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Abstract: As communication systems evolve to better cater to the needs of machine-type applications
such as remote monitoring and networked control, advanced perspectives are required for the design
of link layer protocols. The age of information (AoI) metric has firmly taken its place in the literature
as a metric and tool to measure and control the data freshness demands of various applications. AoI
measures the timeliness of transferred information from the point of view of the destination. In
this study, we experimentally investigate AoI of multiple packet flows on a wireless multi-user link
consisting of a transmitter (base station) and several receivers, implemented using software-defined
radios (SDRs). We examine the performance of various scheduling policies under push-based and
pull-based communication scenarios. For the push-based communication scenario, we implement
age-aware scheduling policies from the literature and compare their performance with those of
conventional scheduling methods. Then, we investigate the query age of information (QAoI) metric,
an adaptation of the AoI concept for pull-based scenarios. We modify the former age-aware policies
to propose variants that have a QAoI minimization objective. We share experimental results obtained
in a simulation environment as well as on the SDR testbed.

Keywords: age of information; query age of information; wireless networks; software-defined radio;
scheduling

1. Introduction

The advent and the fast growth of the Internet of things (IoT) has further compli-
cated the design of communication networks, in the presence of an increase in demand
in networked services catered by the fifth generation (5G) evolution of communication
networks. On the one hand, machine-type communications are typically less bandwidth
hungry than typical multimedia services. On the other hand, IoT flows tend to be com-
posed of many small packets generated by large numbers of end nodes, and they may have
end-to-end freshness requirements that may be challenging to satisfy with conventional
link or transport layer approaches based on optimizing throughput and delay. Increasing
the sampling rate of IoT nodes to respond to freshness requirements or adopting first-
come-first-served service policies can cause bottlenecks on the network, resulting in a
reduction in quality of service. It has been argued in recent literature that optimizing data
generation, transmission, and transport with respect to higher-level metrics such as Age of
Information can prevent unnecessary network load, while improving the freshness of flows.
In a broader perspective, there are proposals to encapsulate the significance or the value of
the transferred information to the communication problem in certain “semantic metrics”
and use these in the design of algorithms and protocols in all network layers, referred to as
“semantic communication” [1].
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Within the set of semantic metrics, the age of information (AoI) from the receiver’s
point of view is defined as the time elapsed since the generation of the newest status
update that has been received by the destination [2]. AoI is gaining momentum as a key
performance indicator (KPI) for machine-type communications (MTC). The primary reason
for the interest in AoI is the growing demand for timely and fresh information in many
emerging real-time and remote monitoring-based applications such as the Internet of things,
vehicular networks, and cyber-physical systems.

AoI monitors the freshness of the entire information stream from the receiver’s point
of view. Hence, it reveals further aspects of the network compared to traditional metrics
such as delay or throughput. For instance, the delay metric measures the timeliness from
the transmitted packet’s perspective. A low average delay does not mean a low average
age in every case [3]. Continuous packet transmission policy (known as zero-wait policy in
the literature) can optimize delay, but it may not provide age-optimality in the presence
of FCFS (first-come-first-serve) queues [4]. Moreover, if the transmitter has an energy
constraint, the inefficiency of the zero-wait policy becomes more apparent [3]. Improving
the throughput alone can maximize the amount of data flow to the receiver node but may
cause an overload of the queues within the network. Packets waiting in the queue result in
outdated information reaching the receiver node. In this case, to reduce backlogs within
queues, the packet generation rate should be decreased. However, an over-reduction of
the packet generation rate would cause the receiver to be updated sporadically, which also
leads to reduced AoI performance. This dilemma shows that AoI is a composite measure
of both throughput and delay. For achieving optimal AoI, frequent packets must arrive
regularly [5]. Consequently, solving the scheduling problem with an AoI minimization
objective requires a novel formulation.

A significant portion of the AoI literature consists of studies involving push-based
communication scenarios. In the push-based model, the generation of a new packet triggers
the communication process. Then, the transmitter module sends the generated packet to
the receiver module. The sequence of operations of the communication process proceeds
from the information source to the destination. However, one of the network models
often encountered in real-life scenarios is the pull-based model, where the query source
requests (or queries) information from the receiver module. In this scenario, the initiator
of the communication process is the query source that aims to pull information from the
receiver module. The source of these queries could be users or applications that want to
monitor the information source. In the pull-based network, the sequence of operations of
the communication process proceeds from the destination to the source.

In this paper, we consider both push-based and pull-based status update systems and
experimentally investigate the performance of several age-aware downlink scheduling
policies in wireless multi-user networks. The main contribution of this study is to report one
of the pioneering experimental studies of age-aware MAC layer scheduling policies. We
have implemented a multi-user downlink network with a single base station and multiple
receivers using software-defined radios (SDRs). This testbed implementation allowed us
to examine push-based and pull-based scenarios and state-of-the-art scheduling policies.
Along with the other well-known policies, we have proposed max-weight policies for
different pull-based scenarios and provided extensive simulation and experimental results.

The rest of the paper is organized as follows. In Section 2, we present the related work.
In Section 3, the system model is presented and the problems of minimizing the average
AoI, QAoI,gmagmaild and EAoI in the network are formulated. Age-aware downlink
scheduling policies are exhibited in Section 4, and the experimental setup is explained in
detail in Section 5. Simulation and experimental results are presented in Section 6, and the
paper is concluded in Section 7.

2. Related Work

There are numerous studies examining the AoI metric in the literature. The major
works that stand out in the literature are those investigating the effects of different queuing
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types and developing scheduling policies to minimize average AoI in the network. An
important concern when proposing a scheduling policy is the required computational
load [5]. The work in [6] shows that a scheduling problem with an age minimization goal
is an NP-hard problem in a multi-user network. In [7], age-aware scheduling policies are
derived for the lossy channel case in a multi-user network. The greedy policy is inspected,
and results indicate that the policy is optimal in the symmetric channel state for mean
AoI minimization. In [8], the network is analyzed based on the peak-age and mean-age
metrics, and a virtual-queue-based policy and an age-based policy are developed. The
virtual-queue-based policy is shown to be peak-age optimal. The age-based policy is proved
to be within a factor of four of optimal values for peak age as well as average age. In [5],
Whittle’s index (WI) policy and max-weight (MW) policy are proposed. The lower bound
for AoI that can be calculated by using the statistical information of the network is derived.
Lower and upper limits of AoI performances for WI and MW policies are calculated and
proven to be within a factor of four of the optimal (upper limit is at most four times higher
than the lower limit). There are also learning-based approaches in the literature to find an
optimal age-aware policy for multi-user networks [9,10].

