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Abstract: Gene-set enrichment analysis is the key methodology for obtaining biological information
from transcriptomic space’s statistical result. Since its introduction, Gene-set Enrichment analysis
methods have obtained more reliable results and a wider range of application. Great attention has
been devoted to global tests, in contrast to competitive methods that have been largely ignored,
although they appear more flexible because they are independent from the source of gene-profiles.
We analyzed the properties of the Mann–Whitney–Wilcoxon test, a competitive method, and adapted
its interpretation in the context of enrichment analysis by introducing a Normalized Enrichment Score
that summarize two interpretations: a probability estimate and a location index. Two implementations
are presented and compared with relevant literature methods: an R package and an online web tool.
Both allow for obtaining tabular and graphical results with attention to reproducible research.

Keywords: competitive enrichment methods; gene-profile; gene-sets ranking; Kolmogorov–Smirnov’s
test; pathway analysis; rank sum test; Wilcoxon’s test

1. Introduction

Enrichment analysis (EA) of gene-sets is a technique typically used to uncover the
phenotype of a gene-profile associated with the differential expression between two
conditions [1] (e.g., treatment and control). If many genes (the gene-set) contribute to
a phenotype or a cellular function, enrichment analysis tests whether a gene-set is asso-
ciated with one of the two conditions [2]. The test procedures are classified as global or
competitive tests [3]. In global test approaches, the test involves only genes in the gene-set.
Instead, in competitive tests, the genes in the gene-set are compared with those outside the
set. In this case, the test is applied to a gene-profile summarizing the differences between
the two conditions. When ordered, from the highest to the lowest, a gene-profile is known
as a pre-ranked list. An extensive and recent qualitative review of EA methods and tools
is in [4].

To obtain the significance level, analytical methods are generally not applicable because
the distributional hypothesis behind the test is not met. Computational strategies can help
to estimate the null distribution by shuffling samples or genes. Since the seminal paper
of [5], researchers mainly focused on shuffling samples leaving the inference from the
gene-profile slightly covered. With [6], the analysis of a gene-profile becomes more central
as EA was done at the level of the single sample profile.

GSEA [5] is the most adopted gene-set enrichment methodology. It is based on a
modified version of the two-sample Kolmogorov–Smirnov (weighted-KS, wKS) test and is
applied on a gene-profile. In this manuscript, GSEA and wKS are interchangeable. Basically
GSEA consists of testing whether the distribution of scores associated with genes inside
the gene-set is the same of the distribution of scores of genes outside the gene-set, i.e.,
H0:Fin(x) = Fout(x), toward the alternativeH1:Fin(x) 6= Fout(x). Given the non-canonical
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form of the test-statistic, resampling methods help obtain the p-value. If the original data
matrix that generated the gene-profile is available, samples are shuffled, the gene-profile
is recomputed, and the test-statistic is evaluated. The empirical null distribution emerges
repeating the shuffling several times. When the original data matrix is not available,
starting from a pre-ranked lists of genes, the null distribution is computed by shuffling just
gene names.

The hypothesis H0:Fin(x) = Fout(x) can be checked with the Mann–Whitney’s test-
statistic [7] as well, and, with the help of Wilcoxon’s test-statistic [8], the computational
effort of Mann–Whitney (MW) test decreases. In literature, the MW test is confused with
Wilcoxon’s test or rank-sum test (RST). This overlap is misleading because Wilcoxon’s
test is a test comparing the location of two populations, while MW’s test comparing the
distribution functions is more general. To give relevance to the null hypothesis, we’ll refer
to the MW test, supported by Wilcoxon, as MWW’s test. wKS and MWW share the same
null hypothesis.

Both MWW and wKS tests have been proposed for EA. Table 1 summarizes the most
relevant tools reported in literature.

Table 1. State-of-the-art implementation of enrichment analysis tools based on the wKS and MWW
test statistics.

EA Tool Reference Year Test Available as

camera [2] 2012 MWW R function in limma package
GSEA [5] 2005 wKS R package
fGSEA [9] 2021 wKS R package
clusterProfiler [10] 2012 wKS R package
massiveGST [11,12] 2022 MWW R package/web
GeneTrial3 [13] 2020 wKS/MWW web
WebGestalt [14] 2019 wKS web

A quantitative comparison of wKS and MWW EA algorithms, carried out by [15],
states that the two methodologies are essentially equivalent in terms of significant gene-
sets. A deeper study is in [16], where MWW and wKS are compared in the setting of weak
functional signals, showing that MWW’s test is the most sensible.

In this work, we propose a new implementation of the enrichment analysis based
on the MWW’s test (available as an easy-to-use web-based service and as an R package)
called massiveGST (mGST). Current literature implementations essentially use the MWW’s
test to compute the p-value associated with the gene-set. Instead, we exploit the statistical
information from the test to obtain a richer view of the analysis. According to [17], the
normalized version of the MW’s test-statistic is an estimate of probability. From such a
probability, we propose two additional statistics, odds and logit2NES, that help researchers
to understand the gene-set enrichment’s importance beyond the trivial evaluation of
p-values. In addition, we propose: (1) a new prioritization of the tabular view of gene-sets
EA that includes NES, p-value, and size of the gene-set; and (2) we demonstrate that
the estimate of the probability owns a new interpretation as a location index. Then, our
software provides a richer set of new statistics than available algorithms.

