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Abstract: Using the Onsager variational principle, we study the dynamic coupling between the
stress and the composition in a polymer solution. In the original derivation of the two-fluid model
of Doi and Onuki the polymer stress was introduced a priori; therefore, a constitutive equation is
required to close the equations. Based on our previous study of viscoelastic fluids with homogeneous
composition, we start with a dumbbell model for the polymer, and derive all dynamic equations
using the Onsager variational principle.
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1. Introduction

In the studies of flow for polymeric liquids [1,2], the inclusion of polymers introduces
two new variables in the system, namely the polymer concentration and the polymer
conformation, which are absent in the flow of simple liquids. It is well recognized that the
time evolution of the microscopic state variable, i.e., the local conformation of the polymer
chain, is critically important in governing the dynamics of the polymer solution [3,4]. The
total stress of a polymer solution therefore has two contributions, one from the polymer
and another from the solvent. A prescribed constitutive equation is required to relate the
polymer stress to the local flow conditions. On the other hand, in the standard treatment
for the flow of polymeric liquids [1], the polymer concentration is assumed to be uniform
in space. Therefore, the polymer concentration appears as a parameter in the framework,
and there is no time evolution equation for the polymer concentration.

Experimentally, it has been shown that the polymer concentration can become non-
uniform when the velocity gradient is not uniform [5–7]. Theoretically, a phenomenological
two-fluid model has been developed [8–10], which incorporates the coupling between
polymer stress and polymer diffusion in the continuum framework. A simple Hookean
dumbbell model is used for the polymer chain, and there are a few studies based on
different strategies [11–14].

In this manuscript, we shall re-derive the two-fluid model based on the Onsager
principle [15]. In Section 2, we present a general derivation including all viscous coupling
in the dissipation. In Section 3, we repeat Doi–Onuki’s original derivation from Ref. [10]
for reference. In Section 4, we start with a dumbbell model for the polymer, and derive
the time evolution equations using the Onsager variational principle. We conclude with a
summary in Section 5.

2. Onsager Principle

First proposed by Onsager in his celebrated papers on the reciprocal relation [16,17],
the Onsager principle is a variational principle to systematically derive the time evolution
equations for out-of-equilibrium systems. The first step is to identify a set of state variables,
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x = (x1, x2, · · · ), which characterizes the non-equilibrium state of the system under study.
Then, the time evolution of the system is determined by the condition that the following
quadratic function of ẋ = (ẋ1, ẋ2, · · · ) to be minimized with respect to ẋ,

R = ∑
i

∂A
∂xi

ẋi +
1
2 ∑

i, j
ζij ẋi ẋj . (1)

Here, we use the dot for the partial time derivative, ẋ = ∂x/∂t.
Equation (1) defines the Rayleighian of the system. It consists of two parts: one is

the time derivative of the free energy Ȧ(x) = ∑i(∂A/∂xi)ẋi. The other part is called the
dissipation function Φ = 1

2 ∑i,j ζij ẋi ẋj, where 2Φ represents the energy dissipated in the
system per unit time when the state variables are changing at rate ẋ. The coefficient ζij
is called the friction coefficient, which is generally a function of state variables xi. The
dissipation function must be a quadratic function of ẋi. The minimum condition of the
Rayleighian ∂R/∂ẋi = 0 determines the time evolution of the state variables:

− ∂A
∂xi

= ∑
j

ζij ẋj . (2)

Equation (2) is an analogue to the force balance equation, where the left-hand side is the
thermodynamic driving force and the right-hand side is the friction force. The reciprocal
relation ζij = ζ ji is required in this derivation.

The Onsager principle is particularly useful for soft matter systems when inertia is not
important. Many time evolution equations used in soft matter, such as the Stokes equation,
Fick’s diffusion equation, Nernst–Planck equation, Cahn–Hilliard equation, Ericksen–Leslie
equation, etc., can be derived based on the Onsager principle [15,18,19]. In a previous
work [20], we have shown that the continuum mechanical equation for viscoelastic fluids
can also be derived from the Onsager principle. Here, we use the same framework to derive
the time evolution equations of a two-fluid model for polymer solutions, by taking into
consideration the coupling between stress and diffusion.

