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Abstract: Spin glass is the simplest disordered system that preserves the full range of complex
collective behavior of interacting frustrating elements. In the paper, we propose a novel approach for
calculating the values of thermodynamic averages of the frustrated spin glass model using custom
deep neural networks. The spin glass system was considered as a specific weighted graph whose
spatial distribution of the edges values determines the fundamental characteristics of the system.
Special neural network architectures that mimic the structure of spin lattices have been proposed,
which has increased the speed of learning and the accuracy of the predictions compared to the basic
solution of fully connected neural networks. At the same time, the use of trained neural networks can
reduce simulation time by orders of magnitude compared to other classical methods. The validity of
the results is confirmed by comparison with numerical simulation with the replica-exchange Monte
Carlo method.

Keywords: spin glass; Ising model; machine learning; deep neural network

1. Introduction

Spin glasses fundamentally differ from other lattice models by the presence of
frustrations—strong competition of magnetic interactions, and disorder—freezing of atoms
upon cooling. Due to these key features, spin glasses have long relaxation times, a rough
energy landscape, and macroscopic degeneracy of ground states. This leads to the fact
that the numerical simulation and even more so the analytical description of such systems
becomes a challenging task. The first attempts at theoretical description of the spin glass
model [1,2] encountered several difficulties. One of the difficulties was the lack of transla-
tional invariance in the spin glass systems. Another problem was the non-ergodicity of the
spin glass phases due to the presence of many local energy minima, which are separated by
high potential barriers. Hence, the problem of configurational averaging and the calculation
of residual entropy follows. The problem is that the entropy of the system being in the true
thermodynamic equilibrium should be equal to zero. However, this is not applicable to spin
glasses, since the energy of the system may depend not only on the temperature, but also on
the history of states of the sample. Thus, at the lowest temperatures, the so-called residual
entropy can be observed [3]. It can be calculated through the degeneracy of the ground
states. This parameter is one of the key parameters of systems with competing interactions.

Many processes that occur in spin glasses cannot be described within the framework
of the classical theory of phase transitions and require new approaches. We would also like
to note the relevance of such a problem since the approaches being developed to describe
spin glasses lead to entirely new results far beyond theoretical physics. Such results include,
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for example, contributions to solving multiparameter optimization problems or problems
in the area of associative and distributed memory [4–6].

Since the class of spin models on lattices described by Ising-like Hamiltonians can be
solved analytically only in extremely rare cases [7], numerical probabilistic methods, such
as different variations of the Monte Carlo method, are now most commonly used to describe
the physics of spin glass [8–11]. However, properties of spin glasses, such as long relaxation
time, rough energy landscape, macroscopic degeneracy of ground states, and the effects of
critical slowing down, significantly decrease the efficiency of the Monte Carlo algorithms.
The motion of the system in phase space is very slow, so it requires generation of an
extremely large number of states to move to an equilibrium state. On the other hand, there
has been exponential growth in computational power and the rapid development of Monte
Carlo methods, leading to the use of these methods in almost all fields of physics [12–15].
It allows to partially offset the increasing complexity of calculations with the increasing
size of the spin glass systems [16–18].

Simultaneously with the development of numerical Monte Carlo methods, the expo-
nential growth of computational power led to the second revolution in the area of neural
networks and the emergence of completely new architectures and approaches to neural
network training—convolutional neural networks, autoencoders, constrained Boltzmann
machines, etc. [19]. All of these approaches have dramatically reduced training time
and increased the dimensionality of the tasks to be solved. This revolution has led to
an unprecedented expansion of machine learning methods into all areas of life, business
and science. In particular, machine learning methods have begun to be applied to statistical
physics [20–22].