Furthermore, the computational effort to run the analysis has been compared with the
EA tools reported in Table 1.

We ignored over-representation methodologies (e.g., [18]) based on the hypergeometric
test, as they follow a completely different approach and include the theoretical issues of
choosing the universe set and which genes are differentially expressed.
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2. Materials and Methods
2.1. The Normalized Enrichment Score

The Normalized Enrichment Score and the p-value come from the Mann–Whitney’s
test [7]. The null hypothesisH0:Fin(x) = Fout(x) states that there is no mutual dominance
of the distribution functions, Fin(x) and Fout(x) that describe the intensities of genes, re-
spectively, in and out of the gene-set. The alternative hypothesis states that the distribution
function Fout(x) dominates Fin(x), i.e.,H1:Fout(x) > Fin(x). Under the alternative hypoth-
esis, the genes in the gene-set have intensities higher than those of the genes outside the
gene-set. The MW test-statistic is:

U = ∑ij I
(
xout

j < xin
i
)
,

where I(·) is the indicator function. Basically, U is the number of times that the relation
xout

j < xin
i is true ∀ i, j, where xout

j (j = 1, 2, . . . , mout) is the intensity associated with the jth
gene outside the gene-set, xin

i (i = 1, 2, . . . , min) is the intensity associated with the ith gene
in the gene-set, and m = min + mout is the total number of genes in the gene-profile. With
the help of the Wilcoxon [8] test-statistic, the computation of U is drastically improved
as follows:

U = min mout +
mout(mout + 1)

2
− Tout,

where Tout is the sum of rank transformed xk, k = 1, 2, . . . , m outside the gene-set.
According to [17], the ratio U

min×mout
is an unbiased estimator of the probability

P
[
Xin > Xout

]
, where Xin ∼ Fin(x) and Xout ∼ Fout(x). Given a gene-set, the event

Xin > Xout says that “a gene randomly drawn from the gene-set has an intensity greater than the
one of a second gene randomly sampled from outside the gene-set”.

We define the estimate U
min×mout

of P
[
Xin > Xout

]
as the Normalized Enrichment

Score (NES) of a gene-set enrichment analysis. Assuming that a gene-profile recapitulates
the differential expression of treatment samples versus control, an NES close to 1 means
association of the gene-set with the treatment. Instead, an NES close to 0 suggests an
association with the control group. This interpretation allows us to restate NES as

NES = P[the gene-set is associated with the treatment group]≈ U
min ×mout

.

A different way to look at the NES is the odds = NES/(1 − NES), i.e., the imbalance of
the probability that the gene-set is associated with the treatment group to the probability
that the gene-set has no association with it (or the gene-set is related to the control group).

odds =
P[the gene-set is associated with the treatment group]

P[the gene-set is not associated with the treatment group]

The association with the treatment is as strong as the odds diverge to infinity; it is
weak when the odds approach zero. In this last case, the association is with the control
groups. An odds of about 1.0 means no association, neither the treatment nor the control.

A further transformation of NES is the

logit2NES = log2(odds).

In this version of NES, a zero value means no association, a positive value means association
with the treatment group, and a negative value means association with the control group.

The NES owns a descriptive interpretation as location index of the gene-set. It is the
percentile rank of the gene-set, seen as a single value, in the ranking of the genes outside the
gene-set (see Appendix A for the proof). When NES reaches 1, then genes in the gene-set
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are located at the top of the gene-profile. When NES is 0, the location is at the bottom and
the association is with the control group.

2.2. Enrichments Prioritization

With the rapid growth of gene-sets collections, there is a problem of prioritizing
significant results. In GSEA, gene-sets are generally ordered according to the NES or the
p-value. However, this can be misleading because NES and gene-set size are dependent as
shown by the following experiment.

We considered the gene-sets collection C5/BP from MSigDB [19] and the gene-profile
published in [16]. Due to gene-set size, GSEA restricted the original collection to 4046
out of 7658. The same collection was used with mGST. In Figure 1, the size of the gene-
sets (transformed as log10(1 + size)) has been plotted against the normalized enrichment
score, both for GSEA (a) and mGST (b). The range of NES decreases as the size increases
in both cases, showing a dependence. Furthermore, we measured the intensity of the
dependence with the mutual information (computed with k-NN estimator implemented
by [20]) obtaining MIGSEA = 0.0446, and MImGST = 0.0902.

MIGSEA = 0.0446, and MImGST = 0.0902 showing that exists dependence.
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Figure 1. Scatter plot of the size of the gene-sets (transformed as log10(1 + size)) against the Normal-
ized Enrichment Score; (a) in the case of GSEA, (b) for massiveGST. Data come from the gene-profile
included in the R-package and 4046 gene-sets. The intensity of the color is proportional to the p-value
(light color assigned to higher p-value).
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To improve the gene-sets prioritization and give more evidence to large ones, we
propose an additional gene-sets score, named relevance, that aggregates NES, p-value, and
gene-set size.

