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Abstract: As pointed out by many researchers, replication plays a key role in the credibility of applied
sciences and the confidence in all research findings. With regard, in particular, to energy finance
and economics, replication papers are rare, probably because they are hampered by inaccessible
data, but their aim is crucial. We consider two ways to avoid misleading results on the ostensible
chaoticity of price series. The first one is represented by the proper mathematical definition of chaos
and the related theoretical background, while the latter is represented by the hybrid approach that
we propose here—i.e., consisting of considering the dynamical system underlying the price time
series as a deterministic system with noise. We find that both chaotic and stochastic features coexist
in the energy commodity markets, although the misuse of some tests in the established practice in
the literature may say otherwise.
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1. Introduction

As pointed out by many researchers (see, for example, [1]), replication is the key
to credibility in applied sciences and confidence in all research findings. With regard in
particular to energy finance and economics, replication papers are rare, probably because
they are hampered by inaccessible data [1], but their aim is crucial and twofold. First, they
wonder if the old results resist if more recent data are added and if the methods are updated,
and if not, why this is so. Second, they take into account a large number of recent (or older)
articles to check whether the results are still valid when compared with other contributions.

For instance, the same data may be examined by different authors with different
methodological approaches. Can the difference in results be explained? Is it possible to
distinguish credible results from others that are less so?

Recently, we started to focus on this question by considering, in particular, the findings
of the so-called “chaos theory” on the energy commodity markets [2–4]. An important
reason to be interested in chaotic behavior is that it resembles random behavior (even if
they cannot be treated as the same).

In particular, it is interesting to know whether the fluctuations in many time series are
really random or they are instead the product of a (complex) deterministic system [3–6].
The behavior of a completely random system is not predictable anyway. Otherwise, if
it were completely deterministic, even if chaotic, its behavior could be predicted in the
short term.

It is straightforward that evidence on deterministic chaos would have important
implications for regulators and short-term trading strategies, in all financial markets and in
particular in energy markets.

Energy commodity prices have been examined over the last 20 years to detect the
presence of chaos as an alternative to stochastic models, but they revealed contrasting
results: some papers highlighted the presence of chaos, while some others did not, and
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this has led to a gradual loss of interest in the chaos theory applied to energy commodity
markets. For example, the papers we have examined in this field—we have selected only
those relating to crude oil, diesel, natural gas and copper—are refs. [7–17], but eight of
them fall before 2009 and only three after. (For the discussion of the previous literature,
see [2–4]).

The conflicting results of identifying chaos in the energy commodity markets can be
seen as a replication problem.

Hence, in this paper, we highlight the role of theoretical assumptions of the methods
employed in the literature of energy markets. In particular, we show that the mathematical
definition of chaos and the theoretical background recalled and discussed here are able to
avoid possible errors from misleading results on ostensible chaoticity of the price series.

After showing the importance of the theoretical background in the light of the problem
of replication, we also discuss the hybrid approach introduced in [3,4]—i.e., consisting
in considering the dynamical system underlying the price time series as a deterministic
system with noise—in order to re-evaluate the presence of a chaotic feature in the energy
commodity markets. This hybrid approach is based on the introduction of tools that take
into account the co-existence of stochastic and chaotic behavior in the same time series,
such as modified correlation entropy, noise level estimation and recurrence analysis.

The result is that chaotic characteristics coexist with stochastic ones in the time series
of energy commodity prices.

The remainder of this article is structured as follows. Section 2 introduces the chaos
definition. Section 3 presents the tools we employ in our analysis, while Section 4 discusses
the results. In addition, Section 5 provides the conclusions of our paper.

2. The “Core” of Chaos: Its Definition

Who remembers Ian Malcolm, the mathematician of Jurassic Park? In a scene where
he tries to explain the chaos theory to Ellie Sattler, he says: “It simply deals with unpre-
dictability in complex systems. The shorthand is the Butterfly Effect. A butterfly can flap
its wings in Peking and in Central Park you get rain instead of sunshine.” That is very
effective, simple and straightforward.

