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1. Information theory

Compared with correlation coefficient, the mutual information (MI) from information theory is able to
describe the nonlinear dependence between two random variables. Let X be a random variable with density
function p(x). We first introduce the concept of entropy, which in statistical mechanics is the measure of a
system’s thermal energy per unit temperature that is unavailable for doing useful work. The entropy H(X) of X
is defined by

H(X) = −

Nx∑
i=1

p(xi) log p(xi)

H(X) = −

∫
ΩX

p(x) log p(x)dx, (1.1)

for discrete and continuous random variables, respectively, where x1, ..., xNx are samples of random variable X
in the discrete case, and ΩX is the integral range of random variable X.. In addition, for two random variables
X and Y , the joint entropy H(X,Y) is defined by

H(X,Y) = −

Nx∑
i=1

Ny∑
j=1

p(xi, y j) log p(xi, y j)

H(X,Y) = −

∫ ∫
ΩX×ΩY

p(x, y) log p(x, y)dxdy, (1.2)

for discrete and continuous random variables, respectively, where p(x, y) is the joint density function of random
variables X and Y , y1, ..., yNy are samples of random variable Y , and ΩX and ΩY are the integral range of X and
Y , respectively.

Mutual information measures the nonlinear dependency between two random variables. For discrete vari-
ables X and Y , it can be calculated from

MI(X,Y) =

Nx∑
i=1

Ny∑
j=1

p(xi, y j) log
p(xi, y j)

p(xi)p(y j)
, (1.3)

where p(x) and p(y) are marginal density functions of variables X and Y , respectively. In addition, mutual
information can be measured in terms of entropies as

MI(X,Y) = H(X) + H(Y) − H(X,Y). (1.4)

If the value of mutual information is zero, these two random variables are independent of each other.
However, a larger value of mutual information generally suggests a closer relationship between the two random
variables.

For a system with more random variables, the strong dependence relationship of two random variables may
be caused by the third random variable. To address this issue, conditional mutual information (CMI) measures
conditional dependency between two random variables under the condition of the third variable. The value of
CMI between variables X and Y given Z is defined by

CMI(X,Y |Z) = H(X,Z) + H(Y,Z) − H(Z) − H(X,Y,Z), (1.5)
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where H(X,Y,Z) is the joint entropy of these three random variables, defined by

H(X,Y,Z) = −

Nx∑
i=1

Ny∑
j=1

Nz∑
k=1

p(xi, y j, zk) log p(xi, y j, zk)

H(X,Y,Z) = −

∫ ∫ ∫
ΩX×ΩY×ΩZ

p(x, y, z) log p(x, y, z)dxdydz, (1.6)

and p(x, y, z) is the joint density function of random variables X, Y and Z, and z1, ..., zNz are samples of random
variable Z. In addition, ΩX , ΩY and ΩZ are the integral range of X, Y and Z, respectively. If variables X and Y
are independent of each other under the condition of variable Z, then CMI(X,Y |Z) = 0.

For discrete random variables, the CMI can also be calculated from

CMI(X,Y |Z) = −

Nx∑
i=1

Ny∑
j=1

Nz∑
k=1

p(xi, y j, zk) log
p(xi, y j|zk)

p(xi|zk)p(y j|zk)
, (1.7)

where p(x|z) and p(y|z) are the density functions of random variables X and Y under the given third random
variable Z, respectively, and p(x, y|z) is the joint probability of the random variables X and Y under the con-
dition of given Z. If variables X and Y are independent of each other under the condition of variable Z, then
CMI(X,Y |Z) = 0.

For a regulatory network of m genes, the activity of gene Xi is measured by the expression levels at different
time points (xi1, ..., xin). We can calculate the frequency of the expression data and then use the frequency to ap-
proximate the mutual information [? ]. To this end, we first uniformly divide the interval [min j(xi j),max j(xi j)]
into k subintervals, and compute the frequency of the expression data falling into the subinterval q, and then
approximate the probability by using

fiq ≈
fiq
q
, i = 1, ...n, q = 1, ..., k.

Similar formulas can be derived for calculating the joint probability p(x, y) of two random variables. Then we
can use these approximated probabilities to calculate MI.

We can also calculate mutual information by using the assumed probability density functions. A particular
case is the Gaussian kernel probability density function [? ? ]. The kernel density estimation is a non-
parametric method to estimate the probability density function of a random variable. It is a fundamental data
smoothing problem where inferences about the population are made. The probability density estimator is given
by

P(Xi) =
1
N

N∑
j=1

1
(2π)n/2|C|n/2

exp
(
−

1
2

(X j − Xi)T C−1(X j − Xi)
)
,

where C is the covariance matrix of variable X, |C| is the determinant of matrix C, N is the number of samples,
and n is the number of variables in X. Then the entropy of variable X can be calculated by

H(X) =
1
2

n log(2πe)|C|,

and the mutual information and conditional mutual information are given by

MI(X,Y) =
1
2

log
|C(X)||C(Y)|
|C(X,Y)|

, (1.8)

CMI(X,Y |Z) =
1
2

log
|C(X,Z)||C(Y,Z)|
|C(Z)||C(X,Y,Z)|

, (1.9)

where |C(X)|, |C(Y)|, and |C(Z)| are the variance of random variables X, Y , and Z, respectively, for the case of
one random variable. In addition, |C(X,Y)| is the covariance of random variables X and Y , and |C(X,Y,Z)| is
the determinant of the covariance matrix of random variables X, Y and Z.
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When using the mutual information to measure the correlation between two variables, the correlation be-
tween two random variables is often overestimated, resulting in networks with more false positive edges. How-
ever, when using conditional mutual information to measure the correlation between two variables, the correla-
tion between these two variables is often underestimated, resulting in networks with more false negative edges.
To address this issue, part mutual information (PMI) is proposed to reduce both the false positive rate and false
negative rate [? ][? ].

The partial independence of the random variables X and Y under the given variable Z is defined by [? ]:

p∗(x|z)p∗(y|z) = p(x, y|z) (1.10)

where
p∗(x|z) =

∑
y

p(x|z, y)p(y),

p∗(y|z) =
∑

y

p(y|z, x)p(x),

where p(x|z, y) is the conditional density of X given (Y,Z).
According to the definition of partial independence formula (??), part mutual information is defined as:

PMI(X,Y |Z) =
∑
x,y,z

p(x, y, z)log
p(x, y|z)

p∗(x|z)p∗(y|z)
. (1.11)
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