In the multi-user scheduling problem, the generation procedure of the packets has
a significant impact on the AoI. In the literature, sources that generate a fresh packet at
every time frame are referred to as “active sources” [8]. For a system model with active
sources, whenever there is a transmission, the age of the corresponding flow will be reset
to its minimum possible value (one frame duration in our setup). However, many realistic
scenarios may be better modeled with a packet generation that is a stochastic process. For
example, [11] studied a case where the packet generation procedure is a Bernoulli stochastic
process and proposed scheduling policies suitable for that system model.

The queue service policy (e.g., LCFS (last-come-first-serve), FCFS (first-come-first-
serve)) also has a significant effect on AoI [12,13]. For the active source case, queuing
policies become even more important since sources load the network with the highest rate
available. Queue management policy determines the behavior of the queue when the new
packets arrive. If the queue is managed with an LCFS policy, the freshest packet will be
at the top of queue, and the first packet that leaves the queue will be the one with the
most up-to-date information. In FCFS queues, a new packet is added to the bottom end
of the queue. To transmit the most timely packet, all packets in front of the last inserted
packet must be sent for transmission. As a result, the most up-to-date packet loses time
and becomes stale waiting the transmission of other packets in the queue.

The overwhelming majority of the AoI literature to date has emphasized theoretical
studies. However, there are also studies on implementation in the literature [14–22]. For
a survey of this implementation-oriented literature, see [23]. In [14–17], the experimental
setup mostly lies between the transport layer and application layer. The effects of different
wireless access technologies on end-to-end TCP/IP connections were measured by [14–16].
Studies in [18–20] cover a broader range of interconnection layers and capture the perfor-
mances of novel age-based MAC layer algorithms. In [18], Wi-Fi protocol is implemented
on SDRs. The uplink of a wireless network is taken into consideration, and the effect of
utilizing the MW scheduling policy is investigated. The work presented in [19] experi-
mentally investigates the effects of packet management policies on the performance of
networked control systems. A test environment was developed by [20] to evaluate various
ALOHA-like random access protocols. In our previous work in [21], we implemented a
multi-user wireless network using SDRs. We compared the AoI performances of MW and
WI policies with round-robin and greedy policies.

The time-average age metric weighs information freshness of all time frames equally.
However, there are many types of real-world applications where the demand for timely
information varies in time. For these, minimization of time-average age may not be the most
relevant objective. In the literature, various semantic metrics alter this model, placing higher
emphasis on selected time frames. For example, the age of incorrect information (AoII)
metric focuses on the usefulness of the information and aims to maximize the freshness
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of non-repetitious information. In the AoII concept, obtaining redundant information is
pointless for the receiver and does not reduce AoII. The objective is to minimize the age of
differing information [24–26].

Query age of information (QAoI) is a recent semantic metric proposed to investigate
pull-based scenarios from the AoI perspective [27–30]. QAoI considers a model where the
freshness of information is valuable only at query moments. These queries are sent to the
receiver modules in the network. Then, the receiver modules respond to these queries with
the most up-to-date information. The source of the queries can be a user or an application
that needs to obtain the most up-to-date information. In [29], the pull-based scenario is
discussed, and the effective age of information (EAoI) metric is presented for the multi-user
system model. Query generation is modeled as an independent Bernoulli process for each
receiver, and the immediate EAoI is assumed to be zero for frames without queries. For the
queried frames, immediate EAoI is related to the immediate AoI of the receiver under the
proactive serving assumption as a query response procedure. According to the proactive
serving method, the receiver module can wait for the query response for a frame if it is
expecting a packet arrival within the frame. If a packet arrives at the end of the frame, the
receiver sends the information in the newly received packet as a query response. In the
study, WI-based scheduling policy is proposed for the multi-user system model, and the
performance of the policy is demonstrated in the simulation environment.

The work in [28] presents the query-AoI metric for a single receiver in pull-based
communication. The calculation of the QAoI metric presented in this study is similar to
the EAoI. However, an instantaneous serving scenario is adopted instead of the proactive
serving in [29]. In addition, the transmitter module is assumed to have an energy constraint,
and the presence of the energy constraint turns the problem in another direction while
increasing the value of the QAoI reduction per transmission. Within the scope of the study,
the permanent query (PQ) model, which is a query generation procedure that approximates
the studied problem with the standard AoI problem, and the query arrival process-aware
(QAPA) model, which generates queries based on periodic or stochastic processes, are
examined. The optimal scheduling policy in the PQ process is the same as the optimal
scheduling policy for AoI. In the case of QAPA, the scheduling policy has information on
the query process (either stochastic or deterministic) and can schedule accordingly.

A continuous-time status update model is investigated in [30], where a source node
submits update packets to a channel with random transmission delay, and the query source
tries to pull information from the receiver module according to a stochastic arrival process.
The average QAoI is defined as the average AoI measured at query instants, and the system
model is examined from both AoI and QAoI perspectives. Age-aware scheduling policies
do not use the information about the query process and freshness equally for all frames.
On the other hand, QAoI-aware scheduling policies use additional information about the
query process in the scheduling decisions. This extra information allows the scheduling
policy to distribute transmission attempts more efficiently and reduce the time spent in
the FCFS queue. Eventually, from the query source’s perspective, QAoI-aware policies can
provide better AoI performance than AoI-aware policies.