The chaos definition, however, goes deeper. According to one of the most widely
accepted definitions of chaos, introduced by Robert L. Devaney [18] (hence known as
Devaney’s chaos definition), sensitive dependence on initial conditions, topological transitivity
and density of periodic points are the “ingredients” of chaos (for the self-consistency
of Devaney’s definition, see the references in [2]). The intuitive meaning of sensitive
dependence on initial conditions is straightforward: tiny differences become amplified. It is
the most popular property of a chaotic system. Also called “butterfly effect”, it is immediate
enough to be cited in a popular film, as we said. This is probably why the “butterfly effect”
becomes so predominant that in many contexts, it constitutes, itself, a definition of chaos.
There is a lot of numerical evidence for this experimental definition of chaos, but it is not
satisfactory, both theoretically and experimentally.

From a theoretical point of view, see, for example, the counterexample 3.3 introduced
by Martelli et al. in [19]. Their counterexample shows that, although the “experimental”
definition of chaos is easy to check, it defines as chaotic systems those which are not.

As far as the experimental point of view is concerned, however, it has been noted
that the time series generated by stochastic systems can also show a sensitive dependence
on the initial conditions [20–22] and, since chaos theory is an alternative paradigm to the
stochastic approach, a problem arises with the definitions—what is chaotic and what is not.

In addition, while some tests for sensitive dependence on initial conditions have been
introduced, for the other two properties that build the Devaney chaos definition, we have
far fewer tests, and further, no tests for transitivity conditions of the chaos definition have
been found [23].

For this reason, it is inappropriate to talk about chaos tests. We should instead refer to
the specific property we are going to test. For example, all the papers considered in this
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article [7–17] resort to the experimental definition of chaos, testing sensitive dependence
on initial conditions. However, the implications that the butterfly effect may have in the
energy markets make this property interesting to study, as remarked in [2], but. . . how?

Is there a dichotomy between the butterfly effect and stochastic features? Or is it
possible to think of a paradigm that can include both? The answer to this question is,
yes, this dichotomy does not need to be a strict rule, as proved in [3,4]. Hence, in the
following, we propose a systematic approach to detect the correct tests to work in this
“hybrid” framework.

3. Methodologies

In this paper, entropy and recurrence analysis tools represent the key methodologies
to assess the presence of the butterfly effect. Moreover, we extend some of them in order to
deal with the coexistence of chaotic and stochastic behaviors.

In the following, pt and κt = ln pt
pt−1

are, respectively, the price and log returns at time
t. The time series we will work on is defined as follows: {κt, t = 1, 2, . . . , n}, n ∈ N.

3.1. Phase Space Reconstruction

Embedding the time series in a phase space is an important research topic on chaotic
time series analysis [24]. In this case, the time evolution of returns is represented by
the dynamical system that comes out of the phase space independent variables. The
asymptotic behavior of the dynamical system is described by an attractor, whose dimension
provides a measure of the minimum number of independent variables able to describe the
dynamical system.

The scalar time series is topologically equivalent to the attractor, which can be recon-
structed from a time series by using the method of the time delay coordinate [25,26]. The
reconstructed attractor of the original system is given by the vector sequence

ζ(i) =
(

κi, κi+τ , κi+2τ , . . . , κi+(m−1)τ

)
(1)

where m is the embedding dimension, and τ is an appropriate time delay.
The choice of the time delay τ could be a potential issue. For example, the authors

in [27] showed that the chaos measures estimation for stock price data is affected by the
wrong choice of τ.

The authors in [8] estimated the optimal time delay as the one where average mutual
information reaches its first minimum, obtaining a time lag greater than 1.

In [3,4], we employed the average mutual information (AMI) technique to select a
proper value of τ. A proper value of τ can be determined using the first minimum of
average mutual information (AMI) function, as done in [8]. The method of false nearest
neighbors (FNN), introduced by [28], is an algorithm to estimate the minimal embedding
dimension m. Let r be the threshold on the distance between two neighboring points, k(i)
be the index of the time series element for which we have the minimum |ζ(k(i))− ζ(i)|,
ζ(k(i))(m) be the closest neighbor to ζ(i) in m dimensions, σ be the standard deviation of
the data, and Θ(·) the Heaviside step function, i.e.,

Θ(x) =

{
0, x < 0,
1, x ≥ 0.