Let us assume that we run a two-sided enrichment test so that some gene-sets have
logit2NES ≥ 0, and some others logit2NES < 0. For the k′th gene-set, k′ = 1, 2, . . ., in the
collection having logit2NES ≥ 0, then

relevance+k′ = rank(actual-sizek′) + rank(logit2NESk′) + rank(1− p-valuek′),

where rank(·) is a function that associates the highest rank with the highest value of its
argument, and actual-size is the gene-set size. Similarly, the relevance in the subsets of
gene-sets (with index k′′) such that logit2NES < 0 is

relevance−k′′ = rank(actual-sizek′′) + rank(−logit2NESk′′) + rank(1− p-valuek′′).

Finally, given the kth gene-set,

relevancek =

{
relevance+k ⇐⇒ logit2NESk ≥ 0
relevance−k ⇐⇒ logit2NESk < 0

In the case of “greater” (less) alternative hypothesis, relevancek ≡ relevance+k (relevancek ≡
relevance−k ).

2.3. Enrichments Visualization

We integrated the tabular results with a network-graph of gene-sets. A node represents
a significant gene-set. The size of node is proportional to the size of gene-sets, while the
intensity of the color is proportional to NES values. The connection between two gene-sets
A and B is proportional to their similarity S(A, B). The similarity S(A, B) is computed
as a convex combination of the Jaccard, δ0(A, B) = |A ∩ B|/|A ∪ B|, and the overlap,
δ1(A, B) = |A ∩ B|/ min(|A|, |B|), indexes.

S(A, B) = ε× δ1(A, B) + (1− ε)× δ0(A, B),

with 0 ≤ ε ≤ 1. When ε = 0, we obtain S(A, B) ≡ δ0(A, B), while ε = 1 means S(A, B) ≡
δ1(A, B).

2.4. Web-Based Service

A simplified functional architecture of the mGST Tool is shown in Figure 2. It is
implemented in Javascript and is executed on the client host. Gene-set pre-elaboration is
performed by the prepareGeneSets() function. Basically, it computes gene-profile ranking
in O(m × log(m)) time, where m is the length of the gene-profile, and collects global
information in appropriate data structures, such as the total number of genes and the sum
of ranks.

The core of the algorithm is implemented in the computeGST() function, where, for
each gene-set, ranking and test-statistics are computed in linear time. Results are col-
lected in an interactive html table and can be exported in csv, tsv, and html formats.
The computeNet() function performs additional network analysis and generates a graph
representation of the results that can be exported in png format. User interface interaction
features are implemented by using html5 and ajax frameworks.
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INPUT DATA

Gene profile:

GBM_9fu…ns.rnkChoose File

Gene sets:

c5hallm…6.2.gmtChoose Files

Gene-profile GBM_9fusions.rnk (17814 symbols found)
Gene set collection c5hallmark.6.2.gmt (5967 gene sets found)

ENRICHMENT ANALYSIS

Alternative:

Greater

logit2NES greater than:

0.9

   less than:

0.01

Caption:

GBM_9fusions

Run  Reset  

p-value BH-value! B-value

NetworkNetwork

GBM_9FUSIONS
Analysis from www.massivegenesetstest.org started at 08/06/2021, 15:25:43 (running time: 1.00 seconds)
Gene set collection c5hallmark.6.2.gmt (5967 gene sets found)
Gene-profile GBM_9fusions.rnk (17814 symbols found)
Alternative: greater (BH-value < 0.01 and logit2NES > 0.9)
Download results as: [csv] [tsv] [html]

gene set collection size actualSize NES odds logit2NES  p‑value  BH‑value  B‑value relevance

☁ HALLMARK OXIDATIVE
PHOSPHORYLATION

c5hallmark.6.2.gmt 200 194 0.701 2.343 1.229 0.000e+0 0.000e+0 0.000e+0 8543.000

☁ GO ENERGY DERIVATION BY
OXIDATION OF ORGANIC COMPOUNDS

c5hallmark.6.2.gmt 217 204 0.669 2.019 1.014 5.551e-17 4.732e-14 3.312e-13 8509.500

☁ GO CELLULAR RESPIRATION c5hallmark.6.2.gmt 143 134 0.713 2.488 1.315 0.000e+0 0.000e+0 0.000e+0 8394.000

☁ GO MITOCHONDRIAL MEMBRANE
PART

c5hallmark.6.2.gmt 173 153 0.672 2.053 1.038
9.370e-

14
4.301e-11

5.591e-
10

8389.500

☁ GO MITOCHONDRIAL PROTEIN
COMPLEX

c5hallmark.6.2.gmt 136 121 0.698 2.306 1.205 3.181e-14 1.725e-11
1.898e-

10
8320.000

☁ GO INNER MITOCHONDRIAL
MEMBRANE PROTEIN COMPLEX

c5hallmark.6.2.gmt 106 95 0.744 2.902 1.537 1.110e-16 8.281e-14
6.625e-

13
8237.000

☁ GO ELECTRON TRANSPORT CHAIN c5hallmark.6.2.gmt 94 85 0.730 2.708 1.437
1.089e-

13
4.640e-11

6.496e-
10

8150.000

☁ GO OXIDOREDUCTASE COMPLEX c5hallmark.6.2.gmt 93 91 0.661 1.948 0.962 5.855e-8 1.248e-5 3.494e-4 8085.500

☁ GO OXIDATIVE PHOSPHORYLATION c5hallmark.6.2.gmt 84 76 0.725 2.632 1.396
6.442e-

