
Citation: Barkalov, K.; Shtanyuk, A.;

Sysoyev, A. A Fast kNN Algorithm

Using Multiple Space-Filling Curves.

Entropy 2022, 24, 767. https://

doi.org/10.3390/e24060767

Academic Editors: Alexander Gorban

and Ivan Tyukin

Received: 14 April 2022

Accepted: 25 May 2022

Published: 30 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

A Fast kNN Algorithm Using Multiple Space-Filling Curves
Konstantin Barkalov * , Anton Shtanyuk and Alexander Sysoyev

Department of Mathematical Software and Supercomputing Technologies, Lobachevsky University,
603950 Nizhny Novgorod, Russia; anton.shtanyuk@itmm.unn.ru (A.S.); alexander.sysoyev@itmm.unn.ru (A.S.)
* Correspondence: konstantin.barkalov@itmm.unn.ru

Abstract: The paper considers a time-efficient implementation of the k nearest neighbours (kNN)
algorithm. A well-known approach for accelerating the kNN algorithm is to utilise dimensionality
reduction methods based on the use of space-filling curves. In this paper, we take this approach
further and propose an algorithm that employs multiple space-filling curves and is faster (with
comparable quality) compared with the kNN algorithm, which uses kd-trees to determine the nearest
neighbours. A specific method for constructing multiple Peano curves is outlined, and statements
are given about the preservation of object proximity information in the course of dimensionality
reduction. An experimental comparison with known kNN implementations using kd-trees was
performed using test and real-life data.

Keywords: machine learning; kNN; dimensionality reduction; multiple space-filling curves

1. Introduction

Currently, machine learning (ML) methods are being used successfully to solve a wide
range of problems in various application areas. One example of a class of problems where
ML has demonstrated its effectiveness are the tasks of identifying the main properties of the
phenomena, which are characterised by their stochastic nature or the presence of hidden
parameters [1–3].

In many cases, solving application problems comes down to the problem of classi-
fication, i.e., assigning the object under study to one of the available classes. One of the
well-known classification methods is the kNN (k nearest neighbours) method. Although the
earliest papers related to this method appeared more than 50 years ago [4,5], theoretical
studies of various aspects of using kNN are still ongoing [6,7]. This is not to mention
hundreds of publications in which this method has been used to solve applied classification
problems. Over many years of use, kNN has established itself as a simple and reliable
method that yields acceptable results when solving many different problems.

Among the undoubted merits of kNN is its “explainability”, since the decision about
whether a test object belongs to one class or another is clearly explained by similar proper-
ties of the test object and its nearest (in some metric) neighbours. Along with the study of
the method’s theoretical properties, the issue of its effective implementation is also investi-
gated. Thus, direct implementation of the method by using the “brute-force” approach has
computational complexity O(n), where n is the number of objects. Fast algorithms, which
have computational complexity O(log(n)), use complex data structures of kd-tree type [8].

One approach to accelerating the kNN algorithm is to use dimensionality reduction
methods involving space-filling curves (Peano–Hilbert curves) [9,10]. In this paper, we
develop this approach further and propose an algorithm that employs multiple space-filling
curves and is faster (with comparable quality) compared with the algorithm using kd-trees.
A specific method for constructing multiple Peano curves is outlined, and statements are
given about the preservation of object proximity information in the course of dimensionality
reduction. Comparison with known kNN implementations (in particular, those using kd-

Entropy 2022, 24, 767. https://doi.org/10.3390/e24060767 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e24060767
https://doi.org/10.3390/e24060767
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0001-5273-2471
https://orcid.org/0000-0003-1809-7173
https://orcid.org/0000-0003-1542-7624
https://doi.org/10.3390/e24060767
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e24060767?type=check_update&version=1

Entropy 2022, 24, 767 2 of 18

trees) was performed using test and real-life data with small dimensionality, i.e., just those
data for which kd-trees show the best performance in terms of speed.

The paper is organised as follows. Section 2 contains the problem statement and
description of the kNN method. Section 3 describes the scheme for constructing a Peano–
Hilbert curve approximation (evolvent) and the kNN method, which uses the evolvent
to reduce the dimensionality of the data. The fundamental drawbacks of this dimension-
ality reduction method are noted. Section 4 proposes a way to overcome the drawbacks
mentioned, based on the use of multiple evolvents. A theoretical statement is formulated
about preserving some proximity information in the multidimensional space on one of the
one-dimensional scales. A kNN scheme using multiple evolvents is presented in Section 5.
Section 6 contains experimental results comparing different implementations of kNN using
synthetic and real-life data. Section 7 concludes the paper.

2. Problem Statement

In this study, the classification problem will be understood as the problem of assigning
an object ω to one of the predetermined classes based on its features. We will assume that
each of the objects ω is represented as a feature vector

y = (y1, y2, ..., yN) ∈ RN , (1)

where the value of the j-th vector coordinate corresponds to the numerical value of the j-th
feature of the object ω. We will also assume that there is already some number of objects
exactly classified (a test sample), i.e., for each object, we know which class it belongs to.

The k nearest neighbours (kNN) method is based on the following simple rule: an
object is considered to belong to the class to which most of its nearest neighbours belong.
Here, “neighbours” refers to objects that are close (in one sense or another) to the one being
studied. Note that in order to apply this method, some metric L(ωi, ωj)—i.e., the distance
function—should be introduced in the feature space of objects. As a rule, the Euclidean
distance is employed here, although other metrics may also be used [7].

The general scheme of object classification using kNN can be formulated as follows:

• Calculate the distance from the object being classified to each of the objects in the
training set;

• Select k objects of the training set with the minimum distance to them;
• The class of the object being classified is the class most often found among the k

nearest neighbours.

In the practical implementation of kNN, an important indicator is the estimate of the
time complexity of the neighbour finding procedure. The algorithms and data structures
on which the search procedure is based include, in particular, the following.

• Brute force method. This is based on calculating all distances from the test object
to other objects of the class and determining the smallest value. This method has
complexity O(n), where n is the number of objects.

• KD-tree method. This is based on a special kind of binary tree, where each node
represents a point in the multidimensional space. The search procedure has complex-
ity O(log(n)).

