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Abstract: In this paper, we study the finite-time stability of permanent magnet synchronous motors
(PMSMs) with noise perturbation. To eliminate the chaos in a PMSM and allow it to reach a steady
state more quickly within a finite time, we propose a novel adaptive controller based on finite-
time control theory. Finite-time stability implies optimal convergence time and better robustness.
Finally, numerical simulations are performed to demonstrate the effectiveness and feasibility of our
new results.

Keywords: finite time; noise perturbation; permanent magnet synchronous motor; adaptive control

1. Introduction

Since the American meteorologist Edward Lorenz discussed chaotic phenomena in
1963 [1], chaotic behavior has been widely studied in many areas such as robots, hard disk
drives, food webs, electrical power grids, secure communication and others [2–7]. As a
typical nonlinear dynamical system, it is sensitive to initial conditions, parameter variables
and environmental noise, and has become a common concept, enabling us to understand
rich dynamic behavior. Over the past few decades, chaos control and synchronization
have been intensively studied in various fields, including information processing, salt-
water oscillators, semiconductor lasers, biological systems, chemical reactions and power
electronics [8–21].

As is well known, PMSMs have been widely utilized due to their simple structure,
low maintenance cost and inertia, high power density and efficiency. However, Hemati
discovered chaos phenomena in the open-loop system of the permanent magnet motor
in the mid-1990s [22]. The oscillation or irregular movement caused by chaotic behaviors
can, in extreme circumstances, lead to the collapse of the systems [23]. Therefore, chaos
control, aiming at eliminating the undesired chaotic behavior, has become an important
nonlinear control problem [24–29]. A common method such as feedback sliding mode
control is usually used for systems with parameter uncertainty and disturbance, which
requires that the bounds of the uncertainty and disturbance must be known in advance.
However, in practice, it is difficult to obtain these boundaries in advance. To overcome this
problem, adaptive control technology is introduced into the controller design, which can
estimate these unknown bounds according to a designed adaptive update law. Based on
sliding mode control theory, Harb proposed a sliding mode adaptive controller to eliminate
chaotic behavior in PMSMs [24]. Both Choi and Maeng explored the adaptive control of
a chaotic PMSM [25,26]. Loria developed a robust linear control for chaotic PMSMs with
uncertainties and further extended adaptive linear control in PMSMs [27].

In an automatic control system, the variation laws for the many inevitable random
disturbances cannot be described by exact functions, but they can be expressed as noise
perturbations to some extent. Taking these random disturbances into account can further
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improve the effectiveness and accuracy when analyzing the system control. For many
common control methods, the time to achieve system stability may be infinite. However,
researchers wish to make the system stable within a finite time [29–33]. In [29], a feedback
finite-time controller was designed for achieving synchronization between two coupled
networks with time-varying delays. Using adaptive state feedback controllers, Zhang et al.
investigated the finite-time synchronization of discontinuous neural networks with delays
and mismatched parameters [30]. Via a quantized controller, Yang et al. investigated the
finite-time stabilization of switched dynamical networks with quantized coupling [31].

To the best of our knowledge, there are few results on the finite-time stability of
PMSMs with noise perturbation. The difficulty in studying the stability of PMSMs with
noise perturbation lies in the problems of how to construct noise coupling reasonably in the
system modeling and how to use a strict mathematical method to prove the effectiveness
of the control method. Motivated by the above analysis, we propose an adaptive controller
based on the finite-time control theory of stochastic differential equations and the adaptive
control method, to realize the stochastic finite-time stability of PMSMs.

The main innovations of this paper are as follows:

(1) The effect of noise perturbation on the finite-time stability of PMSMs is considered for
the first time.

(2) Combining the advantages of the adaptive method and finite-time control technology,
the designed controllers can realize the stochastic stability of the PMSM system within
a finite time.

(3) We consider the effect of a control parameter α and noise on the stability, and find that
there is an optimal parameter α such that the convergence time is shortest.