Hence, the false nearest neighbor (FNN) metric is defined as

FNN(r) =
∑n−m−1

i=1 Θ
(
|ζ(i)(m+1)−ζ(k(i))(m+1) |
|ζ(i)(m)−ζ(k(i))(m) | − r

)
Θ
(

σ
r − |ζ(i)(m) − ζ(k(i))(m)|

)
∑n−m−1

i=1 Θ
(

σ
r − |ζ(i)(m) − ζ(k(i))(m)|

) , (2)
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A proper value of m can be selected by imposing a threshold FNN∗ (in our case
FNN∗ = 0.5%, as done in [3,4]) so that, if FNN is larger than FNN∗, the neighbor is
false. Since the FNN decreases with the threshold r, this is the equivalent of selecting as the
embedding dimension the minimum value of m such that FNN < FNN∗.

3.2. Modified Correlation Entropy

Let {κi} be the result of phase space reconstruction described by Equation (1). Hence,
the authors in [29] showed that the Kolmogorov–Sinai (KS) entropy can be approximated
by the correlation sum

Cm(r) =
1

n(n− 1)

n

∑
i,j=1
i 6=j

Θ(r− ‖ζ(i)− ζ(j)‖) , (3)

where the distance metric is given by the Euclidean norm. From Equation (3), it is possible
to achieve an early estimate of the KS entropy

K ' 1
τ

ln
Cm(r)

Cm+1(r)
. (4)

and its adjusted estimation

K ' 1
τ

ln
Cm(r)

Cm+1(r)
− D

2τ
ln

m + 1
m

. (5)

given by [30], where D is the correlation dimension.
Nevertheless, the computation of the correlation sum is affected by noise, which

produces errors in these formulas, used instead in the literature so far.
The authors in [31] introduced the modified correlation entropy (MCE), which estimates

the KS entropy for noisy time series. It is based on the correlation integral derived in [32]
and assumes the presence of Gaussian additive noise.

3.3. Noise Level

Let 0.1 = r1 < r2 < · · · < ri < · · · < rL = 0.3 with a uniform step ∆r = ri+1 − ri. The
noise level is estimated by means of a linear least-squares method

σ̄2 =
∑L−2

i=2 (vi+1 − vi)(ui+1 − ui)

2 ∑L−2
i=2 (ui+1 − ui)2

. (6)

as obtained in [33]. It is based on an auxiliary time series (ui, vi), i = 1, . . . , L

ui =
(m− 1)∆r(ci − ci−1)− ri(ci−1 − 2ci + ci+1)− ri(ci − ci−1)

2

ri(∆r)2

vi = ri
ci − ci−1

∆r
,

(7)

where ci = ln C0(ri).

3.4. Recurrence Analysis

Recurrence quantification analysis (RQA) can be considered as another important tool in
chaotic time series analysis [34,35]. The recurrence plot (RP), introduced by [36], is defined
by the matrix

Mij = Θ(ε− ‖ζ(i)− ζ(j)‖) , (8)
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where ε is a tolerance parameter to be chosen and ζ(i) is derived by Equation (1). Since
the distance is symmetric, we have that the matrix M is in turn symmetric and, then, the
recurrence plot is symmetric with respect to the diagonal, by definition.

The parameter ε, which determines the density of RP, can be selected according to the
criterion introduced in [37]:

ε = k ·max
i,j
‖ζ(i)− ζ(j)‖. (9)

provided that k < 10% [34,38,39].
Related to the RP is the recurrence rate [34], which can be defined as follows:

RR(τ) =
1

N − τ

N−τ

∑
i=1

Mij. (10)

The recurrence quantification analysis contains several measures of complexity. Its aim is to
go beyond the visual impression yielded by RPs [34].

Some of them resort to the histogram P(l) of diagonal lines of length l, i.e.,

P(l) =
N

∑
i,j=1

(
1−Mi−1,j−1

)(
1−Mi+l,j+l

) l−1

∏
k=0

Mi+k,j+k .

As recalled in [34], “processes with uncorrelated or weakly correlated, stochastic or chaotic
behaviour cause none or very short diagonals, whereas deterministic processes cause longer
diagonals and less single, isolated recurrence points”. From this, it is natural to take

DET =
∑N

l=lmin
lP(l)

∑N
l=1 lP(l)

(11)

as a measure for determinism of the system—percentage of recurrence points which form
diagonal structures (of at least length lmin) over the total number of recurrence points.