• Ball-tree method. This is yet another kind of tree structure, which has logarithmic
complexity. This method is applicable to problems that have a large dimensionality.

The main drawback of the brute force method is the unacceptable running time and
the rapid growth of the computation volume as the number of objects increases. This
method can be applied when the number of objects is relatively small and the dimension of
y is small, and when the “curse of dimensionality” is not yet in full effect.

For kd-tree, the main drawback is that it slows down when the number of objects
grows, which is caused by increasing complexity of the internal tree structure. However,
kd-trees have proven to be a good solution for problems with small dimensionality, which
will be considered in this study.

Entropy 2022, 24, 767 3 of 18

As mentioned, the computational cost of searching for nearest objects increases with
increasing dimensionality, both in the case of exhaustive search for all distances and
when using tree structures. One mechanism for speeding up the search is dimensionality
reduction—by reducing the problem of searching in a multidimensional space to the search
in a one-dimensional space (over an interval). This is possible through the use of space-
filling curves (Peano–Hilbert curves) that fill the multidimensional space. Such curves are
used, for example, in global optimisation [11–14], in numerical approximation of solutions
to systems of nonlinear inequalities [15], in image processing [16–18], etc.

We should also note that in addition to space-filling curves, there are other similar
curves, such as area-filling curves [19]. However, it is the Peano–Hilbert curves that are
commonly used due to the relative simplicity of their construction and a number of useful
properties, of which the key ones will be discussed in Sections 3 and 4.

An algorithm based on data curves can offer some advantages over tree-based al-
gorithms by reducing the search time. Neighbour detection for test objects includes
two phases: building and initialising the data structures (build step) and performing
a search or query (query step). In most cases, the build phase occurs only once, while
queries are repeated many times and can significantly affect the overall speed of the
classification algorithm.

Note that in practical classification tasks, different features can have different scales,
which can significantly distort the real distance between objects. Therefore, it will be
assumed that prior to applying kNN, data scaling has been performed

yj =
yj − ymin

ymax − ymin
− 1

2
. (2)

Thus, the variation domain for all feature values will form a unit hypercube

D = {y ∈ RN : −1/2 ≤ yj ≤ 1/2, 1 ≤ j ≤ N}. (3)

The 1/2 hypercube offset has been made for the convenience of further labelling.

3. Dimensionality Reduction Using Space-Filling Curves

Let us briefly describe a general scheme for constructing a space-filling curve. We will
consider here Hilbert’s scheme for constructing such a curve.

(1). Divide hypercube D form (3) with edge length of 1 by coordinate hyperplanes
into 2N hypercubes of the first partition (with edge length of 1/2).

Then, divide every hypercube of the first partition into 2N hypercubes of the second
partition (with edge length of 1/4) by hyperplanes parallel to coordinate hyperplanes and
passing through midpoints of hypercube edges orthogonal to them.

By continuing the above process, i.e., by sequentially partitioning each subcube of the
current partition into 2N of the next partition, we can construct hypercubes of any M-th
partition with edge length of (1/2)M. The total number of subcubes of the M-th partition
will be equal to 2NM.

(2). Now, divide the segment [0, 1] into 2N equal parts, divide each of them also into
2N equal parts and so on. Denote the subinterval of the M-th partition by d(M, v), where v
is the coordinate of the left boundary point of the subinterval. Obviously, the length of the
subinterval d(M, v) will be equal to 2−NM. We will assume that the left boundary point
belongs to the subinterval and the right boundary point does not. The only exception is the
subinterval whose right boundary point is 1, in which case it also belongs to the subinterval.

(3). Establish a one-to-one correspondence between subintervals and subcubes of the
M-th partition. We denote by D(M, v) a subcube corresponding to the subinterval d(M, v).
This correspondence should satisfy the following requirements.

Condition 1. D(M + 1, v′) ∈ D(M, v′′) i.f.f. d(M + 1, v′) ∈ d(M, v′′).

Entropy 2022, 24, 767 4 of 18

Condition 2. Two subintervals d(M, v′) and d(M, v′′) share a common endpoint
i.f.f. the corresponding subcubes D(M, v′) and D(M, v′′) are contiguous, i.e., share a
common edge.

Condition 3. If x ∈ d(M, v) then y(x) ∈ D(M, v), M ≥ 1.
Note that the centre yc(x) of the M-th partition subcube containing point y(x) can be

regarded as an approximation to y(x) with the accuracy of ε = 2−(M+1), i.e.,

max
1≤j≤N

∣∣∣yc
j (x)− yj(x)

∣∣∣ ≤ ε = 2−(M+1). (4)

The function yc(x) maps a uniform grid with step 2−NM, constructed in the interval
[0, 1], onto a uniform grid with step 2−M, constructed in the hypercube D. A constructive
way of establishing such a correspondence is described and theoretically justified in [20,21].
The algorithmic complexity of computing the value of the function yc(x) depends on the
dimensionality N on the partitioning level M and is O(M · N).

Using the Peano–Hilbert curve, one can propose the following scheme for implement-
ing the kNN algorithm.

Let ωi, 1 ≤ i ≤ S be the i-th object from the set of objects correlated with class Cj.
Previously, a feature vector y = (y1, y2, ..., yN) ∈ RN corresponding to each object under
consideration was defined, i.e.,

ωi ↔ y = (yi1, yi2, ..., yiN).

Using the Peano curve, each object is assigned the value of xi, i.e.,

ωi ↔ xi, y(xi) = (yi1, yi2, ..., yiN).

Consider a test object ω∗, to which the value x∗ is assigned. The degree of proximity
of the test object ω∗ to one of the objects ωi is determined based on the distance on the
one-dimensional scale di = |xi − x∗|. Thus, the closest object to the test object has the
following property:

dmin = min{di : 1 ≤ i ≤ S}.
The operation of the algorithm to determine the nearest neighbour of the test object

involves two phases: data preparation and the search itself. Data preparation consists of
calculating the correspondence ωi → xi for each input object, including the test object,
and ordering the objects by the value of x.

x1(ω1) ≤ x2(ω2) ≤ ... ≤ xS(ωS).

Since the corresponding object preimages xi ∈ [0, 1] are ordered, the closest object can
be found using a fast binary search algorithm.