12
2.402e-9 3.844e-8 8082.000

☁ GO RESPIRATORY CHAIN c5hallmark.6.2.gmt 80 73 0.736 2.785 1.478 1.637e-12 6.511e-10 9.766e-9 8067.500

☁ GO MITOCHONDRIAL RESPIRATORY
CHAIN COMPLEX ASSEMBLY

c5hallmark.6.2.gmt 76 67 0.715 2.508 1.327
5.902e-

10
2.071e-7 3.521e-6 7985.000

☁ GO THIOESTER METABOLIC
PROCESS

c5hallmark.6.2.gmt 83 73 0.655 1.902 0.928 2.197e-6 3.857e-4 1.311e-2 7939.500

☁ GO AEROBIC RESPIRATION c5hallmark.6.2.gmt 53 51 0.734 2.759 1.464 3.733e-9 1.172e-6 2.228e-5 7819.000

☁ GO MITOCHONDRIAL RESPIRATORY
CHAIN COMPLEX I BIOGENESIS

c5hallmark.6.2.gmt 56 52 0.714 2.500 1.322 4.532e-8 1.040e-5 2.704e-4 7812.500

☁ GO MITOCHONDRIAL
TRANSMEMBRANE TRANSPORT

c5hallmark.6.2.gmt 58 51 0.679 2.117 1.082 4.771e-6 7.492e-4 2.847e-2 7744.000

☁ GO OXIDOREDUCTASE ACTIVITY
ACTING ON NAD P H QUINONE OR
SIMILAR COMPOUND AS ACCEPTOR

c5hallmark.6.2.gmt 52 49 0.685 2.179 1.124 3.556e-6 5.895e-4 2.122e-2 7728.000

☁ GO THIOESTER BIOSYNTHETIC
PROCESS

c5hallmark.6.2.gmt 54 48 0.674 2.067 1.048 1.528e-5 1.720e-3 9.115e-2 7671.000

☁ GO FATTY ACID BETA OXIDATION c5hallmark.6.2.gmt 51 46 0.684 2.167 1.115 7.731e-6 1.098e-3 4.613e-2 7670.000

☁ GO NADH DEHYDROGENASE
COMPLEX

c5hallmark.6.2.gmt 42 42 0.721 2.588 1.372 3.493e-7 7.187e-5 2.084e-3 7655.500

☁ GO TRICARBOXYLIC ACID
METABOLIC PROCESS

c5hallmark.6.2.gmt 37 36 0.781 3.574 1.838 2.571e-9 8.521e-7 1.534e-5 7555.500

☁ GO GLYOXYLATE METABOLIC
PROCESS

c5hallmark.6.2.gmt 28 26 0.747 2.960 1.566 6.262e-6 9.113e-4 3.736e-2 7217.000

☁ GO ACETYL COA METABOLIC
PROCESS

c5hallmark.6.2.gmt 26 25 0.814 4.377 2.130 2.742e-8 7.114e-6 1.636e-4 7215.500

☁ GO PROTON TRANSPORTING ATP
SYNTHASE COMPLEX

c5hallmark.6.2.gmt 22 20 0.812 4.333 2.115 6.557e-7 1.304e-4 3.912e-3 6961.000

☁ GO MITOCHONDRIAL ATP
SYNTHESIS COUPLED PROTON
TRANSPORT

c5hallmark.6.2.gmt 17 17 0.807 4.192 2.068 5.714e-6 8.523e-4 3.409e-2 6746.000

☁ GO CYTOCHROME COMPLEX c5hallmark.6.2.gmt 21 17 0.768 3.317 1.730 6.382e-5 5.600e-3 3.808e-1 6711.000

☁ GO MITOCHONDRIAL ELECTRON
TRANSPORT CYTOCHROME C TO
OXYGEN

c5hallmark.6.2.gmt 16 15 0.811 4.287 2.100 1.531e-5 1.691e-3 9.134e-2 6555.500

☁ GO ACETYL COA BIOSYNTHETIC
PROCESS

c5hallmark.6.2.gmt 12 12 0.823 4.642 2.215 5.409e-5 4.965e-3 3.227e-1 6229.500

Size is the original dimension of the gene-set; actual size is the dimension of the gene-set after its intersection with the gene-profile; NES is the Normalized Enrichment Score, i.e. the
estimate of the probability of dominance the gene-set distribution versus outside the gene-set; ODD = NES/(1-NES); logit2NES = log2(ODD); BH-value is the Benjamini and Hochberg
adjusted p-value; B-value is the Bonferroni adjusted p-value.

TableTable

RUN ANALYSIS

massive gene-sets test (86 runs since Feb, 16 2021) " Menu

INPUT DATA

Gene profile:

GBM_9fu…ns.rnkChoose File

Gene sets:

c5hallm…6.2.gmtChoose Files

Gene-profile GBM_9fusions.rnk (17814 symbols found)
Gene set collection c5hallmark.6.2.gmt (5967 gene sets found)

ENRICHMENT ANALYSIS

Alternative:

Greater

logit2NES greater than:

0.9

   less than:

0.01

Caption:

GBM_9fusions

Run  Reset  

p-value BH-value! B-value

TableTable

Gene-sets similarity metric (Eps=0.2):

Jaccard Overlap

Similarity threshold: 0.5

0 1

Download figure 

Edit

NetworkNetwork

RUN ANALYSIS

massive gene-sets test (86 runs since Feb, 16 2021) " Menu

Output

Enrichment analysis 
Parameters

generateTxtTab()

generateHtmlTab()

computeNet()

prepareGeneSets()

computeGST()
Gene 
profile

Gene 
Sets

Input MGS Tool

Figure 2. Software architecture of the online web-service.