2.1. State Variables

We first need to identify the state variables that characterize the non-equilibrium state
of flowing polymer solutions. We choose the state variables as follows:

• Volume fraction of the polymer φ.
The corresponding “velocity” variable is v(p), the polymer velocity. The polymer
volume fraction and the polymer velocity are related by the conservation law

φ̇ = −∇ ·
(

φv(p)
)
= −∇α

(
φv(p)

α

)
. (3)

Here, φ̇ = ∂φ/∂t and ∇α = ∂/∂xα.
• Conformation tensor c .

c is a non-dimensional tensor to characterize the microscopic state of the polymer
chain. The c-tensor is equal to unit tensor I when the polymer is at equilibrium, and
deviates from I when the polymer is deformed. Later, we will introduce the dumbbell
model, which presents the polymer chain as a dumbbell consisting of two beads
at positions r1 and r2. These two beads are connected by an elastic spring that has
an end-to-end vector r = r1 − r2 and a spring constant k. The conformation of the
dumbbell is then specified by the c-tensor defined by c = k

kBT 〈rr〉.
The corresponding “velocity” variable is the material time derivative of c defined by

D(p)
t c =

∂c
∂t

+ v(p) ·∇c , or D(p)
t cαβ =

∂cαβ

∂t
+ v(p)

γ ∇γcαβ. (4)

Notice that, here, we are using the polymer velocity v(p) to define the material time
derivative, not the medium velocity v, which will be introduced next.
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• In order to discuss the phenomena of the diffusion or migration of polymers, we need
to introduce another “velocity” variable representing the velocity of the surroundings.
This can be represented by the solvent velocity v(s), or the medium velocity (volume-
average velocity) defined by

v = φv(p) + (1− φ)v(s). (5)

Here, we will use v following rheology convention.

The local flow condition is characterized by the velocity gradient tensor ∇v

∇αvβ =
∂vβ

∂xα
, (6)

and the related rate-of-strain tensor

γ̇ = (∇v)t +∇v =

(
∂vα

∂xβ
+

∂vβ

∂xα

)
. (7)

2.2. Free Energy

The general form of the free energy of a polymer solution can be written as

A =
∫

dr a(φ, c). (8)

where a(φ, c) is the free energy density. We assume that a(φ, c) has the following form

a(φ, c) = f (φ) + φg(c). (9)

The first term f (φ) is the free energy density of polymer solutions at equilibrium. This term
includes the entropic term φ ln φ, the interaction term of Flory–Huggins form χφ(1− φ),
and the interfacial energy, which depends on the concentration gradient |∇φ|2. The second
term includes g(c), which represents the elastic energy of deformed polymer chains and is
a function of the conformation tensor c . The second term is proportional to the polymer
volume fraction φ.

The change rate of the free energy is given by

Ȧ =
∫

dr

[
∂a
∂φ

φ̇ +
∂a

∂cαβ
ċαβ

]

=
∫

dr

[
− ∂a

∂φ
∇γ

(
φv(p)

γ

)
+

∂a
∂cαβ

ċαβ

]

=
∫

dr

[
φv(p)

γ ∇γ

( ∂a
∂φ

)
+

∂a
∂cαβ

(
D(p)

t cαβ − v(p)
γ ∇γcαβ

)]

=
∫

dr

[
v(p)

γ ∇γ

(
φ

∂a
∂φ

)
− v(p)

γ
∂a
∂φ
∇γφ− v(p)

γ
∂a

∂cαβ
∇γcαβ +

∂a
∂cαβ

D(p)
t cαβ

]
(10)

=
∫

dr

[
v(p)

γ ∇γ

(
φ

∂a
∂φ

)
− v(p)

γ ∇γa +
∂a

∂cαβ
D(p)

t cαβ

]