When K neighbours need to be found, this search procedure can be repeated K times.
In this case, it is necessary to exclude previously found items from the search. This can be
achieved by excluding xi from the set being searched or by comparing the found xi with
the previously found ones to find a match. For example, one possible implementation of
searching for K nearest neighbours could be as follows: in relation to x∗, we look for the
nearest values to the left and right on the one-dimensional scale, choose the minimum one
and continue searching sideways until exactly K neighbours are found.

Note that the method based on space-filling curves can be applied not only to numeri-
cal features but also to categorical features. The values of categorical features are discrete,
so this approach requires a numerical value—e.g., from the interval [0, 1]—to be assigned
to each discrete value. A specific method of assigning numerical values to categorical
variables is described in Section 6.2 for the CarEvaluation dataset.

Entropy 2022, 24, 767 5 of 18

One obvious drawback of using the Peano curve in the kNN method is the loss of
much of the information about the proximity of objects in multidimensional space when
constructing their preimages on the one-dimensional scale.

Indeed, the point x ∈ [0, 1] on the one-dimensional scale has only left and right
neighbours, whereas its corresponding object y(x) ∈ RN can have neighbours along N
coordinate directions. As a result, when using Peano-curve-type mappings, close objects y′,
y′′ in the N-dimensional space can have their quite distant corresponding preimages x′,
x′′ on the interval [0, 1]. In Figure 1, the green dots show two objects that are close in the
two-dimensional space, while their preimages on the one-dimensional scale are far away
from each other. The blue dots correspond to two objects, the distance between which is
retained when changing to the one-dimensional scale.

Figure 1. Peano curve.

This property makes dimensionality reduction using a single Peano curve practically
inapplicable. To overcome this drawback, various approaches have been proposed, for ex-
ample, the simultaneous use of two or more space-filling curves of different types [22],
i.e., data shifting [9]. In the following section, we propose a constructive way to preserve
some information on object proximity during dimensionality reduction based on the use of
multiple same-type evolvents.

4. Constructing a Family of Peano Curves

Consider a family of Peano curves

YL(x) = {y0(x), y1(x), ..., yL(x)} (5)

instead of a single curve y(x). We will construct the family of curves as follows. Let us
introduce a family of hypercubes

Di = {y ∈ RN : −2−1 ≤ yi + 2−l ≤ 3 · 2−1, 1 ≤ i ≤ N}, 0 ≤ l ≤ L, (6)

where the hypercube Dl+1 is obtained by shifting the hypercube Dl along the main diagonal
by step 2−l for each coordinate.

Let a Peano-curve-type mapping y0(x) map the interval [0, 1] onto the hypercube D0
of (6), i.e.,

D0 = {y0(x) : x ∈ [0, 1]}. (7)

Any subcube of the M-th partition of the hypercube D0 will have an edge of length
2−(M−1) and will be denoted by D0(M, v), where v is the left boundary point of the subinter-

Entropy 2022, 24, 767 6 of 18

val d(M, v) corresponding to this subcube. Then, the evolvents yl(x) = {yl
1(x), ..., yl

N(x)},
whose coordinates are determined by the conditions

yl
i(x) = yl−1

i (x) + 2−l , 1 ≤ i ≤ N, 1 ≤ l ≤ L, (8)

map the interval [0, 1] onto the corresponding hypercubes Dl , 1 ≤ l ≤ L (the broken line
in Figure 2 shows the image of the interval [0, 1], which is obtained by using the evolvent
y0(x), x ∈ [0, 1]).

For any subcube D0(M, v) of the M-th partition of the hypercube D0, there will exist a
subcube Dl(M, v) of the M-th partition of the hypercube Dl , and Dl(M, v) can be obtained
by shifting D0(M, v) along the main diagonal by the distance of

2−1 + 2−2 + ... + 2−l .

It follows from Equations (7) and (8) that if an interval d(M, v) is mapped onto the
subcube D0(M, v), there exists a family of subcubes

Dl(M, v) = yl(d(M, v)), 1 ≤ l ≤ L,

connected with the corresponding subintervals dl(M, vl) ⊂ [0, 1], where d(M, v) = d0(M, v0),
v0 = v, such that

Dl(M, v) = yl(dl(M, v)), 1 ≤ l ≤ L.

Since the hypercube D from (3) belongs to the common part of the family of hyper-
cubes (6) (the boundary of the hypercube D is highlighted in Figure 2), by then introducing
an additional function

g0(y) = max{|yi| − 2−1 : 1 ≤ i ≤ N},

the original hypercube D can be represented as

D = {yl(x) : x ∈ [0, 1], g0(yl(x)) ≤ 0}, 0 ≤ l ≤ L,

i.e., g0(y) ≤ 0, if y ∈ D, and g0(y) > 0 otherwise. Hence, any point y ∈ D has its preimage
xl ∈ [0, 1] at every mapping yl(x), 0 ≤ l ≤ L, i.e.,

y = yl(xl), xl ∈ [0, 1], 0 ≤ l ≤ L.

The algorithmic complexity of computing all preimages xl ∈ [0, 1], 0 ≤ l ≤ L, depends
on the dimensionality N, on the partitioning level M, on the number of mappings L, and is
O(M · N · L).

By using multiple mappings yl(x), 0 ≤ l ≤ L, the following relationship between
neighbourhoods on one-dimensional scales and neighbourhoods in the original multidi-
mensional domain is defined.

Theorem 1. Let y∗ be an arbitrary point from the domain D belonging to the interval with
endpoints y′, y′′ ∈ D, which differ in the values of the only coordinate, and let

|y′j − y′′j | ≤ 2−p, y′i = y′′i = y∗i , 1 ≤ i ≤ N, i 6= j, (9)

where p is an integer, 1 ≤ p ≤ L − 1, and j is the number of coordinate whose values for
points y∗, y′, y′′ are different. Then, there exists at least one correspondence yl(x), 0 ≤ l ≤ L,
and preimages x∗, x′, x′′ ∈ [0, 1] such that

y∗ = yl(x∗), y′ = yl(x′), y′′ = yl(x′′), max{|x′ − x∗|, |x′′ − x∗|, |x′ − x′′|} ≤ 2−pN .