2.5. R Package

The R package is a collection of functions to compute the enrichment analysis and
to manipulate and plot the results. The primary function is massiveGST that needs as
mandatory input the gene-profile and the collection of the gene-sets. The output is a data
frame arranging all the statistics introduced in the methodology section. Three functions
cut_by_NES, cut_by_logit2NES, and cut_by_significance trim the data frame according
to the required constraints. With the help of the S3-method, the function plot provides a
graphical display for the analysis. The enrichments can be presented as a bar plot or as
a network.

The logical scheme is shown in Figure 3. An extensive presentation of the packa-
ge usability is in the vignette at https://cran.r-project.org/web/packages/massiveGST/
vignettes/vignette.html (accessed on 11 April 2022).

Figure 3. Flow-chart to run analysis both in the web service, and in the R environment.

3. Results
3.1. Computational Time: Comparison with Literature Methods

To assess the computational efficiency of our proposal, we designed a simulation
experiment involving real data from TCGA. With the help of TCGAbiolinks [21], we down-
loaded data and annotations from different studies. We got gene-profiles by comparing
subtypes by using a DESeq2 package [22]. The gene-profile is −log(pj)× sign(Wj), across
genes, where pj and Wj are the p-value and the test-statistic of the Wald’s test, respectively.
In total, we collected 30 gene-profiles.

We screened nine recent literature proposals for enrichment analysis both as R-package
and online service shown in Table 1.

The 30 gene-profiles, together with the C1 collection of 278 positional gene-sets from
MSigDB [19], fed the nine procedures. Table A1 shows the computational time (in seconds)

https://cran.r-project.org/web/packages/massiveGST/vignettes/vignette.html
https://cran.r-project.org/web/packages/massiveGST/vignettes/vignette.html
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measured on a PC running Ubuntu with Kernel Linux 5.4.0-73-generic x86_64 (4 cores,
16 GB RAM), and Google Chrome Version 90.0.4430.212 (64-bit). Figure 4 shows a boxplot
of the experiment results. The time has been transformed as log10(1 + time) to bound the
different ranges of each procedures. Camera pre-ranked (on average 0.02 s with 0.03 as
standard deviation) and massive GST (0.27 s with 0.10 as standard deviation) own the
lowest computation time in the R environment, confirming results reported in [23]. The
time difference between massive GST and camera pre-ranked is because the latter applies
the MWW’s test and returns the p-value with an indicator of the direction of the test;
instead, massive GST provides the statistics presented in the methodology section. As
online service, our proposal spends 0.91 s on average (sd = 0.01), versus 13.57 (sd = 3.01) of
wKS (GeneTrail3) and 14.30 (sd = 3.13) of MWW (GeneTrail3). WebGestalt (wKS) spends
84.20 s (sd = 6.69).
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Figure 4. Results of the simulation. 30 gene-profiles have been queried with MSigDB C1 collection
of 278 gene-sets using R-implementation of the methodologies (a): clusterProfiler with DOSE and
fGSEA options, fast GSEA, pre ranked GSEA, massive GST, and camera pre-ranked) and online
tools (b): GeneTrial3 with weighted GSEA and Wilcoxon Rank Sum test options, massive GST, and
WebGestalt GSEA). The time, in seconds, is log10 transformed. The raw data are in Table A1.

3.2. Usage of the Online Web-Tool

To run the analysis, the user needs to load two files: (a) a gene-profile (as a two
columns tab-separated text format, the gene-name and the associated value), and (b) one or
more gene-sets collections (in .gmt format).

The next steps are: (1) set the significance-level of the enrichments (the user can choose
between the p-value, and two versions of adjusted p-values: Benjamini–Hochberk and
Bonferroni), and (2) (optionally) set the threshold value of the logit2NES.

From the user’s point of view, the online web tool follows the same logical scheme as
Figure 3.

The significance level allows for selecting gene-sets relevant for the treatment and
control. In addition, the researcher could be interested in those gene-sets strongly associated.
In this case, the trimming with NES, both as location index or probability, comes into play.
NES could be difficult to handle and read because it is a positive number, and people have
to remember that association with treatment or controls depends on the value above or
below 0.5, respectively. As a help, the logit2NES simplifies the process of interpreting the
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association (positive values with the treatment, negative with the control) and intuitively
measuring the strongness of association (higher positive values mean strong association;
lower negative values signify strong association with the control). The equivalence of
values from NES, odds, and logit2NES is shown in Table 2.

To require that the probability of association of the gene-set with the treatment group
be about twice the probability of non association, the logit2NES threshold can be set to 0.9
(equivalent to NES > 0.65, or odds > 1.86).

Table 2. Table of equivalence among NES, odds, and logit2NES.