Several approaches have been proposed to study magnetic systems using machine
learning. The first one is to use supervised machine learning algorithms to solve the prob-
lem of classifying the states of magnetic systems (with nearest-neighbors interaction on
a square lattice) into thermodynamic phases. The input of such a model is the configu-
ration of the magnetic system (states of all spins) obtained by Monte Carlo simulation,
and the output of the model predicts the most probable phase where the configuration
could appear [23–25]. The advantage of this approach is the ability to use convolutional
neural networks, which are commonly used for image recognition tasks. It can be ex-
plained by the fact that such architectures naturally convey the fundamental properties
of a square lattice—the spatial arrangement of spins and the interactions with the nearest
four neighbors.

The second approach is to use supervised machine learning algorithms to solve the
regression problem of searching for the lowest energy configurations (ground states) of
spin systems with complex interactions, such as spin glass or spin ice. The problem of
finding the lowest energy states of spin glasses is a key problem since such states are
highly degenerate, often asymmetric, and separated by high energy barriers. However,
such states have the highest probability at a lower temperature. Consequently, they are
the ones that contribute the most to the statistical sum and thus to all the thermodynamic
averages [26,27].

In this paper, we propose to solve a more general problem: using machine learning
methods to solve the problem of regression of the basic thermodynamic characteristics
〈E〉, 〈M〉 (average energy and magnetization) or any other system characteristics, as a
function of temperature T for spin glasses on a square lattice. Widely known, there is
Cybenko’s theorem on the universal approximator, proving that any continuous function
of many variables can be approximated with a given accuracy by a feedforward neural
network with one hidden layer [28]. For this purpose, we consider the spin glass as a
weighted graph, in which the architecture of the graph corresponds to the lattice and the
values of the edges correspond to the values of the exchange interaction. Thus, using a
neural network, we are looking for a functional dependence between the spatial distribution
of the exchange integral on the square lattice of the spin glass Jk = f J(xk, yk) and the main
average thermodynamic characteristics of the system 〈E〉, 〈M〉. Here, f J is the function of
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the spatial distribution of spin glass bonds values, Jk is the bond value, xk, yk is the bond
coordinates for bond k. To solve this class of problems, it is relevant to find an architecture
of a neural network that will be able to approximate this function most effectively using
the spatial regularities of the lattice.

2. Model and Data
2.1. Spin Glass Model

In this paper, we consider spin glass models with periodic boundary conditions on a
square lattice N = L× L, in which each spin is an Ising spin, i.e., it has two states Si = ±1,
and has four nearest neighbors, the interactions with which are determined by the exchange
integral Jk = ±1 (see Figure 1). The standard Hamiltonian of such a system has the form:

H = − ∑
<ij>

JkSiSj, (1)

where Si, Sj are the interacting spins that are nearest neighbors on the square lattice, < i, j >
is the summation that occurs only by nearest neighbors, Jk is the value of the exchange
interaction between spins Si and Sj, the index k = k(i, j) is a function of i, j.

Mean energy 〈E〉 of the spin glass at temperature T is calculated by (2), and the mean
magnetization 〈M〉 by (3):

〈E〉T =
1
N
〈H〉T , (2)

〈M〉T =
1
N
〈∑

i
Si〉T . (3)

S1
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Figure 1. Example of the spin glass model on a square lattice 6× 6 of Ising spins with a periodical
boundaries condition. Si = ±1—spins of the lattice, Jk = ±1—exchange integral.

The spatial distribution of the exchange integral Jk = f J(xk, yk) determines all macro-
scopic characteristics of spin glass. Such a description of the spin glass model, at first glance,
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may seem extremely simple. Since it is a classical spin model, it seems that numerical simu-
lations can be performed quite easily with classical numerical Monte Carlo methods [29].
However, this is a misleading simplicity. There are many examples of extremely simple sys-
tems that present unpredictable behavior. Examples of such systems are given in Stephen
Wolfram’s book [30], in which he described remarkably simple models that gave complex,
non-predictable behavior that cannot be described by analytical approaches. Models of
spin glasses possess all of the previously mentioned characteristics: long relaxation times,
a rough energy landscape, macroscopic degeneracy of ground states, and critical slowing
down effect. All of these features together make it extremely difficult to study such systems.