Entropy 2022, 24, 767 7 of 18

Remark 1. The conditions of the theorem distinguish a specific neighbourhood of the point y∗.
This neighbourhood comprises only such neighbours of this point that can be obtained by shifting
y∗ parallel to one of the coordinate axes by a distance not exceeding 2−p. By varying the value
of j, 1 ≤ j ≤ N, under the conditions of the theorem, one can identify the nearest neighbours of
point y∗ along N coordinate directions. According to the statement, the proximity of points in the
N-dimensional space in a particular direction will be reflected by the proximity of their preimages
on one of the one-dimensional segments. In this case, the corresponding one-dimensional intervals
can be different for different directions.

The proof of this theorem is given in [20].
As an illustration, Figure 2 shows a family of space-filling curves in extended domains

Dl , where a square with a dark border highlights the hypercube D belonging to each
extended domain. The dots indicate proximate objects in the domain D, the distance
between which will vary depending on the one-dimensional scale used. The effect of
maintaining distance proximity on one of the scales is clearly visible. For example, objects
marked with green dots will be far away on the first two one-dimensional scales and close
to each other on the third one. Objects marked in blue will be far away on the first and
third scales and close to each other on the second scale.

Figure 2. Family of Peano curves.

As mentioned above, instead of the theoretical Hilbert curve y(x), the evolvent yc(x),
which is an approximation to y(x) with an accuracy of the order 2−(M+1), determined by
the relation (4), is used in practice. In this case, the parameter M can be chosen individually
for each problem to be solved, based on the accuracy of the input data representation.

For example, the data in the DS-Skin dataset (Section 6.2) are pixel coordinates of an
image with a resolution of 256 by 256. When mapping data to the standard hypercube D
from (3), the coordinate distance between two points cannot be less than 1/256. In this
case, using the parameter M = 10 to construct the evolvent will be sufficient. If we
assign numerical values to a small number of categorical features (as was done for the
CarEvaluation dataset, see Section 6.2), the coordinate distance between the features will
be large; so, the value of M can be reduced (in our experiments, we used M = 7).

The maximum number of simultaneous mappings in the set YL(x) from (5) will also
be determined by the accuracy of the input data, which affects the accuracy of constructing
the evolvents yi(x). Let us assume that each of the mappings yi(x) is constructed using

Entropy 2022, 24, 767 8 of 18

the same value of M; then, the value of L must satisfy the inequality L < M. Otherwise,
the points y′ = yl(x′), y′′ = yl(x′′) from condition (9) will correspond to the centre of the
same subcube with p ≥ M, i.e., the equality y′ = y′′ will be fulfilled, leading to violation of
the conditions of Theorem 1.

5. Implementation Features of the kNN Method Using Multiple Space-Filling Curves

The scheme of implementation of the kNN algorithm using multiple Peano curves
will look as follows. For every object ωi, a set of its preimages on different one-dimensional
scales is assigned

ωi → {x0
i , x1

i , ..., xL
i },

where l, 0 ≤ l ≤ L is the number of the one-dimensional interval.
The degree of proximity of a test object ω∗ to one of the known objects ωi can be

expressed in terms of the distance

dl
i = |xl

i − x∗l |

on the l-th scale.
Thus, the distance d(ωi, ω∗) between two objects ωi and ω∗ on a one-dimensional

scale will correspond to the minimum distance among all the mappings

d(ωi, ω∗) = min
0≤l≤L

dl
i = min

0≤l≤L
|xl

i − x∗l |.

If we find the minimum distance

dmin = min
1≤i≤n

d(ωi, ω∗),

we obtain the nearest neighbour.
Next, the search procedure needs to be run as many times as there are nearest neigh-

bours to be identified. The main problem is that an object previously found on one scale
can be found again, including on another scale. This requires either removing the values of
x found objects from all scales or searching for K nearest neighbours within each scale and
then merging the results.

The procedure of finding K nearest neighbours using multiple space-filling curves was
implemented in two ways. The first of them (denoted hereafter as Algorithm 1) involves
searching for K neighbours on each scale and then merging the results and selecting K
neighbours from all scales. The peculiarity of this algorithm is that there is no procedure to
remove the objects found from the scales.

The second way (Algorithm 2) involves finding the nearest object to the test object
on each scale, determining the nearest object among those found, and then removing the
selected object from all scales. In this case, the search for the next nearest neighbour is
performed by repeatedly calling the same procedure. After all nearest neighbours are
determined, the previously excluded objects are returned to their places and the algorithm
is ready to work with the next test object.

Here, we present a more detailed description of these algorithms.

Data Preparation

To run Algorithms 1 and 2, we need to compute the preimages {x0
i , x1

i , ..., xL
i } on one-

dimensional scales for all objects ωi, and order them in ascending order. It is convenient
to use RB-tree-based data structures to store ordered one-dimensional values, where the
algorithmic complexity of the search operation has the estimate O(log(n)). We used the
container set from the standard C++ library as an implementation of the RB-tree. The
number of instances of tree structures is equal to the number of scales.

Entropy 2022, 24, 767 9 of 18

The input data for kNN are the values of object features imported into the program
from external files. A text label indicating the class to which the object belongs is read with
each such object.

The input data of the algorithm also includes the feature vector y∗ corresponding to
the test object ω∗.

Algorithm 1: Procedure A

• For each scale, search for K objects closest to ω∗. The result of the search is a set
of vectors of the nearest objects on each scale.

• The vectors of the objects found are inserted into an RB-tree according to the
distance criterion dmin.

• After processing all the scales, the first K objects are extracted from the resulting
tree and they are considered to be the search result.

• The number of objects belonging to each class is counted and the decision is
made as to whether the test object belongs to a particular class.

Algorithm 2: Procedure B

• For each scale, search for the closest object to ω∗; the result is a set of distances
between the test object and the closest object for each scale.

• The object with minimal distance on all scales is selected.
• This object is saved in a special vector and excluded from the set of objects.
• The whole procedure is repeated K times, resulting in a vector of K nearest

neighbours.
• The number of objects belonging to each class is counted and the decision is

made as to whether the test object belongs to a particular class.
• If reclassification is required, the procedure is called to recover the previously

excluded objects and search for neighbours.