=
∫

dr

[
v(p)

γ ∇γ

(
φ

∂a
∂φ
− a
)
+

∂a
∂cαβ

D(p)
t cαβ

]

=
∫

dr

[
v(p)

γ ∇γΠ +
∂a

∂cαβ
D(p)

t cαβ

]
.
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where Π stands for the osmotic pressure and is defined by

Π ≡ φ
∂a
∂φ
− a. (11)

Notice that the elastic energy term g(c) has no contribution to the osmotic pressure

Π = φ
∂( f + φg)

∂φ
− ( f + φg) = φ

∂ f
∂φ
− f . (12)

2.3. Dissipation Function

The dissipation function also includes several terms. The first one accounts for the
relative motion of the center-of-mass of the polymer with respect to the medium velocity

Φpv =
1
2

∫
dr ξ(v(p) − v)2, (13)

where the friction coefficient ξ = ξ(φ) is, in general, concentration-dependent. Notice that,
by use of Equation (5), the integrand of Equation (13) is written as ξ(1− φ)2(v(p) − v(s))2.
Therefore, Φpv can be understood as the dissipation due to the relative motion between
polymer and solvent.

The second term represents the coupling between D(p)
t c and ∇v. We write it in a very

general form:

Φcv =
1
2

∫
dr
{

ξ
(cc)
αβµν(D(p)

t cαβ)(D(p)
t cµν) + 2ξ

(cv)
αβµν(D(p)

t cαβ)(∇µvν) + ξ
(vv)
αβµν(∇βvα)(∇µvν)

}
(14)

The first term is the inter-coupling of D(p)
t c , the second term is the cross-coupling between

D(p)
t c and ∇v, and the last term is related to the solvent viscosity. Since D(p)

t c and ∇v are
tensors of rank 2, the frictional coefficients ζ are tensors of rank 4. These coefficients must
be positive-definite to ensure that the dissipation function is non-negative.

2.4. Time Evolution Equations

From the change rate of the free energy (11) and the dissipation functions (13) and
(14), the Rayleighian can be written as

R =
∫

dr

[
v(p)

α ∇αΠ +
∂a

∂cαβ
D(p)

t cαβ

]
+

1
2

∫
drξ(v(p)

α − vα)
2

+
1
2

∫
dr
{

ξ
(cc)
αβµν(D(p)

t cαβ)(D(p)
t cµν) + 2ξ

(cv)
αβµν(D(p)

t cαβ)(∇µvν) + ξ
(vv)
αβµν(∇βvα)(∇µvν)

}
−
∫

dr p(∇αvα), (15)

where the last term accounts for the incompressibility condition ∇ · v = 0.
By variational calculation with respect to the three “velocity” variables, we obtain the

following set of equations:

δR

δv(p)
α

= 0 ⇒ ξ(v(p)
α − vα) +∇αΠ = 0 (16)

δR

δvα
= 0 ⇒ −ξ(v(p)

α − vα)−∇β

(
ξ
(cv)
µναβ(D(p)

t cµν)
)
−∇β

(
ξ
(vv)
µναβ(∇µvν)

)
+∇α p = 0 (17)

δR

δD(p)
t cαβ

= 0 ⇒ ξ
(cc)
αβµν(D(p)

t cµν) + ξ
(cv)
αβµν(∇µvν) +

∂a
∂cαβ

= 0 (18)
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Equation (16) and the conservation Equation (3) lead to the time evolution equation
for φ. Equations (16) and (17) give the following force balance equation:

∇β

(
− ξ

(cv)
µναβ(D(p)

t cµν)− ξ
(vv)
µναβ(∇µvν) + (Π + p)δαβ

)
= 0 , (19)

from which we can identify the stress tensor as the terms in the large brackets. Equation (18)
gives the constitutive equation

D(p)
t cµν = −(∇γvε)ξ

(cv)
αβγεξ

(cc)−1

αβµν −
∂a

∂cαβ
ξ
(cc)−1

αβµν . (20)

These results are quite general, but their usefulness is limited because many phe-
nomenological parameters are introduced in the model. It is not clear how to assign values
to these parameters for a practical polymer model. In the following, we shall study two
existing theories from the viewpoint of this general formulation.