NES Odds logit2NES

0.20 0.25 −2.00
0.30 0.43 −1.22
0.40 0.67 −0.58
0.50 1.00 0.00
0.60 1.50 0.58
0.65 1.86 0.90
0.75 3.00 1.58
0.90 9.00 3.17

Tabular versions of results are also generated (see Figure 5). The shown report respects
the constrains given as input, while the full table with every gene-set can be downloaded
as .csv or .tsv formats. The html version of the table can be downloaded as shown. Both
the displayed table and its .html version allow the user to re-sort results according to
any column.

Figure 5. Screenshot of the tabular results of the gene-profile associated with FGFR3-TACC3 fusion
positive samples in GBM. C5 and Hallmark collections (in total 10,321 gene-sets) from MSigDB
interrogated the gene-profile in 1.55 s.

To visualize the network-graph of current results, the user can click on the network
tab. Here, the similarity between any two of the gene-sets in the table is computed and
the network of gene-sets is shown. The user can chose between two similarity measures,
Jaccard or overlap, or any convex combination of the twos by tuning the parameter ε with
a slider box. A second slider-box allows for setting the threshold value so that a segment
joins two nodes when the similarity is above it. The network is updated in real time, as the
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user operates with the sliders. The plot of the network allows some editing actions and it
can be downloaded as a .png file.

The page http://www.massivegenesetstest.org/gettingStarted.html (accessed on 11
April 2022) from the web-site helps to run a first example analysis.

In Figure 5, we present an example of result report. We interrogated the gene-profile
of the FGFR-TACC3 fusion positive samples in the glioblastoma multiforme study from the
TCGA (see [16]) with the C5 and Hallmark collections (MsigDB v.7.2) of 10,321 gene-sets
from the Broad Institute. The computation time took 1.55 s. The input parameters are
alternative = greater, B.value < 0.01, and abs(logit2NES) > 1. In Figure 6, the graphical
rendering of the significant gene-sets is shown.

Figure 6. Graphical rendering of the tabular results of the analysis. Each ball is a gene-set; the radius
matches the dimension, and the color corresponds to the NES. When two gene-sets share some gene,
they appear connected, and the strength of similarity results in the thickness of the segment.

4. Conclusions, Limitations, and Future Research

Gene-set enrichment analysis is a methodology of great interest in silico experiments.
Its first aim is to give a biological meaning associated with genes profiles coming as result of
any analysis. Since its introduction, effort has been spent to improve the results’ reliability
and extend the field of application. Much attention has been devoted to global test versions,
but competitive methods, requiring just a gene-profile, appear more flexible because the
profile can be generated with up-to-date methodology (the case of analyzing a single cell is
an example).

GSEA is the most adopted methodology, with about 32,000 citations to date. A similar
approach is offered by competitive tests involving the Mann–Whitney–Wilcoxon test. To
date, such a test is offered as an optional alternative in several other methodologies, but the
theoretical properties have not been exploited.

In this paper, we have presented the massiveGST procedure, implemented as an R
package and available as a web-tool, centered on MWW’s test methodology for competi-
tive gene-set enrichment analysis. We exploited the theoretical knowledge of the test to
improve the interpretation of the enrichment results. We proposed the interpretation of the
normalized version of MWW’s test-statistic as an estimate of probability and as a location
index in the ordered universe of genes outside the gene-set. Convincing use of this last
interpretation is in [24].

As demonstrated in the simulation experiment, enrichment analysis with MWW’s test
generally requires low computation time. In the R environment, the massiveGST function
competes with cameraPR but offers a rich set of statistics. Our online implementation is the
most competitive (about 1.5 s for more than 10,000 gene-sets).

A general issue is the lack of an independent paradigm to test which method/procedure
is reliable. Something has been done with the recent contribution from [23], where real

http://www.massivegenesetstest.org/gettingStarted.html
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datasets of pathologies have been selected and, for each of them, genes associated with the
pathology have been gathered from the literature. The gene-sets containing such genes
have been assumed as ground truth. The assumption is that a gene associated with a
pathology should be highly differentially expressed with respect to control samples. Such a
hypothesis neglects that a large subset of weak or moderate signal genes cooperates with
important biological phenotypes [25], posing critical concerns on the usage of the paradigm
proposed in [23] for the evaluation of EA methods.

Competitive EA methods have increased attention in applied research as they own
implicit adaptability to emerging new omic technologies. It is urgent to design a comparison
paradigm with large consensus to know the strengths and weaknesses of methodologies,
such as those developed in other contexts (e.g., DREAM, KAGGLE, . . . [26]).

The availability of a fast methodology for EA, together and results not affected by
variability induced by the computational strategy to obtain the significance, could push
new contributions to methodological proposals in discovering master regulators (e.g., [27]).
Such tools, starting from the estimation of gene regulatory network [28,29], apply EA
methods to detect those transcription factors able to drive phenotypes.

Competitive EA methods may have several applications in fields also far from bioin-
formatics. Consider a list of items (think about the ranking of basketball players), sorted
according to some criterium (the best player at the top), and different ways to cluster them
(the teams, the ethnicity, young players, . . . ). The result of the competitive EA method with
MWW will be the location in the ranked list of a consistent cluster of items (the young
basketball players perform better than others, in the case that the cluster is located close to
the top).
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KS Kolmogorov–Smirnov
wKS weighted-KS
MI Mutual Information
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Appendix A

Theorem A1. The Normalized Enrichment Score is a location index.

