates
two measurement outcomes si, s′i ∈ {0, 1} from two independent measurements. We can
infer from the below state evolution that the measurement outcomes si, s′i are uniformly
random, thus S can obtain no information gain about any encryption keys according to si
and s′i.

|φ〉 |+〉 H⊗I−−→
(

H |φ〉
)
|+〉 CZ−→ |+〉√

2
|φ〉+ |−〉√

2
X |φ〉 . (23)
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The only available information to S now is the measurement angle θi. Let θi be
uiπ + viπ

2 , where ui, vi ∈ {0, 1}, then according to Equation (19), we know that ui and vi
can be expressed as follows:

ui = hi ⊕ bi ⊕ di ⊕ (aici)⊕ (sici)⊕ (ciei), (24a)

vi = ci ⊕ ei, (24b)

where ui, vi, and si are known to S . Intuitively, given ui, vi, and si, no server can determine
the correct values of ai, bi, ci, di, ei, hi, as there are six variables in two equations. Never-
theless, S may gain some information utilizing ui and vi. For example, if vi = 1, then
S can infer that ciei = 0. Substituting this into Equation (24a), S can obtain a simplified
equality ui = hi ⊕ bi ⊕ di ⊕ (ai ⊕ si)ci. Despite this fact, we can show that there is no
information leakage about all variables from ai to hi. That is, we prove that in the view of
S , the following equality holds true:

Pr[ri|ui, vi] = Pr[ri] =
1
2

, (25)

where the random variable ri represents the possible parameters {ai, bi, ci, di, ei, fi, gi, hi}.
To see that, we need to know the following simple facts.

First, if x, y ∈ {0, 1} and x is uniform, i.e., x ∈R {0, 1}, then x ⊕ y is also uniform.
Second, if x, y ∈ {0, 1} are uniform and let z = x⊕ y, then Pr[x|z] = Pr[x] = 1/2. Finally,
if x, y1, y2 ∈ {0, 1} and x is uniform, let z = x⊕ (y1y2), then Pr[y1|z] = Pr[y1]. These three
basic facts can be easily verified. With these facts, we can complete our proof. Define
ξi = bi ⊕ di ⊕ (aici)⊕ (sici)⊕ (ciei) so that ui = hi ⊕ ξi. As bi, di ∈R {0, 1}, we first know
that ξi ∈R {0, 1}. Furthermore, as hi, ξi ∈R {0, 1}, we can get that Pr[hi|ui] = Pr[hi] =
1/2. Likewise, we can also get Pr[bi|ui] = Pr[bi] = 1/2 and Pr[di|ui] = Pr[di] = 1/2.
For ai ∈R {0, 1}, define ξi = hi ⊕ bi ⊕ di ⊕ (sici)⊕ (ciei) so that ui = ξi ⊕ (aici), from which
we can infer that Pr[ai|ui] = Pr[ai] = 1/2. Note that hi, bi, di, and ai are irrelevant to
vi, which means Pr[ri|ui, vi] = Pr[ri|ui] for any ri ∈ {hi, bi, di, ai}. As for ci, ei ∈R {0, 1},
as they are related to both ui and vi, in order to simplify our analysis, we define h′i =
hi ⊕ (aici), b′i = bi ⊕ (sici), and d′i = di ⊕ (ciei), then obtain that ui = h′i ⊕ b′i ⊕ d′i. Clearly,
h′i, b′i , d′i ∈R {0, 1}, so ci and ei are only related to vi. By this, we can easily get that
Pr[ci|ui, vi] = Pr[ci|vi] = Pr[ci] = 1/2 and Pr[ei|ui, vi] = Pr[ei|vi] = Pr[ei] = 1/2. Finally,
fi and gi ∈R {0, 1} are obviously irrelevant to ui and vi (see Equations (24a) and (24b)),
which means Pr[ fi|ui, vi] = Pr[ fi] = 1/2 and Pr[gi|ui, vi] = Pr[gi] = 1/2. So far, we have
proved the statement in Equation (25), from which we know that the servers can obtain
no information gain about ai, bi, ci, di, ei, fi, gi, hi from the θi. Thus, after the procedure
HADAMARD(i, q), the updated keys a′i, b′i , c′i are also secure.

Finally, we consider the procedure NONLOCAL-CZ({i, j}, q, q′), where {i, j} ∈ Sq ∪Sq′ .
Note that in this procedure, S can only obtain two independent and uniform measurement
outcomes si, sj. According to the updating rules shown in Equation (22), we can see that
as long as the encryption keys {ai, bi, ci} and {aj, bj, cj} are secure then the updated keys
will also be secure against the servers. As a result, we conclude that, from the perspective
of all servers, the output state of the computation is still encrypted by a sound quantum
one-time pad.