6. Experimental Results

Let us compare the kNN method that uses multiple evolvents (hereafter referred to as
kNN-ME) with the kNN method using KD-tree (hereafter referred to as kNN-KD) [23] to
handle multidimensional data.

The study was performed using several datasets, both randomly generated for test-
ing and real-world datasets from the database https://archive.ics.uci.edu/ml/index.php
(accessed on 25 May 2022):

1. DS-Random-1: a set of random data generated using the random module of the
Python NumPy library. The data has a uniform distribution and contains values on
an interval from 0 to 1.

2. DS-Random-2: a set of random data generated by the scikit-learn library (version
1.0.2) function sklearn.datasets.make_classification.

3. DS-SkinSegmentation: a dataset of dimension 3 (RGB values) to distinguish human
skin colour from other objects in images [24].

4. DS-CarEvaluation: a dataset of dimension 6, representing data from a car valuation
model based on the values of 6 features [25].

5. DS-WISDM: a dataset of dimension 3, representing accelerometer and gyroscope
time-series sensor data collected from a smartphone and a smartwatch [26].

Two kinds of studies were carried out:

• The time required to find K nearest neighbours for a test object was measured;
• The accuracy of recognition of test objects was studied, based on the analysis as to

whether their neighbours belong to certain classes.

https://archive.ics.uci.edu/ml/index.php

Entropy 2022, 24, 767 10 of 18

We employed in our experiments the kNN-KD method from the scikit-learn library;
this method was used with default settings. For our kNN-ME method, we used the evolvent
density m = 12; the number of evolvents simultaneously used was L = 10 for datasets 1–3,
L = 7 for dataset 4, and L = 8 for dataset 5.

The computational experiments were performed on the following test infrastructure
(Table 1).

Table 1. Test infrastructure.

Computer Specifications

CPU Intel Core i3-7100 (3.9 HHz)
RAM 8 GB
Operating system Windows 10
Compiler Intel(R) oneAPI DPC++/C++ Compiler, Version 2022.0.0

6.1. Investigation of Neighbour Search Times Using Test Datasets

Several datasets were synthesised to examine the search time for neighbours. First,
DS-Random-1 and DS-Random-2 sets consisting of 100,000 and 10,000 objects, respectively,
were generated.

When generating DS-Random-1, the standard random module from the Python
NumPy library was used. The data dimension N varied from 2 to 4; the generated data
had a uniform distribution on [0, 1].

To generate the DS-Random-2 set, the sklearn.datasets.make_classification func-
tion from the scikit-learn library (version 1.0.2) was used with the following parameters:

• n_samples = 10,000 (number of objects),
• n_features = N (dimensionality),
• n_redundant = 0 (number of redundant features),
• n_informative = N − 1 (number of informative features),
• n_clusters_per_class = 1 (number of clusters per class of objects generated).

The running times used by the different methods (kNN-ME, procedure A, kNN-ME,
procedure B, kNN-KD) for DS-Random-1 and DS-Random-2 datasets with N = 2 are
shown in Figure 3. The abscissa axis represents the number of nearest neighbours that the
algorithm is searching for; the ordinate axis represents the running time of the method.

20 40 60 80
neghbours number, K

0

50

100

150

200

250

300

350

se
ar

ch
 ti

m
e,

 m
ks

DS-Random-1, N=2
kNN-KD
kNN-ME(A)
kNN-ME(B)

20 40 60 80
neghbours number, K

0

50

100

150

200

250

se
ar

ch
 ti

m
e,

 m
ks

DS-Random-2, N=2

kNN-KD
kNN-ME(A)
kNN-ME(B)

Figure 3. Running times of the algorithms with N = 2.

Running times of the methods for nearest neighbours search with N = 3, 4 are given
in Figures 4 and 5, respectively.

Entropy 2022, 24, 767 11 of 18

20 40 60 80
neghbours number, K

0

50

100

150

200

250

300

se
ar

ch
 ti

m
e,

 m
ks

DS-Random-1, N=3

kNN-KD
kNN-ME(A)
kNN-ME(B)

20 40 60 80
neghbours number, K

0

50

100

150

200

250

300

se
ar

ch
 ti

m
e,

 m
ks

DS-Random-2, N=3

kNN-KD
kNN-ME(A)
kNN-ME(B)

Figure 4. Running times of the algorithms with N = 3.

20 40 60 80
neghbours number, K

0

50

100

150

200

250

300

350

se
ar

ch
 ti

m
e,

 m
ks

DS-Random-1, N=4
kNN-KD
kNN-ME(A)
kNN-ME(B)

20 40 60 80
neghbours number, K

0

50

100

150

200

250

se
ar

ch
 ti

m
e,

 m
ks

DS-Random-2, N=4

kNN-KD
kNN-ME(A)
kNN-ME(B)

Figure 5. Running times of the algorithms with N = 4.

All the methods considered show a small variation in running time when switching
from one dimension to another. The number of objects being processed slightly increases
the search time, and there is also a quasilinear increase in time as the number of neighbours
identified increases. All these results are in good agreement with theoretical estimates of
the time complexity of the methods under study.

On the whole, the experimental results show that the kNN-ME method based on
search without removal (procedure A) works on average 2 times faster than the method
that involves removal of elements found (procedure B). In fact, both variants of the kNN-ME
method are 5–7 times faster (depending on the dataset) than the kNN-KD method.

The following experiment was conducted to determine the dependence of the search
time for K = 50 neighbours with increasing number of samples for the chosen dimensional-
ity N = 4. The number of samples was varied from 200 thousand to 1 million. The results
presented in Figure 6 show that the difference between procedure A and procedure B
remains approximately the same, and the gain of procedure A over the kNN-KD method is
about 10 times.

Entropy 2022, 24, 767 12 of 18

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
objects number, 1× 106

50

100

150

200

250

se
ar

ch
tim

e,
m

ks

DS-Random-2, N=4, K=50

kNN-KD
kNN-ME(A)
kNN-ME(B)

Figure 6. Running times of the algorithms with N = 4, K = 50.

6.2. Investigation of Neighbour Search Times on Real-World Data

Let us consider the DS-Skin set taken from the collection [24]. The objects in the set
belong to two classes: the first class represents points in RGB colour space that belong to
human skin images; the second class represents colour coordinates that do not belong to
such images.