2.2. Data

For the lattice N = L× L, there are 22N possible distributions of the exchange inte-
gral, starting with the distribution where all exchange interactions are antiferromagnetic
Jk = −1, ∀i⇒ ∑2N

k=1 Jk = −2N, passing through all possible combinations {J1, J2, J3, . . . J2N}
of exchange integrals and ending with the classical ferromagnetic model in which all inter-
actions Jk = 1, ∀i⇒ ∑2N

k=1 Jk = 2N. To find the dependence between the spatial distribution
function of the exchange integral and the main average thermodynamic characteristics of
the system, it is necessary to train the neural network for detecting different patterns of
the mutual location of the exchange interaction values on the lattice and their influence on
the macroscopic parameters of the system. For this purpose, the considered configuration
of the spin glass with the given values {J1, J2, J3, . . . J2N} and the temperature T should be
fed to the input of the neural network. Then, it can be trained to predict the output mean
energy 〈E〉 and magnetization 〈M〉 of the considered configuration of the spin glass. We
would like to note that in the same way, it is possible to train a neural network to predict
the probability density of states, residual entropy, heat capacity, susceptibility and other
parameters characterizing the considered spin glass.

In order to train the neural networks, it was necessary to prepare datasets for training,
validation and testing of neural network models. To this end, 60 temperatures from 0.1 to 6
in step 0.1 were calculated for each considered configuration of the spin glass. Simulations
were performed using a parallel replica-exchange Monte Carlo (MC) method. There were
10,000 equilibration MC steps, then the energy and magnetization of the system were
calculated and averaged over the next 100,000 MC steps according to Equations (2) and (3).
To overcome the effects of critical slowing down and getting stuck in local minima, the sys-
tem was simulated in parallel at 60 temperatures and the system configurations were
exchanged every 1000 MC steps with a probability dependent on the system energy:

p(X −→ X′) =

{
1 if ∆ ≤ 0
exp(∆) if ∆ > 0

, (4)

where ∆ = (1/T′ − 1/T)(E′ − E), E and E′ are the energies corresponding to X and X′

configurations, respectively.
In total, two datasets each were calculated for two system sizes. The datasets contained

2N values of all interactions J, one value of temperature T and two output values of mean
energy 〈E〉 and mean magnetization 〈M〉, therefore, a total of 2N + 3 values. For the spin
glass model with N = 6× 6 number of spins, the small dataset consisted of 834 configura-
tions (with dimension of 50,040 × 75 since each spin glass configuration was calculated
at 60 different temperature values) and the large one consisted of 41,405 configurations
(2,484,300 × 75). For the model with N = 10× 10 number of spins, the small dataset
consisted of 10,302 configurations (618,120 × 203) and the large of 43,596 configurations
(2,615,760 × 203).

All configurations were randomly generated, with different constraints on the total
sum of all interactions ∑2N

k=1 Jk. In the small datasets, the spin glass configurations were
presented almost uniformly with respect to all possible values of the sum of all interactions
∑2N

k=1 Jk from −2N to 2N in steps of 2. In large datasets, the distribution of spin glass
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configurations over the sum of all interactions tended to the corresponding values of bino-
mial coefficients ∑2N

k=1 Jk = 2N − 2j ∼ ( j
2N), where j is the number of negative interactions

Jk = −1. All datasets were divided into train, validation and test subsets in proportions of
0.8:0.15:0.05.

2.3. Deep Neural Networks

A deep neural network (DNN) is an artificial neural network (ANN) of forwarding
propagation, i.e., multilayer perceptron, with more than one hidden layer. Similar to
biological neurons with axons and dendrites, a DNN represents layers of artificial neurons
with a given activation function, which are interconnected by trainable coefficients (see
Figure 2). The first layer is called the input layer, the last one is the output layer, and all
layers between them are called hidden layers. At the initial stage, the neural network is
untrained, i.e., the linkage weights are set randomly and not optimized for the certain
problem. The training of a neural network involves the adaptation of the network to the
solution of a particular problem, carried out by adjusting the weight coefficients of each
layer to minimize a given loss function L [31,32]. In this work, we use the mean squared
error (MSE) as the loss function.