Proof. Let Tin be the sum of the min ranks inside the gene-set, while Tout is the sum of the
mout outside, then

Tin + Tout ≡
m(m + 1)

2
,

where m = min + mout.
If we set Uin = Tin −min(min + 1)/2 and Uout = Tout −mout(mout + 1)/2, it can be shown
that

Uin + Uout = min ×mout,

in fact
Uin + Uout = Tin −min(min + 1)/2 + Tout −mout(mout + 1)/2 =

=
m(m + 1)

2
− min(min + 1) + mout(mout + 1)

2

=
m(m + 1)

2
− m2

in + min + m2
out + mout ± 2minmout

2
=

=
m(m + 1)

2
− (min + mout)2 + (min + mout)− 2minmout

2
=

=
m(m + 1)

2
− m2 + m− 2minmout

2
= minmout.

From these relations, we obtain that MW’s U statistic corresponds to Uin, and

0 ≤ U
min ×mout

≤ 1.

Our interest is in
0 ≤ U

min
≤ mout.

We can show that U/min ≡ mout, when Tin sums the highest k ranks. In this case, min = k,
and mout = m− k;

Tin = m + (m− 1) + (m− 2) + · · ·+ (m− k + 1) = k×m− k(k− 1)
2

U = Tin −
k(k + 1)

2
= k×m− k(k− 1)

2
− k(k + 1)

2
= k×m− k2

U
k

=
k×m− k2

k
= m− k ≡ mout.

Conversely, when Tin sums the lowest k ranks, then Tin = k(k+1)
2 , and U

k ≡ 0.

The ratio U
min×mout

is the percentile rank of the gene-set, seen as a single value, in the
ranking of the genes outside the gene-set.
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Table A1. Results of the simulation 1. Thirty gene-profiles were queried with MSigDB C1 collection (V.7.4) of 278 gene-sets. Six procedures come from R
implementation GSEA, fastGSEA (fGSEA), clusterProfiler (CP) with fGSEA option, massiveGST (mGST), and camera pre-ranked (cPR); four more results come from
online services GeneTrial3 (weighted GSEA and Wilcoxon Rank Sum test), massiveGST, GSEA offered by WebGestalt. The values are in seconds. The last two rows
report the average and the standard deviation across the 30 experiments. The study corresponds to the name of the cancer collection of samples in TCGA; DOI maps
to the paper from which the sub-typing of samples was obtained; control is the subtype assumed as the control group, while treatment is a second subtype. In
brackets, there is the number of samples in the groups. The length refers to the number of genes in the gene-profile. File name is the file-name of the gene-profile.

R Project Online

Study Doi Control Treatment Length GSEA fGSEA CP/wKS mGST cPR mGST GT3/MWW GT3/wKS WG/wKS File Name 2