The number of objects of the first class is about 17,000, the number of objects of the
second class is 43,000. The total number of objects examined is 60,000.

The results of performance comparison of the methods on real-world data are qualita-
tively similar to those obtained by comparison on test data (see Figure 7). The kNN-ME
method (implementation A) is 1.5 times faster than implementation B, and both implemen-
tations are at least 5 times faster than the kNN-KD method. Therefore, we will work with
the kNN-ME(A) when investigating classification accuracy.

20 40 60 80
neghbours number, K

0

50

100

150

200

se
ar

ch
 ti

m
e,

 m
ks

DS-Skin, N=3

kNN-KD
kNN-ME(A)
kNN-ME(B)

Figure 7. Comparison of neighbour search times when determining the colour of an image point.

Entropy 2022, 24, 767 13 of 18

The performance of kNN-ME and kNN-KD methods was also tested using a real-
world dataset [25]. There are 4 classes of objects in this dataset of dimension N = 6. One
particular feature of the dataset is that the numbers of objects belonging to each of the
4 classes differ widely (Table 2).

Further, note that this dataset will include several categorical attributes, each corre-
sponding to 3–4 different values. In this case, it is necessary to assign numerical charac-
teristics to discrete values. The numerical values used in the experiment were the internal
nodes of a uniform grid covering the interval [0, 1]. The number of grid nodes was chosen
to be equal to the number of feature values (3 or 4, respectively). Then, the i-th value of the
categorical feature was assigned to the i-th node of the grid.

Table 2. Classes in the CarEvaluation set.

Object Class Number of Objects in Class

1 1400
2 400
3 70
4 65

The time required to find K nearest neighbours on the CarEvoluation dataset is shown
in Figure 8. In this experiment, the number of evolvents used simultaneously was 7.

20 40 60 80
neghbours number, K

0

50

100

150

200

250

se
ar

ch
 ti

m
e,

 m
ks

DS-Car, N=6

kNN-KD
kNN-ME(A)
kNN-ME(B)

Figure 8. Comparison of neighbour search times for the CarEvaluation dataset.

The results of the comparison on this dataset also demonstrate that the kNN-ME
method is faster compared to the kNN-KD method.

It is of interest to study the dependence of the nearest-neighbour search time on the
number of such neighbours in the case of a large number of objects. For this study, we
chose the DS-WISDM dataset [26]. The raw accelerometer and gyroscope sensor data was
collected from the smartphone and smartwatch at a rate of 20 Hz; it was collected from
51 test subjects as they performed 18 activities for 3 min apiece. The raw accelerometer
and gyroscope sensor data were collected from a smartphone and a smartwatch at a rate
of 20 Hz; it was collected from 51 test subjects as they performed 18 activities for 3 min
apiece. Traditional use of this dataset involves raw data processing, which includes split-
ting the data into blocks of fixed size and calculating statistical characteristics for each
block. Subsequently, each block is treated as an independent object with a set of inherent

Entropy 2022, 24, 767 14 of 18

characteristics determining the subject’s activity during a given time interval. After such
processing, the number of blocks will be substantially smaller than the original number
of objects.

In our study, in order to keep a large number of objects in the dataset, we did not use
this traditional approach and worked with raw data. Only spatial coordinates, with no
time reference, were used to determine the nearest neighbours. Before conducting the com-
putational experiment, we removed the duplicates found in the original dataset. After that,
about 7 million objects belonging to 18 classes remained in the resulting set. Figure 9 shows
the results of the nearest neighbour search in this dataset. Of our two neighbour-finding
procedures, kNN-ME(A) was retained as a more efficient one compared with kNN-ME(B);
the number of evolvents L = 8 was used in this case. Similar to previous experiments,
the results show that when the number of neighbours K is less than 100, the kNN-ME(A)
procedure is also faster compared with the kNN-KD method.

20 40 60 80
neghbours number, K

0

50

100

150

200

250

se
ar

ch
 ti

m
e,

 m
ks

DS-Wisdm, N=3
kNN-KD
kNN-ME(A)

Figure 9. Running times of the algorithms with N = 3, 7 million objects.

The experimental results presented above show that even with the number of objects in
millions, the running times of the algorithms considered in the paper remain small (within
milliseconds). Therefore, the issues of parallelising and implementing multithreaded
versions of the developed algorithms have not been considered in this paper.

6.3. Investigation of Classification Accuracy

According to the general idea of the kNN method, after finding K nearest neighbours
to the test object, an attempt is made to determine the class of the test object. The more
neighbours belong to a certain class, the higher the probability that the test object belongs
to the same class. We will choose an odd number of neighbours, so as to avoid a situation
where the nearest objects in equal numbers belong to different classes.

Unfortunately, determining the class of the test object is prone to error. Errors may
occur because of the “location” of the object under test on the hypercube edge in immediate
proximity to objects of another class. Figure 10 shows an example of a random test set
where some objects of one class are surrounded by objects of an “alien” class.

Entropy 2022, 24, 767 15 of 18

Figure 10. “Surrounded by aliens”.

DS-Random-2 with N = 2, 3, 4 and DS-Skin were used as datasets. The experiment to
recognise the class of test objects was carried out as follows.

1. The source dataset was divided into two samples—a training sample and a test sample.
The test sample size was 10% of the initial number of objects.

2. K neighbours were searched for each object in the test sample.
3. The class of an object under test was determined from the set of neighbours found.
4. The recognition result was checked against the known test object class and an error

was recorded if there was a discrepancy with the result. The errors were summed up
for the whole test sample.

To divide the source dataset into a training sample and a test sample, we used the
sklearn.model_selection.train_test_split function from the scikit-learn library (ver-
sion 1.0.2).

The results of investigating recognition errors on the synthetically generated random
datasets (DS-Random-2) are given in Table 3. The numerical values in the table show the
percentage of recorded recognition errors.

Table 3. Percentage of errors in DS-Random-2 recognition.