To the best of our knowledge, this is the first work in the literature that considers
practical implementation and evaluation of QAoI-aware scheduling policies. In addition,
we propose and implement novel max-weight policies for the effective AoI and query-AoI
system models and evaluate their performance in terms of AoI, EAoI, and QAoI, in both
simulation and SDR environments. We have observed that the resulting EAoI-aware max-
weight (EAoI-MW) policy has a similar EAoI performance to the WI but yields a higher
network throughput. We have also observed that QAoI-aware max-weight (QAoI-MW)
provides superior QAoI performance than AoI-aware policies.

3. System Model

We consider a wireless multi-user network where a common access point or a base
station (BS) needs to send status update packets containing time-sensitive information
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to multiple receiver modules. Let M denote the total number of receivers. We also as-
sume a discrete time system where time is divided into fixed-length frames denoted by
t ∈ {1, . . . , T}. In each frame, the base station (transmitter) is allowed to activate the con-
nection for a single receiver i ∈ {1, . . . , M}, and it cannot send packets to more than one
receiver within a frame. A transmission attempt of a status update to a single user takes a
constant time, which is assumed to be equal to the duration of one frame. Wireless channels
between the receivers and the base station are unreliable. The state of each channel changes
randomly from one time slot to the next and is modeled by a Bernoulli random variable.
Channel states for each receiver are also independent of the others.

The packet generation scheme in the system follows the “active source” model. At
the beginning of each frame, information sources generate new packets for each receiver,
and these packets reach the BS immediately. The base station selects one of these packets
for transmission and discards the others. There are no queuing-related delays between
the information sources and the base station. If a receiver successfully receives a packet,
the AoI of this receiver successfully drops to one since the newly formed packet at the
information source reaches the receiver within a frame, without observing any delay.

In the system model, there are also query sources linked to each receiver. Each query
source is independent of the other, and used to model the behavior of a real-life user or
application interested in a particular time-sensitive piece of information at query instants.
Query arrival frames to receivers can follow either a deterministic or stochastic pattern.
When a query source requests information from a receiver, it sends a query. Then, the
receiver responds to it with the latest information that the receiver holds. Query and
response messages are transmitted without any errors.

The BS judiciously selects a receiver for transmission according to a stationary schedul-
ing policy π ∈ Π represented by ai(t), for all i ∈ {1, . . . , M} and t ∈ {1, . . . , T}. If the
receiver i is selected for transmission in frame t, then ai(t) will be equal to one. Otherwise,
ai(t) will be equal to zero. Evaluation of ai(t) is given in (1).

ai(t) =
{

1 if the receiver i is selected,
0 otherwise .

(1)

If a successful transmission occurs, the base station is informed over an error-free
channel in the same frame. By utilizing this knowledge, scheduling policy can keep track of
the AoI of the receivers. Similarly, ci(t) is a binary variable indicating the random channel
state of receiver i at frame t. If the channel status of the receiver i is ON, then the successful
transmission can be made at frame t, and ci(t) will be equal to one. Otherwise, if the
channel is not available for transmission, ci(t) will be equal to zero. We assume ci(t) is an
independent and Bernoulli-distributed random variable and the probability of successful
transmission (i.e., reliability) is pi, for all i ∈ {1, . . . , M}. Evaluation of ci(t) is given in (2).

ci(t) =
{

1 if the channel is ON ,
0 if the channel is OFF .

(2)

To have a successful transmission in frame t, the receiver i must be selected for
transmission, and the channel status of that receiver must be available for transmission.
Let ui(t) denote the overall result of the transmission to receiver i at frame t (3). Evaluation
of ui(t) is given in (3).

ui(t) =
{

1 if ci(t)ai(t) = 1,
0 otherwise .

(3)

We also define fi(t) as complementary of ui(t) for simplification of some equations through-
out the paper, that is, fi(t) = 1− ui(t).

The instantaneous AoI of receiver i at the beginning of the tth frame is denoted by
∆i(t). Note that ∆i(t) drops to one if the transmission to receiver i succeeds and increases
by 1 if receiver i is not selected for transmission or fails to successfully receive a packet.
Evaluation of ∆i(t) is given in (4).
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∆i(t + 1) =
{

1 if ui(t) = 1
∆i(t) + 1 otherwise

(4)

di(t) indicates the query presence. If a query arrives to the receiver i at frame t, di(t)
will be equal to one. Otherwise, di(t) will be equal to zero. Evaluation of di(t) is given
in (5).

di(t) =
{

1 if a query arrives to the receiver
0 otherwise

(5)

The instantaneous query age of receiver i at the beginning of the tth frame is ∆qi (t). The
evaluation of the ∆qi (t) varies with the adopted query response scenario within the system
model. In the scope of this study, we assume that query arrival to the receiver and receiver’s
response will happen at the beginning of the frame. We denote this query response scenario
as the “instantaneous serving” scenario. Evaluation of ∆qi (t) for instantaneous serving
scenario is given in (6).

∆qi (t) = di(t)∆i(t) (6)

An alternative query response scenario called “proactive serving” is defined in the
literature in [29]. In proactive serving, the response to the query may be delayed by at
most one frame. The purpose of this delay is to put the newest information into the query
if the receiver acquires a packet within the queried frame. Nevertheless, unless stated
otherwise, the instantaneous serving strategy will be adopted throughout this study. The
overall system model is illustrated in Figure 1.

Query Sources

Information

Source

.


.


.


.


.


.

i

Receivers


.


.


.


.


.


.


1

M

Figure 1. The architecture of the system model.

Next, we formally define the AoI and QAoI minimization problems in Sections 3.1 and 3.2,
respectively.

3.1. AoI Minimization Problem

The analytical expressions for the AoI minimization problem have been previously
studied in [5]. The objective of the scheduling policy is to minimize the average AoI in the
network. Average AoI is calculated for M receivers across T frames. The objective is to find
a stationary scheduling policy π ∈ Π that minimizes the long-term average AoI, which is
defined in (7).
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min
π∈Π

lim
T→∞

E[JA(π)], where JA(π) =
1

TM

T

∑
t=1

M

∑
i=1

∆i(t) (7)

3.2. QAoI Minimization Problem

For the QAoI problem, the main objective of the scheduling policy is to minimize
the average age of the query sources in the network. This problem differs from the AoI
problem since the query sources do not require fresh data at every instant but only at
the queried frames. The difference between the two problem statements has also been
previously investigated in [28,30].