BLCA 10.1016/j.cell.2017.09.007 Basal-squamous (142) Luminal (246) 19,664 319.59 2.09 1.79 0.21 0.01 0.93 19.97 16.78 90.26 BLCA_Wald_pv.rnk
BRCA 10.1016/j.ccell.2018.03.014 Basal (190) Her2 (82) 19,579 314.71 1.85 1.79 0.22 0.01 0.91 12.92 13.45 78.38 BRCA_BH2_Wald_pv.rnk
BRCA 10.1016/j.ccell.2018.03.014 Basal (190) LumA (562) 19,657 317.99 1.92 2.04 0.23 0.01 0.91 13.15 13.07 80.55 BRCA_BLA_Wald_pv.rnk
BRCA 10.1016/j.ccell.2018.03.014 Basal (190) LumB (209) 19,626 321.35 2.04 1.99 0.21 0.01 0.89 12.89 13.88 77.99 BRCA_BLB_Wald_pv.rnk
BRCA 10.1016/j.ccell.2018.03.014 Her2 (82) LumA (562) 19,650 383.10 2.08 1.87 0.23 0.01 0.91 13.17 14.21 86.20 BRCA_H2LA_Wald_pv.rnk
BRCA 10.1016/j.ccell.2018.03.014 Her2 (82) LumB (209) 19,592 380.24 2.01 1.85 0.21 0.01 0.91 13.95 15.17 75.52 BRCA_H2LB_Wald_pv.rnk
BRCA 10.1016/j.ccell.2018.03.014 LumA (562) LumB (209) 19,652 380.88 2.59 1.93 0.36 0.01 0.92 15.83 16.92 95.24 BRCA_LALB_Wald_pv.rnk
KIRC 10.1038/nature12222 1 (147) 2 (90) 19,639 393.28 6.07 3.56 0.21 0.01 0.91 18.02 21.32 77.28 KIRC_1_2_Wald_pv.rnk
KIRC 10.1038/nature12222 1 (147) 3 (94) 19,609 376.26 2.88 1.90 0.37 0.01 0.91 18.09 17.42 76.29 KIRC_1_3_Wald_pv.rnk
KIRC 10.1038/nature12222 1 (147) 4 (86) 19,613 407.56 3.55 2.83 0.38 0.01 0.91 16.54 18.38 98.32 KIRC_1_4_Wald_pv.rnk
KIRC 10.1038/nature12222 2 (90) 3 (94) 19,633 401.31 3.50 2.57 0.38 0.01 0.91 17.44 20.10 81.18 KIRC_2_3_Wald_pv.rnk
KIRC 10.1038/nature12222 2 (90) 4 (86) 19,638 382.03 1.86 1.38 0.21 0.01 0.92 17.76 20.13 81.32 KIRC_2_4_Wald_pv.rnk
KIRC 10.1038/nature12222 3 (94) 4 (86) 19,609 389.74 3.28 2.21 0.40 0.01 0.91 18.32 19.36 80.15 KIRC_3_4_Wald_pv.rnk
LGG 10.1016/j.cell.2015.12.028 IDHwt (97) IDHmut (419) 19,661 387.23 2.92 2.31 0.23 0.01 0.91 15.16 15.19 79.88 LGG_IDH_Wald_pv.rnk
LUAD 10.1038/nature13385 inflammatory (141) proliferative (89) 19,542 383.93 2.45 2.08 0.43 0.01 0.90 9.63 10.79 95.65 LUAD_InflamProl_Wald_pv.rnk
LUAD 10.1038/nature13385 proximal (78) TRU (63) 19,469 376.99 2.05 1.78 0.22 0.01 0.90 9.76 10.10 82.60 LUAD_ProxTRU_Wald_pv.rnk
LUSC 10.1038/nature11404 basal (43) classical (65) 19,560 383.54 4.31 2.67 0.21 0.01 0.91 9.54 10.65 92.81 LUSC_BC_Wald_pv.rnk
LUSC 10.1038/nature11404 basal (43) primitive (27) 19,554 378.42 2.85 2.05 0.22 0.01 0.90 9.90 12.12 82.13 LUSC_BP_Wald_pv.rnk
LUSC 10.1038/nature11404 basal (43) secretory (44) 19,554 389.57 3.06 2.56 0.24 0.01 0.90 10.36 10.93 88.52 LUSC_BS_Wald_pv.rnk
LUSC 10.1038/nature11404 classical (65) secretory (44) 19,481 421.33 5.30 3.07 0.21 0.01 0.90 11.99 13.16 80.77 LUSC_CS_Wald_pv.rnk
LUSC 10.1038/nature11404 primitive (27) secretory (44) 19,481 411.08 5.09 3.02 0.21 0.12 0.89 11.32 12.44 97.50 LUSC_PS_Wald_pv.rnk
PAAD 10.1016/j.ccell.2017.07.007 classical (54) exocrine (62) 19,395 381.77 1.75 1.46 0.20 0.01 0.89 13.04 12.93 76.34 PAAD_classical_exocrine_Wald_pv.rnk
PAAD 10.1016/j.ccell.2017.07.007 classical (54) QM (34) 19,334 393.19 1.97 1.56 0.50 0.01 0.88 9.18 9.48 78.63 PAAD_classical_QM_Wald_pv.rnk
PAAD 10.1016/j.ccell.2017.07.007 exocrine (62) QM (34) 19,366 412.21 1.49 1.25 0.21 0.01 0.88 10.27 11.63 80.78 PAAD_exocrine_QM_Wald_pv.rnk
STAD 10.1038/nature13480 C1 (49) C2 (59) 19,648 442.49 1.73 1.66 0.22 0.01 0.91 12.84 11.81 85.34 STAD_C1C2_Wald_pv.rnk
STAD 10.1038/nature13480 C1 (49) C3 (98) 19,679 442.85 1.83 1.59 0.22 0.12 0.91 11.21 12.46 91.14 STAD_C1C3_Wald_pv.rnk
STAD 10.1038/nature13480 C1 (49) C4 (48) 19,651 351.94 1.56 1.41 0.22 0.00 0.91 12.46 13.18 90.15 STAD_C1C4_Wald_pv.rnk
STAD 10.1038/nature13480 C2 (59) C3 (98) 19,681 357.27 2.38 1.62 0.56 0.01 0.91 14.10 13.64 78.59 STAD_C2C3_Wald_pv.rnk
STAD 10.1038/nature13480 C2 (59) C4 (48) 19,664 339.91 2.52 1.83 0.21 0.01 0.91 13.01 14.27 86.03 STAD_C2C4_Wald_pv.rnk
STAD 10.1038/nature13480 C3 (98) C4 (48) 19,681 344.40 2.17 2.05 0.22 0.12 0.91 15.15 14.13 80.49 STAD_C3C4_Wald_pv.rnk

average 378.87 2.70 2.06 0.27 0.02 0.91 13.57 14.30 84.20
standard deviation 33.05 1.14 0.54 0.10 0.03 0.01 3.01 3.13 6.69

1 The experiments have run on a PC equipped with Intel(c) Xeon(R) CPU E3-1226 v3 @ 3.30 GHz × 4 cores and 16 GB RAM. The OS is the Linux Mint v. 20.3 with Kernel Linux
5.4.0-73-generic x86_64. The R experiments have run in the R v. 4.1.3 environment, while the online web experiments have run in the Google Chrome v. 90.0.4430.212 (64-bit) browser.
2 The files are available at http://www.massivegenesetstest.org/gene_profiles/ (accessed on 11 April 2022).
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