Moreover, given the histogram P(v) of vertical lines of length v, i.e.,

P(v) =
N

∑
i,j=1

(
1−Mi,j

)(
1−Mi,j+v

) v−1

∏
k=0

Mi,j+k .

it is possible to define the percentage of recurrence points which form vertical structures in
the RP, the so-called laminarity:

LAM =
∑N

v=vmin
vP(v)

∑N
v=1 vP(v)

whereas the average length of vertical structures is given by

TT =
∑N

v=vmin
vP(v)

∑N
v=vmin

P(v)

and is called the trapping time.

4. Implications of the New Approach

We now turn to recall the main findings enclosed in [3,4], discussing them in the
framework of our approach, i.e., the coexistence of the stochastic and chaotic paradigms.

Before embracing this hybrid paradigm for energy markets, it is very important to
determine the two embedding parameters for the reconstruction of the phase space, namely,
the time delay τ and the embedding dimension m. In Table 1, we recall the embedding
parameters of some of the future contracts analyzed in [4], as collected by the U.S. Energy
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Information Administration (EIA). As we can see, the optimal time lags are not always
equal to 1.

Table 1. τ and m for futures prices (FNN∗ = 0.5%).

Futures Contract Time Delay Embedding Dimension

Crude oil Contract 1 4 11
Crude oil Contract 3 4 10

Heating oil Contract 1 1 13
Heating oil Contract 3 1 11

Natural gas 1 14

According to our framework, the impact of the stochastic component can be initially
estimated through the modified correlation entropy. An example of MCE estimation is
depicted in Figure 1, where MCE and CE are compared depending on the threshold r [4].
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Figure 1. MCE vs. CE; Cushing Crude Oil Contract 1 (on the left) and Natural Gas (on the right).

In Figure 1, we see the following:

• The KS entropy estimated with a noise-oblivious approach is much smaller than
the MCE;

• The CE decays as the size of the correlation window increases, whereas the MCE is
rather steady.

Since MCE≡ CE for noise-free data, these two points show the relevance of the stochas-
tic component in our dataset of prices. The steadiness of MCE is typical of deterministic
systems with noise (see Figure 11.3 of [40]).

Connected to this point is the noise level estimation. Few examples of noise level
estimation are represented in Table 2 and, as discussed in [4], it shows that the level of noise
cannot be ignored.

Table 2. Noise level estimation.

Commodity Contract σ̄ Noise Level %

Crude oil C1 0.02363634 57.9%
Crude oil C3 0.02432642 57.1%

Heating oil C1 0.02032667 51.7%
Heating oil C3 0.02334584 53.5%

Natural gas 0.02591293 40.1%

We now turn to prove these insights through the use of recurrence analysis. We show
an example of the recurrence plot for copper dataset, examined in [3], in Figure 2, for
ε = 6%.
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Figure 2. Recurrence plot, copper (6%).

In Figure 2, black rectangles and single dots alternate along the entire picture. In the
recurrence analysis, single points denote noisy behavior [34] because they indicate strongly
uncorrelated, fluctuating data, whereas black rectangles characterize laminar behaviors.
The latter are indicative of states that do not change or change slowly for some time [34,41].
Therein, periods are related to intermittency, a behavior of dynamical systems which has
been extensively studied in the literature [42–45].

In economics and finance, intermittency results in the irregular alternation of phases
of boom and of depression [46,47].

The authors in [48] showed “how economic intermittency is induced by an attrac-
tor merging crisis and how to recognize different recurrent patterns in the intermittent
time series of economic cycles by separating them into laminar (weakly chaotic) and
bursty (strongly chaotic) phases”. Moreover, intermittency is related to the emergence
of bubbles [3,35,49,50].

Intermittency is one of the common routes to chaos [51]. In such a state, the dynamical
system switches between two different kinds of behavior called phases. Complex systems
which exhibit intermittency can be described by a control parameter p. It is characterized
by a critical threshold pT , which marks the switch from different dynamic regimes [51].
For example, the dynamical system underlying the copper time series is such that p > pT ,
because the laminar phases in Figure 2 are still pretty recognizable ([3]).

White areas or bands in the RPs are caused by abrupt changes and extreme events in
the dynamics (disrupted typology [36]). They are indicative of transient activities and may
reflect an underlying state change [34]. White bands with no recurrent points appear in
Figure 2.

Pomeau and Manneville introduced three types of intermittency [42], whose structure
were examined in [52] afterwards. According to [52], it is possible to distinguish the kind of
intermittency showed by the system by looking at the patterns of RPs. Hence, following [52],
the pattern in Figure 2 suggests the presence of a type I intermittency (Figure 3).
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Figure 3. Type I intermittency, positioning of the rectangles in the RP (see Figure 8 in [52]).