K N = 2 N = 3 N = 4

kNN-KD kNN-ME kNN-KD kNN-ME kNN-KD kNN-ME

5 5 5 11 12 6 8
15 4 6 10 11 10 9
25 5 7 10 11 7 9
35 6 6 11 13 7 10
45 7 6 10 13 7 10

Based on the results of the experiment with random sets, we can conclude that the
kNN-ME method has a recognition accuracy close to that of kNN-KD. The error rates of
the methods differ, on average, by no more than 2–3%.

It should be noted that both kNN-ME and kNN-KD demonstrated high error rates,
which can be explained by the fact that when generating random data, numerous objects at
the class boundaries are generated that are classified incorrectly.

The results of measuring the recognition accuracy on the real-world DS-Skin dataset
show that, on real-world data, both methods show the same percentage of misclassification.
The specific error percentages obtained with different numbers of neighbours K are shown
in Table 4.

Entropy 2022, 24, 767 16 of 18

Table 4. Percentage of DS-Skin recognition errors, N = 3.

K kNN-KD kNN-ME

5 0.5 0.5
15 0.5 0.5
25 0.5 0.5
35 1 1
45 1 1

Let us consider the results of determining the class of objects in the CarEvaluation
set. For objects of classes 1 and 2, we generated test samples containing 20 objects, and for
classes 3 and 4, samples containing 5 objects were generated. The kNN-ME and kNN-KD
methods showed almost identical results: objects from the first two classes were identified
with an average error not exceeding 5%, while objects of classes 3 and 4 were identified
with an average error of 15%. The average recognition error rates for all classes are shown
in Table 5.

Table 5. Average error rate (in percent) for DS-CarEvaluation recognition, N = 6.

K kNN-KD kNN-ME

5 8 11
7 9 10
9 8 10
11 10 11
13 9 11

7. Conclusions

The paper considers a classical machine learning method, the k nearest neighbours
(kNN) method, which is widely used in machine learning practice and has been proven to
perform very well because of its “explainability” (the decision regarding the choice of an
object class can be clearly explained). The results of practical implementation of one of the
kNN acceleration approaches based on dimensionality reduction using space-filling curves
are presented.

An implementation of the kNN algorithm that uses multiple space-filling curves to
better transfer the metric properties of multidimensional space to one-dimensional scales is
proposed. Theoretical statements are presented about the preservation of the proximity
property of objects in multidimensional space and on one of the one-dimensional scales
when dimensionality reduction is performed.

The software implementation of the kNN method using multiple evolvents (kNN-
ME) shows 5–7 times faster performance compared with the algorithm using kd-trees
(kNN-KD). The comparison was conducted on test and real-world datasets of different size
and dimensionality.

Both algorithms demonstrate comparable performance, measured as the percentage
of misclassification of objects from the test sample. The number of neighbours in the
classification was varied from 5 to 100. When applied to the synthesised random data, both
kNN-ME and kNN-KD show a classification error rate of approximately 10%, while with
real-world data both methods show an error rate of about 1%.

Author Contributions: Conceptualization and methodology, K.B.; software and validation, A.S.
(Alexander Sysoyev), A.S. (Anton Shtanyuk); formal analysis, K.B.; investigation, A.S. (Alexander
Sysoyev); data curation, A.S. (Anton Shtanyuk); writing—original draft preparation, K.B.; writing—
review and editing, K.B.; visualization, A.S. (Alexander Sysoyev); funding acquisition, K.B. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Ministry of Science and Higher Education of the Russian
Federation, agreement number 075-15-2020-808.

Entropy 2022, 24, 767 17 of 18

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data analysed in this study are openly available at https://archive.
ics.uci.edu/ml/index.php (accessed on 25 May 2022).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Golovenkin, S.; Bac, J.; Chervov, A.; Mirkes, E.; Orlova, Y.; Barillot, E.; Gorban, A.; Zinovyev, A. Trajectories, bifurcations, and

pseudo-time in large clinical datasets: Applications to myocardial infarction and diabetes data. GigaScience 2020, 9, giaa128.
[CrossRef] [PubMed]

2. Gonoskov, A.; Wallin, E.; Polovinkin, A.; Meyerov, I. Employing machine learning for theory validation and identification of
experimental conditions in laser-plasma physics. Sci. Rep. 2019, 9, 7043. [CrossRef]

3. Kastalskiy, I.; Pankratova, E.; Mirkes, E.; Kazantsev, V.; Gorban, A. Social stress drives the multi-wave dynamics of COVID-19
outbreaks. Sci. Rep. 2021, 11, 22497. [CrossRef]

4. Cover, T.; Hart, P. Nearest Neighbor Pattern Classification. IEEE Trans. Inf. Theory 1967, 13, 21–27. [CrossRef]
5. Cover, T. Estimation by the Nearest Neighbor Rule. IEEE Trans. Inf. Theory 1968, 14, 50–55. [CrossRef]
6. Pestov, V. Is the k-NN classifier in high dimensions affected by the curse of dimensionality? Comput. Math. Appl. 2013,

65, 1427–1437. [CrossRef]
7. Mirkes, E.; Allohibi, J.; Gorban, A. Fractional norms and quasinorms do not help to overcome the curse of dimensionality. Entropy

2020, 22, 1105. [CrossRef] [PubMed]
8. Bentley, J.L. Multidimensional binary search trees used for associative searching. Commun. ACM 1975, 18, 509–517. [CrossRef]
9. Liao, S.; Lopez, M.; Leutenegger, S. High dimensional similarity search with space filling curves. In Proceedings of the 17th

International Conference on Data Engineering, Heidelberg, Germany, 2–6 April 2001; pp. 615–622. [CrossRef]
10. Schubert, E.; Zimek, A.; Kriegel, H.P. Fast and Scalable Outlier Detection with Approximate Nearest Neighbor Ensembles. Lect.

Notes Comput. Sci. 2015, 9050, 19–36. [CrossRef]
11. Lera, D.; Sergeyev, Y.D. Deterministic global optimization using space-filling curves and multiple estimates of Lipschitz and

Hölder constants. Commun. Nonlinear Sci. Numer. Simul. 2015, 23, 328–342. [CrossRef]
12. Lera, D.; Sergeyev, Y.D. GOSH: Derivative-free global optimization using multi-dimensional space-filling curves. J. Glob. Optim.