ANN training is performed using the error backpropagation method in two stages.
During forward propagation, the input data are fed to the input of the ANN and then
propagated through all the hidden layers to the output layer. The neurons of each layer
receive data from the neurons of the previous layer, and their values are calculated using
a matrix of weights W, bias b (5) and activation function h (6). The resulting values are
transmitted to the next layer, i.e., the output of layer l − 1 becomes the input of layer l,
and so on, to the output layer of the network. A parametric rectified linear unit (PReLU)
was used as the activation function h, which solved the problem of the so-called “dying
ReLU”, when some neurons were simply turned off from training (7).

y[l] = W [l]h[l−1] + b[l], (5)

h[l] = f (y[l]), (6)

f (y) =

{
y if y > 0
ay if y ≤ 0

, (7)

where a is a learnable parameter controlling the slope of the negative part of the function.
In the second step, all ANN weights are updated so as to minimize the loss function on

a given dataset. For this purpose, the gradients for the variable parameters are calculated
according to (8)–(10):

∂L

∂y[l−1]
= [W [l]]T

∂L

∂y[l]
f ′(y[l−1]), (8)

∂L

∂W [l]
=

∂L

∂y[l]
[h[l−1]]T , (9)

∂L

∂b[l]
=

∂L

∂y[l]
. (10)
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Figure 2. Deep Neural Network architecture FC4 (Fully Connected) with three hidden layers
h1 = 2N + 1, h2 = N, h3 = N.

Then, the weights values and the bias are updated according to the calculated gradients:

W [l] := W [l] − α
∂L

∂W [l]
, (11)

b[l] := b[l] − α
∂L

∂b[l]
, (12)

where α is a learning rate parameter. This is the way the ANN is trained, during which with
each step we descend to the global minimum of the convex loss function L with speed α.

3. Results and Discussion

Fully connected (FC) network architectures with different numbers and sizes of hidden
layers were proposed as a baseline (see Figure 2). The following FC network architectures
with one, two, three and four hidden layers were tested on datasets of the model with
6× 6 size:

FC1: h1 = 73;
FC2: h1 = 36, h2 = 36;
FC3: h1 = 73, h2 = 36;
FC4: h1 = 73, h2 = 36, h3 = 36;
FC5: h1 = 73, h2 = 36, h3 = 36, h4 = 36.

The effect of the number and size of DNN’s hidden layers h on the quality and speed
of learning was investigated. Five different fully connected neural network architectures
(FC1–FC5) were trained on small and large datasets. The average learning time per epoch
in seconds was calculated for them, and the root mean squared errors (RMSE) of the mean
energy and magnetization was calculated with the DNN from the initial values obtained
with the replica-exchange Monte Carlo (see Table 1). For the big dataset, the number of
epochs was 500, and for the small dataset it was 1000.

The architecture FC4 with three hidden layers, shown in Figure 2, showed optimal
results, yielding only slightly in accuracy on a small dataset of a network with four hidden
layers (FC5). Further results will be compared with these two architectures.
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Table 1. Comparison of average single epoch learning rate and RMSE of mean energy 〈E〉 and
magnetization 〈M〉 for small and big datasets of FC1-FC5 fully connected neural networks.

FC1 FC2 FC3 FC4 FC5

RMSEsmall〈E〉 2.483 2.378 2.370 2.323 2.321

RMSEsmall〈M〉 0.133 0.103 0.101 0.088 0.088

Timesmall , c 3 3 3 3 4

RMSEbig〈E〉 8.998 2.655 2.340 1.938 1.938

RMSEbig〈M〉 0.271 0.179 0.093 0.065 0.065

Timebig, c 26 28 31 35 45

To improve the speed and accuracy of the calculations, we investigated DNNs whose
architectures would transmit information about the spatial arrangement of the connections
on the square lattice. We proposed to replace fully connected hidden layers with layers
in which neurons would be connected similarly to spins on a square lattice. The speed
improvement is achieved by having fewer training weights in the layers compared to fully
connected architectures.