There are two major approaches in the literature to calculate the average ages of the
users at query instants in pull-based communication systems. In the first approach, the
sum of the ages at query instants is divided by the total number of frames. This method
is followed by [27,29] to develop age-aware scheduling policies, and the metric is called
effective age of information (EAoI). Note that [28] also follows a similar approach in the
discounted setting for single-user pull-based communication.

The objective function obtained by utilizing this approach is given in (8).

min
π∈Π

lim
T→∞

E[JE(π)], where JE(π) =
1

TM

[
M

∑
i=1

T

∑
t=1

∆qi (t)

]
(8)

The second approach divides the sum of all query ages by the total number of query
arrivals. This approached is used by [30] for the average query age calculation. The
objective function obtained by utilizing this approach is given in (9).

min
π∈Π

lim
T→∞

E
[

JQ(π)
]
, where JQ(π) =

1
M

M

∑
i=1

1
Ni(T)

[
T

∑
t=1

∆qi (t)

]
, (9)

where Ni(T) denotes the total number of queries arrived at receiver i throughout T frames.
Throughout this study, we refer to the metric aligned with the first approach as the

effective age of information (EAoI), following its definition in [27]. We call the metric evaluated
with the second approach the query age of information (QAoI).

In the average EAoI calculation, the query age of the frames for which the query is not
present is taken as zero and included in the average. This calculation method may lead
to misleading results for measuring the average AoI of the query sources. This is because
even if the AoI of a rarely queried receiver is very high at the time of query, it remains low
on average due to the inclusion of unqueried frames. Similarly, for a frequently queried
receiver, since the number of unqueried frames is low, the number of zeros included in the
calculation of the average EAoI will be low. Therefore, the EAoI of this receiver will tend
to be higher than the rarely queried receiver. The effect of the scheduling policy becomes
less apparent as the query frequency decreases. Therefore, to measure the performance
of scheduling policies, comparing average EAoI values of two individual systems with
different query arrival frequencies would provide inconsistent results. When the same
problem is analyzed from the QAoI perspective, the effect of the scheduling policy becomes
more decisive, as the unqueried frames are discarded in the average query age calculation.

To examine the QAoI problem, we first consider the case where the query generation
is an independent Bernoulli process. Note that [28,30] indicates that, to see a difference
between QAoI and AoI metrics, the query arrival process must be non-stationary. For the
Bernoulli query arrival case, the QAoI problem converges to the AoI problem. On the other
hand, EAoI can yield results different than AoI even under the Bernoulli-arrival scheme.
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4. Age-Aware Downlink Scheduling Policies

In this section, we define scheduling policies to minimize age-aware metrics. We describe
AoI-aware, EAoI-aware, and QAoI-aware scheduling policies in Section 4.1, Section 4.2,
Section 4.3, respectively.

4.1. Scheduling Policies for AoI Minimization

AoI-aware scheduling policies have been previously investigated in [5,7,8,10]. The WI
and MW policies proposed in [5,7] utilize the instantaneous ages of the receivers and the
reliabilities of the corresponding links to calculate the expected costs {Ci} associated with
each receiver. To maximize the cost reduction, the scheduling policy selects the receiver
with the highest Ci at each frame.

The max-weight policy is an adaptation of the Lyapunov optimization technique to
the AoI minimization problem. Lyapunov optimization provides a method for penalty
minimization while maintaining the queue stability [31]. The objective of the MW policy
is to minimize Lyapunov drift in the network with the appropriate scheduling decision.
Lyapunov drift measures the expected cost increase between two consecutive frames. In
each frame, the policy calculates the expected Lyapunov drift of the receivers. Then, the
policy selects the receiver with the highest Lyapunov drift. With this decision, the policy
aims to minimize the overall cost. The calculation of expected costs for the MW policy is
given in (10). At each frame, the scheduling policy selects the receiver with the highest Ci.

Ci(∆i(t)) = pi∆i(t)(∆i(t) + 2) (10)

The WI policy has been presented in [5,7,10] by formulating the AoI minimization
problem in (7) as a restless multi-armed bandit (MAB) problem. The MAB problem in
general aims to optimize the reward in an unknown environment through a series of trials
where the decision-maker can activate only one of the arms and each arm has an immediate
reward (or penalty for the minimization problem case) associated with it. The closed-form
costs (indexes) for the WIP are given in (11). At each frame, the scheduling policy transmits
to the receiver with the highest Ci.

Ci(∆i(t)) = pi∆i(t)
[

∆i(t) +
2− pi

pi

]
(11)

In our study, we implement AoI-aware MW and WI policies on the USRP testbed and
compare their performances with round-robin and greedy policies.

4.2. Scheduling Policies for EAoI Minimization

In the USRP testbed, we implement and evaluate the performance of the EAoI-aware
WI policy that was previously proposed in [29]. In addition, we propose an EAoI-aware
MW policy by modifying the AoI-aware max-weight policy previously proposed in [5] and
compare their performances.

EAoI-aware WI in [29] is given in (12). In each frame, the policy chooses the receiver
with the highest Ci.

Ci(t) = qi(pi∆i(t) + 2)(∆i(t)− 1) (12)

We can derive the max-weight policy for the pull-based instantaneous serving scenario:
First, we calculate the Lyapunov drift of the instantaneous EAoI’s between consecutive
frames. Then, in line with [5], we select quadratic Lyapunov function to calculate the
Lyapunov drift.

Lemma 1. In each frame, EAoI-MW policy selects the receiver with highest Ci(t), which can be
computed as in (13).
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Ci(t) = qi pi

(
∆2

i (t) + 2∆i(t)
)

. (13)

Derivation of the EAoI-MW Policy can be found in Appendix A.