Quite different is the RP depicted in Figure 4, for natural gas. We can spot the presence
of a larger number of black rectangles, even if they are smaller.

Figure 4. Recurrence plot, natural gas (6%).

Then it is clear that, in this context, we cannot talk about purely chaotic (or stochastic)
time series and that the energy commodity markets follow instead a hybrid paradigm—both
chaotic and stochastic. However, do you remember Ian Malcolm’s words? Rearranging
them, the shorthand of chaos is the butterfly effect. In Section 2, we explained why this
cannot be true, and the energy commodity markets give us a counterexample. Actually,
we estimated the maximal Lyapunov exponent (MLE) for some of the datasets previ-
ously examined in [3,4] obtaining: MLE (copper) = −0.78; MLE (oil contract 1) = −0.68;
MLE (natural gas) = 0.14. From these findings, according to the experimental definition of
chaos, we may infer that the natural gas time series is chaotic [2].

MCE, noise level estimation and RP tell us a different story: the stochastic component
is too large to be neglected. This result is also confirmed by the measure for determinism
enclosed in Equation (11). For natural gas, DET= 0.22, which denotes a very high level of
stochastic component. The choice of lmin = 10 satisfies the suggestions contained in [34,40];
the choice of ε (k = 6%) follows the criterion fixed by (9).
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5. Conclusions

As pointed out by many researchers, replication is the key to credibility in applied
sciences and confidence in all research findings. With regard, in particular, to energy
finance and economics, replication papers are rare, probably because they are hampered by
inaccessible data, but their aim is crucial and twofold. First, they wonder if the old results
resist the addition of more recent data and the updating of new methods and, if not, why
this is so. Second, they take into account a large number of recent (or older) articles to check
whether the results are still valid when compared with other contributions.

While in [3,4] we proved that the contrasting results in chaos theory applied to energy
economics are due to replication issues, in this paper, we consider two ways to avoid
misleading results on the ostensible chaoticity of price series. The first one is represented by
the proper mathematical definition of chaos and the related theoretical background, while
the latter is represented by the hybrid approach that we propose here—which consists in
considering the dynamical system underlying the price time series as a superposition of
deterministic and stochastic systems. This hybrid approach is based on the introduction
of tools that take into account the co-existence of stochastic and chaotic behaviors in
the same time series, such as modified correlation entropy, noise level estimation and
recurrence analysis.

We find that the chaotic and stochastic features coexist in the energy commodity
markets, although the misuse of some tests in the established practice in literature—like CE
or MLE—may say otherwise.

Our results are in line with the seminal paper by Barnett and Serletis who, more than
20 years ago, conjectured that controversies concerning the application of chaos theory in
economics “might stem from the high noise level that exists in most aggregated economic
time series and the relatively low sample sizes that are available with economic data” [53].
However, we should observe that the long debate produced by this paper did not answer
the question, and, instead, papers dealing with the existence of chaos in economic and
financial data continued to be published in the subsequent years [3,4]. Moreover, we do not
completely agree with the conclusions enclosed in [53]: “However, it also appears that the
controversies are produced by the nature of the tests themselves, rather than by the nature
of the hypothesis, since linearity is a very strong null hypothesis, and hence should be easy
to reject with any test and any economic or financial time series on which an adequate
sample size is available”. We do not believe that “the controversies are produced by the
nature of the tests themselves”, and instead we showed here that it would be more correct
to speak of the superposition of chaotic and stochastic systems.

The consequences of such findings, though not investigated here, deserve further
investigations and suggest, for future works, the adoption of different approaches to
predict the behavior of energy commodity prices.

As for future works, artificial intelligence (AI) methods, such as machine learning, offer
new possibilities to forecast energy consumption prices. Unlike conventional algorithms,
which tend to follow explicit instructions to perform a specific task, machine learning (ML)
takes into account various context variables and their mutual relationship while training.
For example, in price prediction, supervised learning algorithms can already produce good
results, which in turn are applied to time series data. There are already several studies
on the predictability of time series data for various applications, including in the energy
sector [54–57].

For the future, it would be therefore good to address these AI/ML-driven techniques
for a robust evaluation and estimation of energy consumption prices in the outlook.
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