Two architectures of DNN with two levels of spin lattice abstraction were considered
CC1 and CC2 (CC—Custom Connected). The first architecture CC1 proposes to consider
the first hidden layer h1 as virtual bonds, and the second layer h2 as virtual spins. In such
a network, all neurons of layer h1, except the temperature neuron, are connected to the
corresponding neurons of layer h2 in the same way that bonds in a square lattice are
connected to spins. For example, spin S1 has four bonds: J1, J2, JL×L+1=37, JL×(L+1)+1=43
(Figure 1), so in the neural network, neurons 1, 2, 37 and 43 of layer h1 will be connected to
the first neuron of layer h2, see Figure 3. Thus, each neuron of the h1 layer is connected to
two corresponding neurons of the h2 layer, except for the temperature neuron of the h1 layer,
which is connected to all neurons of the h2 layer. In such an architecture, the connection
between layers h2 and h3, as well as h3 and the output layer, was fully connected.

Hidden interactions
layer h1, 2N+1

Hidden spins 
layer h2, N

Hidden spins 
layer h3, N

Input layer, Output layer,

spins from layer h2 are connected 
to neighboring spins from h3.

interactions from h1 are connected to 
the corresponding spins in h2

2N+1 2

J1 J1

J2

J3

J4

J5

J2N

TT

S2

S3

S4

SN

S1

S2

S3

S4

S1
J2

J3

J4

J5

J37 S8

J43

J2N

S32

S8

S32

SN

 fully
connected

<E>T

<M>T

Figure 3. The proposed architecture of the CC2 deep neural network with three hidden layers
h1 = 2N + 1, h2 = N, h3 = N. The first hidden layer h1 connected with the layer h2 in the same way
as bonds Jk connect spins Sj on a square lattice (neurons of the layer h1 have 2 outputs, and h2 have
5 inputs). The second hidden layer h2 is connected with the third h3 just like the neighboring spins
are connected with each other on the square lattice (neurons of the layer h2 have 5 outputs, and h3

5 inputs, see Figure 1).
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The second architecture of CC2 has the same approach as in CC1, except for the
connections between layers h2 and h3. In CC2, it was proposed to consider the h3 layer
also as virtual spins, and to connect the h2 layer with h3 in a manner similar to the neigh-
boring spins in a square lattice (Figure 1). For example, if spin S2 is a neighbor of spins
S1, S3, SL+2=8, S(L×L−1)+2=32, it means that the second neuron of layer h3 will be connected
with neurons 1, 3, 8, 32 and also with neuron 2 (See Figure 3). Hidden layer h3 is fully
connected with the output layer. The connection between layers h3 and the output layer
was fully connected.

To study the accuracy of the proposed DNN architectures with a baseline solution,
the neural networks were trained and tested on big datasets for spin glass systems N = 6× 6
and N = 10× 10. To control the overfitting of the neural networks during training, the loss
function L was calculated on a validation sample that was not involved in the training.
The graph of the loss function value L as a function of the number of training epochs is
shown in Figure 4. This figure shows that for 500 epochs, overfitting does not occur for
any of the architectures considered. However, there is a large difference in the speed and
accuracy of learning.

The results of the work of neural networks were scored by root mean squared error
(RMSE) of the average energy 〈E〉 and magnetization 〈M〉. The resulting RMSE values
depending on DNN architecture and system size are presented in Table 2. The table shows
that the CC1 architecture was the most accurate, reducing the average energy calculation
error by one-and-a-half times compared to the fully connected architectures. Figure 5 also
shows the dependence of the root mean squared error (RMSE) on temperature for the
average energy 〈E〉 and magnetization 〈M〉 for neural networks of different architectures.
It is well noticeable that the computational error increases with decreasing temperature.
This is due to the complexity of calculating the ground states of the spin glass models.
To reduce the error, it is possible to use, for example, the approach described in [26], which
allows using a restricted Boltzmann machine to calculate the ground states of the spin glass
systems. It is also clear that the CC1 architecture reduces the error, this difference can be
seen especially at small temperatures.