3. Doi–Onuki Derivation
3.1. Polymer Solution

Doi and Onuki [10] and Mavrantzas and Beris [12] proposed a two-fluid model for
polymer solutions. Their theories are not equivalent to each other, but are based on the
same idea that the elastic stress created in the polymer will contribute to the motion of
the polymer relative to the solvent if the stress is not uniform. Here, we will discuss the
two-fluid model focusing on the Doi–Onuki theory. They started with a free energy change
rate of the form

Ḟ = Ḟmix + Ḟel. (21)

The first term Ḟmix is the change rate of the mixing free energy

Fmix =
∫

dr f (φ), (22)

Ḟmix =
∫

dr
∂ f
∂φ

φ̇ = −
∫

dr
∂ f
∂φ

∇ · (φv(p)) =
∫

drv(p) ·∇Π (23)

where Π is the osmotic pressure given by Equation (11). The second term Ḟel is the change
rate of the elastic free energy (Equation (2.26) of Ref. [10]) and defines the stress exerted on
the polymer σ(p) (called the “network stress” σ(n) in Ref. [10]).

Ḟel =
∫

drσ(p) : (∇v(p)). (24)

Some comments on this term are in order:

• This derivation is different from the standard derivation based on the Onsager princi-
ple. We normally start with a free energy as a function of the state variables and then
calculate the change rate by performing the time derivative.

• Here, the polymer stress σ(p) is input by hand; therefore, we still need a constitutive
equation to relate the stress to the state variables.

• Here, the polymer velocity is used. In Ref. [10], it was noted that “it is the deformation
of the polymer which causes the change of the free energy”. It turns out that it is very
important to specify which velocity is coupled to the polymer stress.

The dissipation function is given by

Φ =
1
2

∫
dr ζ(v(p) − v(s))2, (25)

due to the relative motion of the polymer chain to the solvent.
The Rayleighian is
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R =
∫

dr
[

1
2

ζ(v(p) − v(s))2 + v(p) ·∇Π + σ(p) : ∇v(p) − p∇ · (φv(p) + (1− φ)v(s))

]
(26)

which gives

δR

δv(p)
= 0 ⇒ ζ(v(p) − v(s))−∇ · σ(p) +∇Π + φ∇p = 0, (27)

δR

δv(s)
= 0 ⇒ ζ(v(s) − v(p)) + (1− φ)∇p = 0. (28)

These are Equations (2.28) and (2.29) in Ref. [10]. Here, we have only two time evolution
equations. To complete the formulation, a constitutive equation needs to be specified. This
is slightly different from the previous derivation, where the constitutive Equation (20) is
derived from the condition δR/δD(p)

t cαβ = 0.

3.2. Polymer Blends

For binary mixtures of the polymer melt, Doi and Onuki suggested to use the “tube
velocity” (or friction-averaged velocity; see also Tanaka’s works [21,22]) in Equation (24)

vT =
1

ζL + ζS
(ζLvL + ζSvS) (29)

where L and S stand for the long and short polymers.
The Rayleighian is written as

R =
∫

dr
[1

2
ζ(vL − vS)

2 − µ∇ · (φLvL) + σ(n) : ∇(ζL + ζS)
−1(ζLvL + ζSvS)

−p∇ · (φLvL + (1− φL)vS)
] (30)

which gives

δR

δvL
= 0 ⇒ ζ(vL − vS)−

ζL

ζL + ζS
∇ · σ(n) + φL∇µ + φL∇p = 0, (31)

δR

δvS
= 0 ⇒ ζ(vS − vL)−

ζS

ζL + ζS
∇ · σ(n) + (1− φL)∇p = 0. (32)

These are Equations (4.3) and (4.4) of Ref. [10].