The highlight of this paper is that it reveals that noise perturbation within certain
limits is helpful for realizing the finite-time stochastic stability of PMSMs, which is counter-
intuitive.

The rest of this paper is organized as follows. In Section 2, we introduce the model
description and the problem formulation. In Section 3, we discuss the stochastic finite-time
stability of permanent magnet synchronous motors with adaptive control. In Section 4, an
illustrative example and simulations are provided to demonstrate the effectiveness and
feasibility of the analytical results. Finally, in Section 5 we give some conclusions.

2. Model Description and Problem Formulation

In Ref [34], the mathematical model of the permanent magnet synchronous motor
was first derived, and the dynamic characteristics were studied. As shown in Figure 1, an
α–β axis system can rotate to a d–q axis system via the Park transformation. Using specific
affine transformation and time-scale transformation, the dynamic model of a permanent
synchronous motor with a smooth air gap can be described by the following dimensionless
differential equations [25]:

did
dt

= −id + iqω + ũd,

diq

dt
= −iq − idω + γω + ũq, (1)

dω

dt
= σ(iq −ω)− T̃L,

where id, iq and ω are the state variables denoting the d-axis and q-axis stator current
and angle speed of the motor, respectively, ũd and ũq are the d-axis and q-axis stator
voltages, respectively, T̃L is the external load torque and σ > 0 and γ > 0 are the system
operating parameters.
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Figure 1. The relative position relationship between α–β axis system and d–q axis system.

The external inputs ũd, ũq and T̃L are set to zero after a given operating period of the
system. Then, the unforced system (1) becomes

did
dt

= −id + iqω,

diq
dt

= −iq − idω + γω, (2)

dω

dt
= σ(iq −ω).

Choosing specific parameters and working conditions such as σ = 5.46, γ = 20,
(id(0), iq(0), ω(0)) = (5, 1,−1), leads to chaotic behavior in the PMSM model (2). In
order to eliminate undesirable chaos and achieve stability in a finite time, we investigate
finite-time chaos control in PMSMs. Some required definitions and lemmas are given below.

Definition 1 ([35]). Consider the following nonlinear dynamical system:

ẋ = f (x), (3)

where the system state variable x ∈ Rn, f (·) is a smooth nonlinear vector function. If there exists a
constant T > 0 (may depend on the initial system state x0), such that:

lim
t→T
‖x(t)‖ = 0,

and ‖x(t)‖ ≡ 0, ∀t ≥ T, then the system ẋ = f (x) is finite-time stable.

Consider the following n-dimensional stochastic differential equation:

dx = f̂ (x)dt + ĝ(x)dW(t), (4)

where x ∈ Rn is the state vector, f̂ : Rn → Rn and ĝ : Rn → Rn×m are continuous and
satisfy f̂ (0) = 0, ĝ(0) = 0 and the noisy intensity matrix W(t) = (w1, · · · , wm)T is an
m-dimensional Brownian motion defined on a complete probability space (Ω,F , P) with a
natural filtration {Ft}t≥0. It is supposed that Equation (4) has a unique and global solution
denoted by x(t, x0)(0 ≤ t < +∞), where x0 is the initial state of (4).

For each V ∈ C2,1(Rn × R+, R+), the operator LV associated with Equation (4) is
defined as:

LV =
∂V
∂x
· f̂ +

1
2

trace[ĝT · ∂2V
∂x2 · ĝ], (5)
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where
∂V
∂x

= (
∂V
∂x1

, . . . ,
∂V
∂xn

),
∂2V
∂x2 = (

∂2V
∂xi∂xj

)n×n.

Definition 2. For system (4), if there exists a stochastic settling time K0(x0), such that:

P{‖ x(t, x0) ‖= 0} = 1, ∀t ≥ K0(x0).

then the stochastic system (4) is said to achieve stochastic finite-time stability.