6×6 (a)

(b)10×10

Validation FC4
Validation СС1
Validation СС2

Epoch
1000 200 300 400 500

Lo
ss

0.0

1.0

2.0

0.6

1.0

1.4

Figure 4. Dependence of the loss function value L during validation on epoch number for the FC4
and the proposed CC1 and CC2 architectures, trained on a large dataset for the model N = 6× 6 (a);
N = 10× 10 (b).
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Table 2. Comparison of the results of the root mean squared error (RMSE), calculated by different
architectures of DNN, of the mean energy 〈E〉 and magnetization 〈M〉 for spin glasses of sizes 6× 6
and 10× 10.

Architectures
RMSE 〈E〉 RMSE 〈M〉

6× 6 10× 10 6× 6 10× 10

FC4 1.9991 3.7660 0.0601 0.0491

FC5 2.0045 3.8168 0.0688 0.0492

CC1 1.4854 2.6071 0.0642 0.0443

CC2 1.7674 3.0173 0.0673 0.0581

1

1 0.02
0.04
0.06
0.08
0.10
0.12
0.14

0 2

2

3

3

4

4

5

5
6
7

6 10 2 3 4 5 6

FC4

CC1
CC2

FC4

CC1(a) (b)

TemperatureTemperature

RMSE <E> RMSE <M>

CC2

Figure 5. Dependence of the root mean squared error (RMSE) on the temperature for the average
energy 〈E〉 (a) and magnetization 〈M〉 (b) for neural networks of different architectures (FC4, CC1
and CC2).

Figure 6 shows an example of mean energy calculation using a replica-exchange
MC and DNNs of different architectures (FC4, CC1 and CC2). The configuration of the
calculated spin glass is shown in the corner of the figure. It can be seen that the calculation
result of the network with the CC1 architecture is almost identical to that obtained with the
replica-exchange MC, while the results of the networks with the FC4 and CC2 architectures
have some deviations at low and medium temperatures.

10 2 3 4 5 6
−180

−160

−140

−120

−100

−80

−60

−40

M
ea

n 
En

er
gy

Temperature

MC

FC4
CC1
CC2

Figure 6. Example of average energy calculation using replica-exchange MC as well as neural
networks of different architectures (FC4, CC1 and CC2). The configuration of the calculated spin
glass is shown in the lower right corner of the figure. Black circles denote spins, red rhombuses
denote J = 1 bonds, and blue J = −1 bonds.
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4. Conclusions

In this paper, we presented a method for calculating the values of thermodynamic
averages of a frustrated spin glass model using deep neural networks. The influence of
the neural network architecture on the speed and accuracy of calculations for spin glass
models N = 6× 6 and 10× 10 with different distributions of the exchange integral J was
studied. Specific neural network architectures have been proposed to increase the accuracy
and reduce the error compared to fully connected models. The use of trained neural
networks can significantly reduce the time compared to classical numerical approaches
when modeling spin glass systems. This approach, after appropriate training, allows
modeling of any global characteristics of spin glass including probability density of states,
residual entropy, heat capacity, susceptibility, and so on.

With the help of deep neural networks, it has become possible to calculate the global
characteristics of the system quite accurately based on the microarchitecture (a certain
distribution of edges values) of a particular configuration of the spin glass. Based on
the obtained results, we can conclude that neural network architectures that simulate the
structure of spin lattices are better adapted to the calculation of spin glass models. In further
development of this topic of using neural networks in the modeling of complex magnetic
systems, it is interesting to consider convolutional models of neural networks on lattices.
As convolution should be performed not by nodes, but by bonds, the recently proposed
graph neural networks (GCN) [33], which allow to move away from clearly fixed lattice
sizes and calculate systems of any size, are interesting. This will make it possible to train
such networks on small lattices computed by various exact methods [34], and to extend the
obtained functional regularities to large systems.
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