6. Discussion

In this work, we proposed a secure distributed delegated quantum computation proto-
col, which allows clients to delegate their private computation to several quantum servers.
We have shown that unconditional security of the input and output of the computation
can be guaranteed as long as all servers follow the protocol honestly. Nevertheless, there
are some notable problems in our work when we consider it in practice. In the end of this
paper, we discuss those practical problems.
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First, note that our protocol can only work well in a noise-free environment. To make
our protocol fault-tolerant, we assume that each quantum server must be capable of
performing fault-tolerant quantum computation [41]. However, this would inevitably increase
the overhead of ancillary qubits. In addition, we need to consider two channel noises: one
is between the client and each server, the other is between the third party and each server.
The former will introduce errors in the input state, whereas the latter will introduce errors
in the entangled state. There are some methods to remedy this problem. For the input state,
the client can utilize some quantum error-correct code [42] to protect each qubit. However, it
requires that the client can perform additional quantum operations. As for the entangled
state, each pair of servers can use some quantum entanglement distill [43] protocol to obtain
the entangled states with high fidelity. Similarly, it requires additional local operations and
classical communications between the servers.

Second, note that our protocol can only protect the security of the input and output
of the computation. This is because the model of the delegated quantum computation
we used in our work is SDQC protocol instead of UBQC protocol. Nevertheless, we can
convert, in principle, a SDQC protocol into a UBQC protocol. To do that, we first encode
the delegated circuit U as a binary string denoted by C(U). Next, according to the quantum
computation theory [44], there exists a universal quantum circuit U such that

U |+C(U)〉 |+x〉 = |+C(U)〉U |+x〉 , (26)

where the input of the universal circuit U consists of two parts: |+x〉 is the input state of
U and |+C(U)〉 is the canonical and quantum description of the circuit U. Performing this
universal circuit U in our protocol, we can apparently achieve a blind distributed delegated
quantum computation.

Last, we should note that in this work we only consider the honest servers and the third
party who perform the protocol as the client desires. However, a real server may not follow
the protocol honestly, and an untrusted third party may prepare some other entangled
states for the servers. To detect such a malicious server including the untrusted third party,
we should introduce a verification mechanics in our protocol. Indeed, verification is an
important topic in the quantum computation theory (see [45,46]). There is an easy way to
achieve the verification in our protocol. Specifically, given the delegated circuit U, the client
can introduce another small quantum circuit V, for example, a permutation circuit [47],
which is easy to simulate on a classical computer. The client then randomly inserts the
qubits of V into the circuit U and runs this hybrid circuit on the universal quantum circuit
U . After the computation, the client check the result of V; if the result does not match the
desired, then the client rejects the output.
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Appendix A. The Correctness of the H-Gadget

In this section, we briefly prove the correctness of the H-gadget proposed in [38]. We
first translate the circuit of this gadget (see Figure 1) into an equivalent form. Note that
the ancillary qubits |+αi 〉 = Rz(αi) |+〉 , |+βi 〉 = Rz(βi) |+〉 and any Z-rotation operator is
commutable with the controlled-Z gate, thus the circuit of the H-gadget can be expressed
equivalently as follows:

H

CZ

( )
i

M q

CZ

(0)M

i i i
a b c

X Z P f

+

i
s

i
s¢( )

z iR a

( )
z iR b

+

Figure A1. An equivalent circuit of the H-gadget of [38].

In Section 4, we obtained a variant X-teleportation (see Figure 5), which is identical to
the above circuit in the red-dotted box. According to this, we can infer immediately that
after performing the measurement M(0), the rest circuit is equivalent to the following form,
where the operator Rz(αi) has been absorbed into the input state.

We then use the identity shown in Figure A2, which is easy to verify. Applying this
measurement identity to the circuit in Figure A3, we can obtain the following circuit (see
Figure A4), where we exchange the positions of Rz(θi) and CZ, and insert a pair of H gates
between them. Obviously, the partial circuit in Figure A4 surrounded by the red-dotted box
is the variant X-teleportation. Thus, we can infer that after the measurement the remaining
qubit will be

Rz(βi)Xs′i HRz(αi − θi)Xai⊕si Zbi Pci |φ〉 (A1)

where Rz(βi) is the Z-rotation operator in the end.

s = s

X( )M q

( )
z
R q-

Figure A2. Measurement identity that converts M(θ) basis to X basis.