Lemma 1 ([36]). Assume that system (4) has a unique global solution. If there exists a positive,
definite, twice continuously differentiable and radially unbounded Lyapunov function V : Rn → R+

and real numbers k > 0 and 0 < ρ < 1, such that

LV(x) ≤ −k(V(x))ρ,

then the origin of system (4) is globally stochastically finite-time stable, and E[K0(x0)] ≤ (V(x0))
1−ρ

k(1−ρ)
.

Lemma 2 ([37]). If x1, x2, · · · , xN > 0, then

N

∑
i=1

xη
i ≥ (

N

∑
i=1

xi)
η , 0 < η ≤ 1,

N

∑
i=1

xη
i ≥ N1−η(

N

∑
i=1

xi)
η , η > 1.

3. Main Results

First, we implement the noise term and controllers u1, u2, u3 in system (2). Then, the
controlled system can be described as

did
dt

= −id + iqω + η1(id)ξ(t) + u1,

diq

dt
= −iq − idω + γω + η2(iq)ξ(t) + u2, (6)

dω

dt
= σ(iq −ω) + η3(ω)ξ(t) + u3,

where ξ(t) = Ẇ(t), and η1(·), η2(·) and η3(·) are simple linear functions of id, iq and ω,
respectively. Let η2

1(id) ≤ 2L1i2d, η2
2(iq) ≤ 2L2i2q , η2

3(ω) ≤ 2L3ω2.
In order to realize the global stability of the above PMSM system, based on the theory

of finite-time stability, the appropriate adaptive controllers u1, u2, and u3 are designed
as follows:

u1 = −k1iα
d ,

u2 = −k2iα
q , (7)

u3 = −σiq − k3ωα,

where α = p
h , p and h are two positive odd integers satisfying p < h. The positive tuning

parameters k1, k2 and k3 can be updated by

k̇1 = iα+1
d − (k1 − g1)

α,

k̇2 = iα+1
q − (k2 − g2)

α, (8)

k̇3 = ωα+1 − (k3 − g3)
α,

where g1 > 0, g2 > 0 and g3 > 0 are arbitrarily chosen constants.
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Remark 1. There are many different parameters in this paper. When the operating parameters σ
and γ take some special values, the system will show chaotic behavior. The control parameter α in
(7) and the noise intensity λ in the numerical simulation can affect the stability of the system. In the
next section, we further explore the effect of the control parameter α on the stability of the system
with different noise intensities λ and with σ = 5.46, γ = 20.

Theorem 1. If L1, L2 < 1; L3 < σ, then the PMSM system (6) with noise perturbation can realize
globally stochastically finite-time stability under the adaptive controllers (7).

Proof. The control process of the system is divided into two stages.
Firstly, we prove that the third subsystem in (6) can become stable in a finite time.

Choose a Lyapunov candidate function as follows:

V1(x) =
1
2

ω2 +
1
2
(k3 − g3)

2, (9)

where x(t) = (id, iq, ω)T .
Employing Itô’s formula, one has

LV1 = ωω̇ + (k3 − g3)k̇3 +
1
2

η2
3(ω)

= ω[σ(iq −ω) + u3] + (k3 − g3)k̇3 +
1
2

η2
3(ω).

(10)

By adopting the designed controller u3 of the system in (7) and the corresponding
updating law of the third subsystem in (8), we obtain

LV1 = ω[σ(iq −ω)− σiq − k3ωα] + (k3 − g3)[ω
α+1 − (k3 − g3)

α] +
1
2

η2
3(ω)

= −σω2 − g3ωα+1 − (k3 − g3)
α+1 +

1
2

η2
3(ω)

≤ −(σ− L3)ω
2 − g3ωα+1 − (k3 − g3)

α+1

≤ −g3ωα+1 − (k3 − g3)
α+1

= −2(α + 1)/2g3(
1
2

ω2)
(α + 1)/2 − 2(α + 1)/2(

1
2
(k3 − g3)

2)
(α + 1)/2

≤ −m1[(
1
2

ω2)
(α + 1)/2 + (

1
2
(k3 − g3)

2)
(α + 1)/2],

where m1 = min{2(α + 1)/2g3, 2(α + 1)/2}.
Note that 1

2 < (α + 1)/2 < 1, and it follows from Lemma 2 that

LV1 ≤ −m1[
1
2

ω2 +
1
2
(k3 − g3)

2](α + 1)/2

= −m1V1
(α + 1)/2.