2018, 71, 193–211. [CrossRef]
13. Strongin, R.G.; Gergel, V.P.; Barkalov, K.A.; Sysoyev, A.V. Generalized Parallel Computational Schemes for Time-Consuming

Global Optimization. Lobachevskii J. Math. 2018, 39, 576–586. [CrossRef]
14. Gergel, V.; Kozinov, E.; Barkalov, K. Computationally efficient approach for solving lexicographic multicriteria optimization

problems. Optim. Lett. 2021, 15, 2469–2495. [CrossRef]
15. Lera, D.; Posypkin, M.; Sergeyev, Y. Space-filling curves for numerical approximation and visualization of solutions to systems of

nonlinear inequalities with applications in robotics. Appl. Math. Comput. 2021, 390, 125660. [CrossRef]
16. Liang, J.Y.; Chen, C.S.; Huang, C.H.; Liu, L. Lossless compression of medical images using Hilbert space-filling curves. Comput.

Med. Imaging Graph. 2008, 32, 174–182. [CrossRef]
17. Costa, P.; Barroso, J.; Fernandes, H.; Hadjileontiadis, L. Using Peano-Hilbert space filling curves for fast bidimensional ensemble

EMD realization. Eurasip J. Adv. Signal Process. 2012, 2012, 181. [CrossRef]
18. Herrero, R.; Ingle, V. Space-filling curves applied to compression of ultraspectral images: Performance evaluation and analytical

modeling. Signal Image Video Process. 2015, 9, 1249–1257. [CrossRef]
19. Nasso, M.; Volčič, A. Area-filling curves. Archiv Math. 2022, 118, 485–495. [CrossRef]
20. Strongin, R.G.; Sergeyev, Y.D. Global Optimization with Non-Convex Constraints. Sequential and Parallel Algorithms; Kluwer Academic

Publishers: Dordrecht, The Netherlands, 2000.
21. Sergeyev, Y.D.; Strongin, R.G.; Lera, D. Introduction to Global Optimization Exploiting Space-Filling Curves; Springer Briefs in

Optimization: New York, NY, USA, 2013.
22. Craver, S.; Yeo, B.; Yeung, M. Multilinearization data structure for image browsing. In Storage and Retrieval for Image and Video

Databases VII; Yeung, M.M., Yeo, B.L., Bouman, C.A., Eds.; International Society for Optics and Photonics (SPIE): Bellingham WA,
USA, 1998; Volume 3656, pp. 155–166. [CrossRef]

23. Hou, W.; Li, D.; Xu, C.; Zhang, H.; Li, T. An Advanced k Nearest Neighbor Classification Algorithm Based on KD-tree. In
Proceedings of the 2018 IEEE International Conference of Safety Produce Informatization (IICSPI), Chongqing, China, 10–12
December 2018; pp. 902–905. [CrossRef]

https://archive.ics.uci.edu/ml/index.php
https://archive.ics.uci.edu/ml/index.php
http://doi.org/10.1093/gigascience/giaa128
http://www.ncbi.nlm.nih.gov/pubmed/33241287
http://dx.doi.org/10.1038/s41598-019-43465-3
http://dx.doi.org/10.1038/s41598-021-01317-z
http://dx.doi.org/10.1109/TIT.1967.1053964
http://dx.doi.org/10.1109/TIT.1968.1054098
http://dx.doi.org/10.1016/j.camwa.2012.09.011
http://dx.doi.org/10.3390/e22101105
http://www.ncbi.nlm.nih.gov/pubmed/33286874
http://dx.doi.org/10.1145/361002.361007
http://dx.doi.org/10.1109/ICDE.2001.914876
http://dx.doi.org/10.1007/978-3-319-18123-3_2
http://dx.doi.org/10.1016/j.cnsns.2014.11.015
http://dx.doi.org/10.1007/s10898-017-0589-7
http://dx.doi.org/10.1134/S1995080218040133
http://dx.doi.org/10.1007/s11590-020-01668-y
http://dx.doi.org/10.1016/j.amc.2020.125660
http://dx.doi.org/10.1016/j.compmedimag.2007.11.002
http://dx.doi.org/10.1186/1687-6180-2012-181
http://dx.doi.org/10.1007/s11760-013-0565-8
http://dx.doi.org/10.1007/s00013-022-01704-6
http://dx.doi.org/10.1117/12.333835
http://dx.doi.org/10.1109/IICSPI.2018.8690508

Entropy 2022, 24, 767 18 of 18

24. Bhatt, R.; Dhall, A. Skin Segmentation Dataset, UCI Machine Learning Repository. Available online: https://archive.ics.uci.edu/
ml/datasets/Skin+Segmentation (accessed on 3 April 2022).

25. Dua, D.; Graff, C. Car Evaluation Data Set, UCI Machine Learning Repository. Available online: http://archive.ics.uci.edu/ml/
datasets/Car+Evaluation (accessed on 3 April 2022).

26. Weiss, G.; Yoneda, K.; Hayajneh, T. WISDM Smartphone and Smartwatch Activity and Biometrics Dataset Data Set, UCI Machine
Learning Repository. Available online: https://archive.ics.uci.edu/ml/datasets/WISDM+Smartphone+and+Smartwatch+
Activity+and+Biometrics+Dataset+ (accessed on 18 May 2022).

https://archive.ics.uci.edu/ml/datasets/Skin+Segmentation
https://archive.ics.uci.edu/ml/datasets/Skin+Segmentation
http://archive.ics.uci.edu/ml/datasets/Car+Evaluation
http://archive.ics.uci.edu/ml/datasets/Car+Evaluation
https://archive.ics.uci.edu/ml/datasets/WISDM+Smartphone+and+Smartwatch+Activity+and+Biometrics+Dataset+
https://archive.ics.uci.edu/ml/datasets/WISDM+Smartphone+and+Smartwatch+Activity+and+Biometrics+Dataset+

	Introduction
	Problem Statement
	Dimensionality Reduction Using Space-Filling Curves
	Constructing a Family of Peano Curves
	Implementation Features of the kNN Method Using Multiple Space-Filling Curves
	Experimental Results
	Investigation of Neighbour Search Times Using Test Datasets
	Investigation of Neighbour Search Times on Real-World Data
	Investigation of Classification Accuracy

	Conclusions
	References