4.3. Scheduling Policies for QAoI Minimization

For the QAoI metric investigation, we evaluate the cases where the query arrival
process forms a Markov chain. Within the Markov chain, we designate one state as the
“Query” state and other states as “non-query” states. When the current state of the Markov
chain reaches the query state, a query arrives.

For QAoI minimization, we propose a max-weight-based scheduling policy, following
similar steps as in [5]. To adapt this policy to the QAoI model, we utilize the main features
of the Markov chain, which determines the query process. In the first step, we calculate
the future AoI ∆i(t + K) in terms of current AoI ∆i(t). The evaluation of AoI between
consecutive frames is given in (14).

∆i(t + 1) = ui(t) + (1− ui(t))(∆i(t) + 1)

= ai(t)ci(t) + (1− ai(t)ci(t))(∆i(t) + 1)

= 1 + fi(t)∆i(t)

(14)

Repeating this approach multiple times enables us to obtain the future AoI in terms of
current AoI. The result is given in (15).

∆i(t + 1) = 1 + fi(t)∆i(t)

∆i(t + 2) = 1 + fi(t + 1) + fi(t + 1) fi(t)∆i(t)

∆i(t + 3) = 1 + fi(t + 2) + fi(t + 2) fi(t + 1) + fi(t + 2) fi(t + 1) fi(t)∆i(t)

(15)

In the following equations, we indicate the future time frames as t̂. Although it may
lead to suboptimal results, for computational convenience, we assume that future decisions
ai(t̂) are independent variables and stationary through time with a fixed expected value.
Based on this assumption, we can argue that fi(t̂) is also stationary. Therefore, we define fi
as the stationary version of the fi(t̂) as shown in Equation (16).

E
[

fi(t̂)
]
= E[ fi(t + 1)] = E[ fi(t + 2)] = E[ fi(t + K)] = fi (16)

Then, we define the closed-form version the future AoI with current AoI in (17).

∆i(t + K) =

[
K

∑
k=1

f k−1
i

]
+ f K−1

i fi(t)∆i(t) (17)

To simplify the notation, we define Fs(K) and Fm(K) as in (18) and (19).

Fs(K) =
K

∑
k=1

f k−1
i (18)

Fm(K) = f K−1
i (19)

We then rewrite the simplified version of Equation (17) in Equation (20).

∆i(t + K) = Fs(K) + Fm(K) fi(t)∆i(t) (20)

We proceed with the max-weight policy derivation steps by the definition of Lyapunov
function and Lyapunov drifts. Similar to [5], we use the quadratic Lyapunov function
as given in Equation (21). However, rather than calculating the Lyapunov drift between
consecutive frames, we calculate the Lyapunov drift Yi(t) between the current frame t
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and the expected query-arrival frame t + K. Calculation of Lyapunov drift is given in
Equation (22).

L(t) =
1
M

M

∑
i=1

∆2
qi
(t) (21)

Yi(t) = E
[
∆2

i (t + K)− ∆2
i (t)

]
= E

[
Fs(K)2 + 2 fi(t)Fs(K)Fm(K)∆i(t) + fi(t)F2

m(K)∆
2
i (t)− ∆2

i (t)
]

= E
[

Fs(K)2 − ∆2
i (t) + (1− ai(t)ci(t))

[
2Fs(K)Fm(K)∆i(t) + F2

m(K)∆
2
i (t)

]] (22)

In Equation (22), ai(t) is the only decision variable from which the scheduling policy
can choose its value. For simplification, we ignore terms in the calculation of Yi(t) that are
not affected by the decision ai(t). We denote the modifiable part of the Lyapunov drift with
ai(t) decision as Ŷi(t).

Ŷi(t) =−E[ci(t)]E[ai(t)]E
[
2Fs(K)Fm(K)∆i(t) + F2

m(K)∆
2
i (t)

]
= E[ai(t)]piE

[
2Fs(K)Fm(K)∆i(t) + F2

m(K)∆
2
i (t)

] (23)

At each frame, the main objective of the scheduling policy is to minimize the Lyapunov
drift. Therefore, the scheduling policy must eliminate the receiver with the highest Ci(t) to
cause maximum reduction to Lyapunov drift.

Lemma 2. For each frame, QAoI-aware max-weight (Q-MW) policy selects the receiver with
highest immediate cost Ci(t). Calculation of immediate cost is given in (24).

Ci(t) = piFm(K)∆i(t)(Fm(K)∆i(t) + 2Fs(K)) (24)

To emphasize what our system model corresponds to in practice and depict the
difference between AoI- and QAoI-aware policies, we can consider a simple IoT network
as an example. This network consists of sensors, microprocessors, a base station, and
individual users. In the network, sensor devices generate time-sensitive data about their
current status. Nevertheless, the sensors cannot process this data, and they have to transfer
it over a wireless network to remote microprocessors. The sensors send the data to a base
station, and the base station transmits this data over the wireless network. However, the
transmission capacity of the base station is limited, and it cannot simultaneously transmit
data to multiple processors.

There is a dedicated microprocessor for each sensor. Microprocessors use the sensor
data and generate status reports. Each microprocessor is tracked by an individual user that
queries the processor to obtain the freshest status report about the sensor. Query arrivals to
each microprocessor are independent of each other and occur infrequently.

QAoI-aware policies come to the fore if the requirement in the system precedes the
query source’s request for timely information. For the system model given in this example,
AoI-aware policies concentrate on the AoI at the microprocessors, and the QAoI-aware policies
focus on the AoI at the individual users. The impact of the QAoI-aware policy is shown in
Figure 2. The figure examines the instantaneous AoI of a receiver (microcontroller in our
example) in a multi-user network. A query source (individual user in our example) generates
queries at the 41st, 81st, and 121st frames. From the query source’s perspective, freshness is
only important at query instants. In line with the query source’s demands, the QAoI-aware
policy aims to minimize the AoI of the receiver at the 41st, 81st, and 121st frames. Since there
is no need for AoI minimization in all frames, the transmission constraint in the system can be
relieved, and transmission attempts can be utilized more efficiently.