(11)

From Lemma 1, the third subsystem in (6) is stable in a finite time T1, and

E(T1) ≤
2V(1− α)/2

1 (x0)

m1(1− α)
, (12)

which means that ω = 0 a.s. and k3 ≡ g3 when t ≥ T1.
In the second stage, when t ≥ T1, we can obtain the following subsystem:

did
dt

= −id + η1(id)ξ(t) + u1,

diq

dt
= −iq + η2(iq)ξ(t) + u2.

(13)
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Then, we select the following Lyapunov candidate function:

V2(x) =
1
2

i2d +
1
2

i2q +
1
2
(k1 − g1)

2 +
1
2
(k2 − g2)

2. (14)

Employing Itô’s formula, one has

LV2 = id[−id + u1] + iq[−iq + u2] + (k1 − g1)[iα+1
d − (k1 − g1)

α]

+ (k2 − g2)[iα+1
q − (k2 − g2)

α] +
1
2

η2
1(id) +

1
2

η2
2(iq)

= −i2d − g1iα+1
d − i2q − g2iα+1

q − (k1 − g1)
α+1 − (k2 − g2)

α+1 +
1
2

η2
1(id) +

1
2

η2
2(iq)

≤ −i2d + L1i2d − g1iα+1
d − i2q + L2i2q − g2iα+1

d − (k1 − g1)
α+1 − (k2 − g2)

α+1

= (L1 − 1)i2d + (L2 − 1)i2q − g1iα+1
d − g2iα+1

d − (k1 − g1)
α+1 − (k2 − g2)

α+1

≤ −g1iα+1
d − g2iα+1

d − (k1 − g1)
α+1 − (k2 − g2)

α+1

= −2(α + 1)/2g1(
1
2

i2d)
(α + 1)/2 − 2(α + 1)/2g2(

1
2

i2q)
(α + 1)/2

− 2(α + 1)/2[
1
2
(k1 − g1)

2]
(α + 1)/2 − 2(α + 1)/2[

1
2
(k2 − g2)

2]
(α + 1)/2

≤ −m2[(
1
2

i2d)
(α + 1)/2 + (

1
2
(k1 − g1)

2)
(α + 1)/2

+ (
1
2

i2q)
(α + 1)/2 + (

1
2
(k2 − g2)

2)
(α + 1)/2

],

where m2 = min{2(α + 1)/2g1, 2(α + 1)/2g2, 2(α + 1)/2}.
From Lemma 2, we have

LV2 ≤ −m2[
1
2

i2d +
1
2

i2q +
1
2
(k1 − g1)

2 +
1
2
(k2 − g2)

2](α + 1)/2

= −m2V(α + 1)/2
2

(15)

Therefore, from Lemma 1 it can be seen that id and iq are stable in a finite time T2, and

E(T2) ≤
2V(1− α)/2

2 (x(T1))

m2(1− α)
, (16)

which means that P{‖ x(t, x0) ‖= 0} = 1, when t ≥ T1 + T2.
Thus, by employing the adaptive controllers (7), the PMSM can achieve stochastically

finite-time stability within the stochastic settling time T1 + T2.
The proof is completed.

Remark 2. From Itô’s formula, we can see that the decay rate of the function V(x) depends on
the quality of LV. Hence, the convergence rate is also dominated by the quality of LV. The
inequalities (11) and (15) indicate that the convergence rate of the proposed algorithm is closely
related to the protocol parameters g1, g2, g3 and α.

Remark 3. From Equations (12) and (16), we can see that the upper bounds of the stochastic
settling time T1 and T2 are closely related to the protocol parameter α. In the next numerical
simulation, we will further explore the optimal value of control parameter α, to make the system
stable as quickly as possible.