4. Dumbbell Model

A popular model of viscoelastic fluid is the Oldroyd-B model, also known as the dumb-
bell model [1,2]. It has been shown [3] that this model can be derived from an energetic princi-
ple similar to the Onsager principle. In our previous work [20], we derived a Rayleighian that
gives the Oldroyd-B model, and showed that such a formulation is useful to obtain analytical
solutions for certain problems. Here, we extend the framework to the two-fluid model, and
derive a set of equations that accounts for the coupling of the flow and the diffusion.

A polymer chain is modeled as a dumbbell consisting of two beads connected by an
elastic spring that has an end-to-end vector r = r1 − r2. The conformation of the dumbbell
is specified by the c-tensor defined by c = k

kBT 〈rr〉.

4.1. Free Energy

For dilute solutions, the free energy function is given by

a(φ, c) =
kBT

v
φ ln φ + φg(c), (33)

g(c) =
1
2

kBT
v

[Tr(c)− ln det(c)], (34)



Entropy 2022, 24, 716 7 of 10

where v is the volume of one single dumbbell. The change rate of the free energy is given
by Equation (11)

Ȧ =
∫

dr

[
v(p)

γ ∇γΠ + φ
∂g

∂cαβ
D(p)

t cαβ

]
. (35)

The variations of Ȧ with respect to the velocity variables are

δȦ
δv(p)

= ∇Π , (36)

δȦ
δv(s)

= 0 , (37)

δȦ

δD(p)
t c

= φ
∂g
∂c

=
1
2

kBT
v

φ(I − c−1) . (38)

4.2. Dissipation Function

The dissipation function related to the c-tensor is given in Ref. [20], with ċ replaced
by D(p)

t c ,

Φc =
1
4

kBT
v

∫
drτφTr

[
c−1 · (D(p)

t c t − κ · c − c · κt) · (D(p)
t c − κ · c − c · κt)

]
, (39)

where Tr denotes the trace operation.
Here arises the main question: which velocity should we use in the velocity gradient

κ? We have a few options here:

• Using the polymer velocity, κ = κ(p) = (∇v(p))t. This will give the same results of
Doi–Onuki.

• Using the solvent velocity, κ = κ(s) = (∇v(s))t. This will lead to a different dynamics.
• Using a combination of the polymer and solvent velocities, κ = (∇V)t, with

V = α1v(p) + α2v(s), α1 + α2 = 1. (40)

This includes a special case of volume-average velocity V = v, with α1 = φ and
α2 = 1− φ.

We will continue the derivation using the combination velocity V. In general, one
should expect αi to be a function of the concentration φ, so it will be position-dependent.

κ = (∇V)t =
[
∇(α1v(p) + α2v(s))

]t
. (41)

The total dissipation function is given by

Φ = Φc +
1
2

∫
drζ(v(p) − v(s))2. (42)

The variations with respect to the dynamic variables are

δΦ
δv(p)

= ζ(v(p) − v(s)) +∇ ·
[

α1
kBT

v
τφ
(

D(p)
t c − (∇V)t · c − c · (∇V)

)]
, (43)

δΦ
δv(s)

= ζ(v(s) − v(p)) +∇ ·
[

α2
kBT

v
τφ
(

D(p)
t c − (∇V)t · c − c · (∇V)

)]
, (44)

δΦ

δD(p)
t c

=
1
2

kBT
v

τφ
(

D(p)
t c − (∇V)t · c − c · (∇V)

)
· c−1 . (45)
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4.3. Time Evolution Equations

The Rayleighian is written as

R = Ȧ + Φ−
∫

drp∇ · (φv(p) + (1− φ)v(s)). (46)

The variation of the Rayleighian with respect to D(p)
t c gives

D(p)
t c − (∇V)t · c − c · (∇V) = − 1

τ
(c − I ). (47)

This is the constitutive equation of the Oldroyd-B fluid model, with a small modification in
which the velocity gradient is given by V.