Entropy 2022, 24, 673 11 of 27

Figure 2. Instantaneous AoI of a receiver in a multi-user network.

5. Implementation

In this section, we describe our implementation work on USRPs. We firstly share
detailed information about the implementation environment. Then, we describe the packet
interface that we use to transmit time-sensitive information in Section 5.2, and we explain
the runtime of our setup in Section 5.3.

Software-based radios, also called “software radios” in pioneering studies, are radios
that allow the user to change main parameters of communication systems such as center
frequency, bandwidth, and coding of the communication system only by changing the
software [32,33]. With SDRs, all layers of the communication system, from the physical
layer to the application layer, can be changed only by software modifications. These
radios play an important role in the development of today’s technologies that require
rapid prototyping of various parameters, protocols, and standards, because software-based
radios reduce the burden of extra hardware production for test and development studies
and provide significant improvement in terms of time and cost.

For the AoI testbed implementation, we use one Ettus USRP N210, one NI USRP 2930,
and two NI USRP 2930 SDR devices. General specifications of the devices are available
in the devices’ datasheets [34,35]. Both USRPs have independent transmit and receive
modules. For this reason, these devices can operate as a transmitter and a receiver simulta-
neously. Nevertheless, it is not possible to run two transmission operations simultaneously.

The host computer runs a LabVIEW application that interfaces with the USRP devices.
USRP communicates with the host computer via a 1 Gb Ethernet link. Signals are frag-
mented to in-phase and quadrant components and carried over in the Ethernet packets.
Each transmitter and receiver module contains an amplifier that is controllable through
software. In the experiments, we often use these amplifiers to change channel reliabilities.

The LabVIEW environment contains useful built-in functions for system implementa-
tion. We use them frequently in our study. We also benefited from the examples regarding
the PSK-modulated communication system and packet-based digital link tutorials and
examples provided by LabVIEW and the LabVIEW community [36].

5.1. Setup

Among four USRPs, one USRP is configured as the base station, and the other three are
the receiver modules. The setup configuration for the implementation is given in Table 1.
An overview of the USRP testbed is given in Figure 3.



Entropy 2022, 24, 673 12 of 27

Figure 3. Overview of the implementation environment.

System time is discretized in 50 ms duration frames. The LabVIEW application keeps
track of the frame number, that is, the total number of frames that have passed since the
experiment began. The frame number is the system’s reference clock. All radios run in separate
threads over a single LabVIEW application running on the host computer. Thus, difficulties
related to synchronization are reduced, as all USRPs are managed from a single host.

We use QPSK modulation in the air interface. The maximum operating frequency
of the USRP-2920 is 2.2 GHz [35], and we choose a center frequency of 1.9 GHz for all
receivers. We prefer the high center frequency of the carrier signal to induce higher path
loss since we have a limited area in the test environment.

The sampling rate of the USRP is configurable via the LabVIEW application. Detailed
information about this configuration is described in the USRP documentation [35]. NI
specifies that the I/Q ratio must be multiplied by 0.8 to convert to the sample rate [37]. In
the implementation, we use the I/Q ratio 500k samples/s, which corresponds to a sampling
rate of 400k samples/sec or bandwidth of 200 kHz. This bandwidth meets the requirements
of our target application. Selecting higher I/Q rates increases the bandwidth. However,
increasing the sample rate causes more data to be processed and transported. Therefore,
more data would put a higher load on the USRP and Ethernet connection and eventually
induce higher delay. Since timeliness is the primary concern in AoI calculations, we keep
the I/Q Ratio low to achieve a more stable operating point without overloading the USRP
and Ethernet.

Table 1. Overview of parameters.

Modulation: Quadrature Phase-Shift Keying (QPSK)
Center Frequency: 1.9 GHz

I/Q Rate: 500k Samples/s
Sample Rate: 400k Samples/s

Bandwidth: 200 kHz
Bits Per Symbol: 2

Samples Per Symbol: 8
Duration of one Frame: 50 ms

5.2. Packet Interface

In the implementation, time-sensitive information is carried through the packets. The
structure of the packet interface is summarized in Figure 4. There are six guard bits at
the beginning of a packet. These bits are placed to prevent the pulse shaping filter from
damaging the message content. The synchronization bit field starts after the guard bits. A
30-bit synchronization sequence is known in advance by both the sending and receiving
modules. This sequence is created by a LabVIEW function that generates pseudo-random
bits in the Galois domain. Receivers that continuously acquire data from the air interface
use the synchronization sequence to detect the beginning of the packet.
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Figure 4. Packet content in the air interface.

The message field contains time-sensitive information. The message consists of Re-
ceiver ID (RX ID) and Packet ID fields. RX ID field is a 4-bit address that is used to
distinguish receivers. Each receiver has a unique RX ID. When a receiver obtains a packet,
it locates the RX ID field in the packet content and compares it with its RX ID. If the RX ID
of the packet and the receiver do not match, the receiver discards the packet, and ∆i(t) for
that receiver increases by one for the next frame.

The frame number is the reference clock of the entire system. It initially starts from
one at the beginning of the experiment and increases by one for each frame. Upon the
generation of a packet, the Packet ID field is filled with the frame number of the system.
Thus, the Packet ID field operates as the packet timestamp. Since the receiver also knows
the current frame number, the difference between the packet’s creation frame (contained in
the Packet ID field) and the current frame gives the instant information age ∆i(t).

Packets sent over an unreliable channel may suffer corruption due to noise. The
receiver should discard packets containing incorrect information since processing this
data may lead to incorrect AoI measurements. To detect errors, we use cyclic redundancy
check (CRC). Within the packet generation process, we pass the message field through the
16-bit CRC and write the result to the CRC field. When a receiver obtains a packet, it first
calculates the CRC of the message field of the packet and compares the result with the
CRC field in the packet. If both CRCs are equal, we consider the message to be error-free.
We track the number of successful CRC checks for each receiver, thereby dynamically
measuring the reliability of the channel. In the implementation, we dynamically estimate
channel reliability throughout the experiment. Accurate calculation of the channel reliability
values is essential, as MW policy and WIP take this value as input. We pre-run the setup to
initialize the channel reliabilities. During the pre-run, we discard AoI calculations.