( )
i

M q

CZ

f

+

i
s¢

( )
z iR b

i i i i
a s b c

X Z P
Å( )

z iR a

Figure A3. The rest circuit after performing the measurement M(0) on the top line.

CZ

f

+

i
s¢

( )
z iR b

i i i i
a s b c

X Z P
Å( )

z iR a

X

( )
z i
R q- H H

Figure A4. The variant X-teleportation where the input qubit is HRz(αi − θi)Xai⊕si Zbi Pci |φ〉.
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In the following content, we simplify this output qubit. For simplicity, we temporarily
drop the subscript i and define Rz(γ) ≡ ZbPc, that is, γ = (b + c

2 )π. It is easy to check that
XaRz(θ)Xa = Rz((−1)aθ) for any θ. Thus, the output qubit can be rewritten as follows:

Rz(β)Xs′HRz(α− θ)Xa⊕sRz(γ) |φ〉

= Xs′Rz

(
(−1)s′β

)
HXa⊕sRz

(
(−1)a⊕s(α− θ)

)
Rz(γ) |φ〉

= Xs′Rz

(
(−1)s′β

)
Za⊕sHRz

(
γ + (−1)a⊕s(α− θ)

)
|φ〉

= Xs′Rz

(
(−1)s′β + (a⊕ s)π

)
HRz

(
γ + (−1)a⊕s(α− θ)

)
|φ〉

(A2)

Let θ = (−1)a⊕sγ + α + hπ, where h ∈ {0, 1}. Note that θ here is seemingly not the
same as the one defined in Equation (19). Despite that, we will show they are exactly the
same one. Substitute θ in the above equation, we can easily get the following result:

Xs′Rz

(
(−1)s′β + (a⊕ s)π

)
HRz

(
− (−1)a⊕shπ

)
|φ〉 . (A3)

As Rz is an operator with a period of 2π, which means Rz(π) ≡ Rz(−π) ≡ Z, thus
the output qubit can be expressed as follows:

Xs′Rz

(
(−1)s′β + (a⊕ s)π

)
HZh |φ〉

= Xs′Rz

(
(−1)s′β + (a⊕ s)π

)
Xh H |φ〉

= Xs′⊕hRz

(
(−1)s′⊕hβ + (−1)h(a⊕ s)π

)
H |φ〉 .

(A4)

We further express the Z-rotation in Equation (A4) in terms of Z and P. Recalling that
β = ( f + g

2 )π (see Equation (18)) and considering the periodicity of Z-rotation operators,
we can get that

Rz

(
(−1)s′⊕h( f +

g
2
)π + (−1)h(a⊕ s)π

)
≡ Rz

(
(a⊕ s⊕ f )π + (−1)s′⊕h g

2
π

)
≡ Rz

(
(a⊕ s⊕ f )π + (−1)s′⊕h g

2
π + 2(s′ ⊕ h)gπ

)
= Rz

(
(a⊕ s⊕ f ⊕ [(s′ ⊕ h)g])π +

(−1)s′⊕h + 2(s′ ⊕ h)
2

gπ

)
.

(A5)

Note that for any r ∈ {0, 1}, (−1)r + 2r = 1, so the above Z-rotation operator can be
further rewritten as follows:

Rz

(
(a⊕ s⊕ f ⊕ [g(s′ ⊕ h)])π +

gπ

2

)
≡ Za⊕s⊕ f⊕[g(s′⊕h)]Pg. (A6)

Substituting the above equation to Equation (A4), we get the output qubit in the
following form:

Xs′⊕hZa⊕s⊕ f⊕[g(s′⊕h)]PgH |φ〉 (A7)
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Finally, we substitute γ = (b + c
2 )π and α = (d + e

2 )π in θ = (−1)a⊕sγ + α + hπ,
obtaining

θ = (−1)a⊕s(bπ +
c
2

π) + (dπ +
e
2

π) + hπ

= bπ + (−1)a⊕s c
2

π + dπ +
e
2

π + hπ

= bπ + c(a⊕ s)π +
c
2

π + dπ +
e
2

π + hπ

= h⊕ b⊕ d⊕ (ac)⊕ (sc)π +
c + e

2
π

= h⊕ b⊕ d⊕ (ac)⊕ (sc)⊕ (ce)π +
c⊕ e

2
π.

(A8)

where in the last term we use another simple equality: for any c, e ∈ {0, 1}, c + e =
2ce + c⊕ e. From the above results, the correctness of the H-gadget is obvious.
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