To reveal the idea behind this paper, we describe the adaptive finite-time control
design algorithm as follows:
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Step 1 The initial state of the PMSM system and the input parameters of the noise intensity
are determined, and the appropriate control parameter α (0 < α < 1) for the
controllers (7) is selected to speed up the convergence process.

Step 2 Calculate the tuning parameters k1, k2, k3 according to the updated Equation (8) for
the terminal attractor and the current state of the PMSM.

Step 3 The values of k1, k2 and k3 are substituted into the controllers (7), and thus the
values of u1, u2 and u3 from the adaptive controller can be calculated.

Step 4 Substituting the values of u1, u2 and u3 into the Equation (6), the state values of id,
iq, and ω can be obtained.

Step 5 Determine the accuracy parameter ε. If
√

id
2 + iq2 + ω2 < ε, the PMSM system is

considered to have achieved a stable state, then quit, or else return to Step 2.

Remark 4. When functions η1, η2, η3, are set to zero, system (7) is the same as that of Theorem 1
in [38], which appears to be a deterministic system. The stability theory of ordinary differential
equations used in [38] cannot be directly applied to the stochastic PMSM system studied in this
paper. Based on the finite-time stability theory of stochastic differential equations, this paper reveals
a conclusion contrary to intuition, i.e., that noise perturbation within certain limits can accelerate
the realization of stochastic finite-time stability in the PMSM system.

4. Numerical Simulation

In this section, an illustrative example is given to verify the feasibility and effectiveness
of the above analytical results. The fourth-order Runge–Kutta method is employed to obtain
the numerical solutions. Without losing generality, we set η1(id) = λ1id, η2(iq) = λ2iq and
η3(ω) = λ3ω, which is also permissible for other linear functions. In this paper, the noise
intensity is λ = λ1 = λ2 = λ3 = 1.4, unless otherwise specified. It should be pointed out
that it is more difficult to control systems with chaotic phenomena. The system parameters
and the initial position are the same as those in [38], where σ = 5.46, γ = 20, α = 7/9,
(id(0), iq(0), ω(0)) = (5, 1,−1). In this paper, we set the tuning parameters k1(0) = k2(0) =
k3(0) = 0.4 and g1 = 2, g2 = 1.5, g3 = 2.5. To measure the evolution process, we define
the time indicator for reaching stability as K0 , inf{t1 : ‖x(t)‖ < 10−5, ∀t ≥ t1}, where
x(t) = (id, iq, ω)T .

4.1. Finite-Time Control of PMSM with Noise Perturbation

Firstly, we verify the effectiveness of the proposed finite-time control strategy proposed
here for the PMSM system without noise perturbation in [38]. Figure 2 displays the
time responses of the state variables id, iq and ω, adaptive finite-time controllers u1, u2, u3
and tuning parameters k1, k2 and k3. It is shown that all time responses without noise
perturbation are smooth, and the PMSM system can achieve finite-time stability.

Compared with the PMSM without noise perturbation, Figure 3a displays the time
responses of the state variables id, iq and ω of the controlled PMSM with noise coupling,
which arrives at equilibrium within a finite time by using the proposed adaptive finite-
time controllers. It is shown that the undesirable chaos in PMSMs with stochastic noise
perturbation can be eliminated effectively within a finite time. Calculated with MATLAB,
the time indicator for reaching stability is K0 ≈ 2.34. Figure 3b shows that the time responses
of the adaptive finite-time controllers u1, u2, u3 will settle to zero. Figure 3c displays the
time responses of the tuning parameters of terminal attractors k1, k2 and k3, which will
converge to the given g1, g2, g3 after the settling time K0.
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Figure 2. Time responses of: (a) controlled state variables id, iq, ω; (b) adaptive finite-time controllers
u1, u2, u3; (c) tuning parameters of k1, k2, k3 with λ1 = λ2 = λ3 = 0 and id(0) = 5, iq(0) = 1,
ω(0) = −1, σ = 5.46, γ = 20, α = 7/9, g1 = 2, g2 = 1.5, g3 = 2.5.
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Figure 3. Time responses of: (a) controlled state variables id, iq, ω; (b) adaptive finite-time controllers
u1, u2, u3; (c) tuning parameters of k1, k2, k3 with λ1 = λ2 = λ3 = 1.4 and id(0) = 5, iq(0) = 1,
ω(0) = −1, σ = 5.46, γ = 20, α = 7/9, g1 = 2, g2 = 1.5, g3 = 2.5.
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4.2. Robust Finite-Time Synchronization and Parameters Identification