5.3. Runtime

The LabVIEW program allows multi-threading, which allows us to execute processes
independently in different threads. We implement the Receiver, Transmitter, and Logging
modules as separate threads in the program. In this way, we were able to perform these
operations simultaneously. Moreover, the LabVIEW program has the feature of providing
synchronization between threads. With the activation of this feature, it has been possible to
organize processes running in different threads and following each other. The runtime of
the system can be described step by step as follows:

1. The new frame starts with incrementing the frame number.
2. The scheduling policy performs the receiver selection for the new frame. AoIs of the

receivers, query arrival status, and channel statistics are the inputs of the schedul-
ing policy.

3. In the meantime, receiver threads start acquiring a signal from receiver USRPs. The
acquired signal is demodulated using LabVIEW’s built-in demodulation function. We
synchronize the transmit and receive threads using the synchronization function of
the LabVIEW program. Moreover, we keep the receiver thread’s acquisition duration
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long enough compared to the transmission thread’s time to complete its task so that
the receiver can acquire the signal sent by the transmitter.

4. A time-sensitive packet is constructed in the transmitter thread. The ID of the selected
receiver is inserted into the new packet. The current frame number is also inserted in
the “Package ID” field.

5. The constructed packet is modulated using LabVIEW’s Modulation function and
prepared for transmission. The transmitter thread transmits this packet to the USRP
over an Ethernet connection.

6. The transmitter USRP converts this packet to an RF signal and broadcasts it on the
air interface.

7. The receiver threads demodulate the signal in the air interface and try to catch the
transmitted packet. The demodulator tries to detect synchronization bits to find the
beginning of the packet. If the demodulator finds the synchronization bits, it returns a
bit field that contains the packet.

8. At the next stage, the receiver thread checks the CRC value of the acquired packet. The
CRC field in the packet content is extracted. Next, the receiver thread passes the first
16 bits of the packet through the CRC. Then, the receiver compares this CRC result
with the extracted CRC field in the packet. If both CRCs are equal, the receiver thread
concludes that the packet is valid. Otherwise, the receiver discards the packet.

9. The total number of successful CRC checks for each receiver is used to calculate
channel reliabilities.

10. After the CRC check, the receiver thread checks the Receiver ID field of the packet. If
the Receiver ID field in the packet is different from the ID of the receiver, the receiver
discards the packet again. If the Receiver IDs align, the acquired packet is assumed to
be successfully received.

11. Receiver threads that have finished their processes are set to idle for a while. The
receiver thread will start listening to the air interface again before the new frame starts
to activate the receiving process before the transmission occurs.

12. Results obtained within a frame are passed to the logging thread. The main task of
this thread is to calculate the average AoI, EAoI, and QAoI based on the result of the
experiment. In addition, channel reliability and other statistics about the experiment
are also calculated in this thread.

13. Before the frame ends, the transmitter thread calculates instantaneous AoIs of the
receivers with the data received within the frame. In the next frame, AoIs of the
receivers and channel statistics will be used as input to the scheduling policy.

This experimental procedure is repeated at each frame. After the overall experiment is
finished, results are saved to a text file.

6. Experiments and Results

Throughout this section, we share the results that we obtained in the USRP envi-
ronment and MATLAB simulations. We share the performances of AoI-aware policies in
Section 6.1, EAoI-aware policies in Section 6.2, and QAoI-aware policies in Section 6.3.

6.1. Evaluation of AoI-Aware Scheduling Policies

In this section, we share the results of the experiments conducted in the SDR network.
We evaluate the performances of AoI-aware scheduling policies, and compare their AoI
performances with round-robin and greedy policies. Round-robin policy activates all links
sequentially, one per frame, regardless of any prior knowledge obtained about receivers.
Greedy policy uses the AoIs of the receivers and selects the receiver with the highest age
for packet transmission.

We evaluate the scheduling policies under various conditions by changing the channel
reliabilities of the receivers among experiments. To change channel reliabilities, we manip-
ulate the gains of the receiver and transmitter USRPs. LabVIEW allows configuring the
signal gains of USRPs. Moreover, we locate receiver USRPs with different distances to the
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transmitter USRP to induce diverse path losses to receiver USRPs. When the signal power
of the transmitter USRP increases, all receivers in the network acquire stronger signals.
Therefore, the channel reliabilities of all receivers increase. Throughout the experiments, we
also adjust the power gains of the receivers to alter the channel reliabilities. The receiver’s
power gain is directly proportional to its channel reliability. Increasing the signal gain of a
receiver reduces the error probability for that receiver and increases the channel reliability.

In the experiments, we run scheduling policies multiple times at each power gain level
and take the average of the obtained results. We compare the scheduling policies in terms
of the average AoI and the throughput of the network.

6.1.1. Adjusting the Gain of an Individual Receiver

In this case, we increase the input signal gain of an individual receiver USRP. Through-
out the experiments, we test the policies ten times at each transmitter gain level and average
the results of redundant experiments. In each experiment, the frame length is K = 7500,
and M = 3 receivers are available in the network. Results of the experiments in terms of
AoI and throughput are given in Figure 5. Average channel reliabilities for each USRP gain
level are given in Table 2.

(a) (b)

Figure 5. Evaluation of average AoI JA (a) and throughput (b) with varying receiver gain
(SDR testbed).

Table 2. Channel statistics in the first experiment set.

Experiment Index p1 p2 p3 Coefficient of Variation CV among Channels

0 0.9997 0.0517 0.0779 0.84
1 0.9997 0.3698 0.078 1.16
2 0.9997 0.7135 0.0747 1.337
3 0.9997 0.9139 0.0795 1.361

6.1.2. Adjusting the Gain of the Base Station

In this case, we increase the output signal gain of the transmitter USRP (base station).
Throughout the experiments, we test the policies five times at each transmitter gain level
and average the results of redundant experiments. In each experiment, the frame length is
K = 7500, and M = 3 receivers are active in the network. Average AoI and throughput of
age-aware policies are illustrated in Figure 6, and the channel statistics for the experimental
setup are given in Table 3.
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(a) (b)

Figure 6. Evaluation of average AoI JA (a) and throughput (b) with varying BS output gain
(SDR testbed).