The variation with respect to v(p) gives

ζ(v(p) − v(s)) +∇ ·
[

α1
kBT

v
τφ
(

D(p)
t c − (∇V)t · c − c · (∇V)

)]
+∇Π + φ∇p = 0. (48)

The variation with respect to v(s) gives

ζ(v(s) − v(p)) +∇ ·
[

α2
kBT

v
τφ
(

D(p)
t c − (∇V)t · c − c · (∇V)

)]
+ (1− φ)∇p = 0. (49)

Equations (48) and (49) give

∇ ·
[
σ(p) − (Π + p)I

]
= 0 , (50)

where σ(p) is defined by

σ(p) = − kBT
v

τφ
(

D(p)
t c − (∇V)t · c − c · (∇V)

)
=

kBT
v

φ(c − I ). (51)

Equation (50) indicates that the tensor σ(p) − (Π + p)I is the total stress tensor and
σ(p) is the polymer contribution to the stress tensor. This definition does not depend on
the choice of αi. For a homogeneous solution, the polymer number density is given by
np = φ/v, and then Equation (51) becomes the standard form σ(p) = npkBT(c − I ) =
G(c − I ) with the shear modulus G = npkBT.

Using the expression (51), Equations (48) and (49) can then be written as

ζ(v(p) − v(s))−∇ · (α1σ(p)) +∇Π + φ∇p = 0 , (52)

ζ(v(s) − v(p))−∇ · (α2σ(p)) + (1− φ)∇p = 0 . (53)

With the setting α1 = 1 and α2 = 0, we recover the Doi–Onuki results for the polymer
solutions (27) and (28). With the setting α1 = ζL/(ζL + ζS) and α2 = ζS/(ζL + ζS), we
recover the Doi–Onuki results for the polymer blends (31) and (32).

Combining the above two equations, we can obtain

ζ(v(p) − v(s)) = −(1− φ)∇Π + (α1 − φ)∇ · σ(p) + (∇α1) · σ(p), (54)

where the last term only appears if α1 is position-dependent.
The above equation shows that the relative motion of the polymers with respect to the

solvent has two origins: one is the gradient of the osmotic pressure ∇Π, which corresponds
to the usual diffusion due to the concentration gradient. The other one is the gradient of the
polymer contribution to the stress tensor ∇ ·σ(p). This is the essence of the two-fluid model:
the polymer contribution to the stress tensor should induce the polymer diffusion, i.e., the
stress and the diffusion are coupled. Using the conservation equation, we can see that the
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time derivative of the volume fraction has contributions from ∇2Π and ∇∇:σ(p). These
two terms are consistent with previous two-fluid models [14]. Existing models have used
αi that are independent of the position; therefore, the last term in Equation (54) vanishes.

The magnitude of the stress contribution to the diffusion depends on the choice of αi.
For α1 = 1 and α2 = 0, the stress contribution is on the order of O(1− φ), the same order
of the contribution from the osmotic pressure. This is the original Doi–Onuki result [10].
For α1 = 0 and α2 = 1, the stress contribution is reduced to order O(φ), which is small
in comparison to the osmotic pressure term. For α1 = φ and α2 = 1 − φ, the stress
contribution vanishes.

For homogeneous solutions, the polymer concentration is uniform in space; therefore,
the polymer velocity v(p) and the solvent velocity v(s) are the same, v(p) = v(s). Different
choices in the velocity gradient κ lead to the same time evolution equations.

5. Conclusions

We have used the Onsager variational principle to derive the time evolution equations
for polymer solutions, taking into consideration the coupling between the stress and the
composition. The strength of the current framework is that we start with a microscopic
model for the polymer chains, and then the constitutive equation is a natural outcome from
the variational calculation. The exact form of the time evolution equations will depend on
the choice of dissipation function (see Equation (40)), which then determines the strength
of the stress–diffusion coupling. The choice of α1 and α2 in Equation (40) should be based
on the system considered. However, the derived stress tensor (51) is independent of this
choice and is determined by the specific polymer model.
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