In order to explore the relationship between the convergence time and the noise
intensity, we give the time response of representative variables iq with different noise
intensities λ = 0, 0.6, 1.0, 1.4 in Figure 4a. It is shown that the stronger the noise intensity,
the faster the convergence rate. With other system parameters remaining unchanged, we
further explored the influence of the noise coupling intensity on the stabilization rate of the
system. Figure 4b shows the settling time K0 as a function of the control parameter α. With
an increase in noise coupling strength, the settling time required for the PMSM system to
achieve stochastic finite-time stability is shorter, which means that the PMSM system has
good noise robustness under the controller (7).
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Figure 4. (a) Time responses of iq with different noise intensities λ, with id(0) = 5, iq(0) = 1,
ω(0) = −1, σ = 5.46, γ = 20, α = 7/9. (b) Settling time K0 as a function of noise intensity λ.

Remark 2 shows that the convergence time is closely related to the protocol parameter
α. To explore the relationship between the convergence time and the control parameter α
experimentally, we selected a representative variable iq to demonstrate the convergence.
Figure 5a gives the time response of iq with λ = 0.6, id(0) = 5, iq(0) = 1, ω(0) = −1,
σ = 5.46, γ = 20 and α = 0.46, 0.7, 0.82, 0.94, respectively. It is shown that the convergence
rate increases as the parameter α increases. The control parameter α of the adaptive finite-
time controller plays a key role in the stability of the PMSM system. Improper selection of
control parameters prevents the PMSM achieving finite-time stability. To comprehensively
compare the effect of parameters α and λ on the finite-time stability of the PMSM, Figure 5b
shows the functional relationship between them. When α = 0.81, no matter what value
λ takes, the PMSM can achieve finite-time stability in the shortest time. Furthermore, the
larger the parameter λ, the smaller the settling time K0. However, when α < 0.65, the
system without noise perturbation (λ = 0) cannot achieve stability for the whole operation
time. On the one hand, this shows that the finite-time stability of the PMSM depends on
the control parameter α, and that noise within certain limits can accelerate the PMSM’s
realization of stochastic finite-time stability. On the other hand, α = p

q < 1 is not a necessary
condition for stochastic finite-time stability. When α is slightly larger than 1, the system can
also achieve stochastic finite-time stability.
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Figure 5. (a) Time responses of iq with different control parameters α, with id(0) = 5, iq(0) = 1,
ω(0) = −1, σ = 5.46, γ = 20, α = 7/9. (b) Settling time K0 as a function of control parameter α with
different λ values.

5. Conclusions

In this paper, the stochastic finite-time stability of permanent magnet synchronous
motors with noise perturbation was investigated. Based on the finite-time stability theory
of stochastic differential equations and the adaptive control method, an adaptive finite-time
control law was proposed. The effect of the adaptive control parameter α and the noise
intensity λ on the PMSM can be observed from numerical simulations. We found that there
is an optimal parameter α such that the convergence time is the shortest. Compared to the
PMSM without noise perturbation, noise within certain limits can accelerate the PMSM’s
realization of stochastic finite-time stability. Since the stochastic settling time is affected
by the initial state of the system in this paper, we hope to find a new finite-time control
scheme in the future that is independent of the initial state. Another future direction will
be to study how to further apply the adaptive finite-time control strategy in practice.
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