Table 3. Channel statistics in the second experiment set.

Experiment Index p1 p2 p3 Coefficient of Variation CV among Channels

0 0.9997 0.0814 0.2317 0.988
1 0.9997 0.3566 0.5891 0.496
2 0.9997 0.6811 0.8587 0.196
3 0.9997 0.9055 0.9733 0.051

6.1.3. Comparison of SDR Testbed Results with Simulations

In this section, we share the results of the comparison between simulation and re-
alization. We use the results of the experiment mentioned in Section 6.1.2 as a reference
to the simulation. We use the same channel reliabilities from Table 3 for the simulation
environment and evaluate the policies. Results of the comparison in terms of average AoI
and throughput are given in Figure 7.

(a) (b)

Figure 7. Comparison of simulation and implementation in terms of average AoI JA (a) and through-
put (b).

6.1.4. Interpretation of the Results

As channel reliability decreases, the performances of MW and WIP differ positively
from the others. MW and WIP policies take channel reliability into account in the scheduling
decision. This information enables more efficient use of transmission attempts. On the
other hand, greedy policy does not utilize channel reliability information. If a receiver
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with a very low-quality channel is present in the network, the greedy policy may block
the network by continuous unsuccessful update attempts to that receiver. This results
in an increase in the average AoI of the network. For the first experiment set with the
results illustrated in Figure 5, the performance degradation of the greedy algorithm is more
apparent. Greedy policy always tries to send an update packet to the receiver with the
worst channel condition. However, that receiver rarely receives packets successfully, and
the base station gets stuck in that receiver until a successful packet reception. On the other
hand, since the round-robin policy proceeds by transmitting to all receivers one by one
without using any information about whether the packet is successfully received or not, the
starvation problem does not occur. In both experiments, we also observe that as channel
reliability values of receivers improve and asymmetry of channels decreases, greedy policy
performs better than round-robin. As the channel conditions improve and the asymmetry
among the channels decreases, performances of both policies converge to the optimal. As
the channel reliability rises to 100%, all scheduling policies behave like round-robin and
transmit to all receivers in a cyclic order.

For the SDR testbed simulation comparison case, we use the same average channel
reliabilities in both experiments. We do not observe any significant difference in through-
put, as expected. However, in terms of AoI, we found that the simulation results yield
lower AoI than the SDR implementation. In the simulation environment, the channel
status is a Bernoulli random variable. However, in the SDR implementation, the channel
status is formed by realistic conditions and doesn’t have to be stationary or follow the
Bernoulli distribution. The regularity of the packet arrivals is an essential factor for low
AoI. Even if the channel reliabilities over time are equal for SDR realization and simulation
environments, the imperfections of the realistic channel may reduce the update regularity
more drastically than the Bernoulli-distributed channel.

6.2. Evaluation of EAoI-Aware Scheduling Policies

In this section, we compare the EAoI-aware policies with the traditional policies.
Traditional policies do not utilize query statistics for scheduling decisions, and we aim
to observe the outcomes of using query statistics. We evaluate the policies in the SDR
environment and use EAoI as the primary performance indicator. We also share results
about AoI and throughput metrics. Throughout the experiments, query presences at each
frame are implemented as i.i.d. Bernoulli random variables. In each experiment, the frame
length is K = 7500, and M = 3 receivers are active in the network. We use the proactive
serving method as the query response scenario.

6.2.1. Adjusting the Gain of an Individual Receiver

In this case, we increase the output signal gain of an individual receiver USRP. Through-
out the experiments, we test the policies ten times for each gain level and average the results
of redundant experiments. Evaluation of EAoI and AoI throughout the experiments are
given in Figure 8. Channel statistics corresponding to USRP gain levels are given in Table 4
and query statistics are given in Table 5.
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(a) (b)

Figure 8. Evaluation of effective AoI JE (a) and throughput (b) with varying input gain of second
receiver (SDR testbed).

Table 4. Channel statistics.

Gain p1 p2 p3

0 0.999 0.363 0.078
1 0.999 0.735 0.076
2 0.999 0.930 0.077

Table 5. Query statistics.

q1 q2 q3

0.9 0.9 0.1

6.2.2. Adjusting the Gain of the Base Station

In this case, we increase the output signal gain of the transmitter USRP (base station).
Throughout the experiments, we test the policies at least five times for each gain level and
average the results of redundant experiments. Evaluation of EAoI and AoI throughout the
experiments are given in Figure 9. Channel statistics corresponding to USRP gain levels are
given in Table 6 and query statistics are given in Table 7.

(a) (b)

Figure 9. Evaluation of effective AoI JE (a) and throughput (b) with varying output gain of BS
(SDR testbed).
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Table 6. Channel statistics.

Gain p1 p2 p3

0 0.9997 0.6652 0.2439
1 0.9997 0.9073 0.5983
2 0.9997 0.9830 0.8651
3 0.9997 0.9980 0.9736

Table 7. Query statistics.

q1 q2 q3

0.9 0.1 0.1

6.2.3. Interpretation of the Results

For the EAoI minimization objective, the EAoI-MW and EAoI-WI policies outperform
the policies that do not utilize query information. Moreover, experimental results show that
EAoI-MW surpasses the EAoI-WIP in terms of throughput. For EAoI-aware scheduling
policies, whether the policy is derived for the instantaneous serving or the proactive serving
scenario does not cause a significant difference in EAoI performance. Rather than utilizing
the exact timings of the query arrivals, EAoI-aware policies weight receivers according to
their long-term query arrival statistics. Since there is no significant difference between the
proactive response and instant response scenarios in the long-term query arrival statistics,
there is no significant difference between the performances of the policies. As can be seen
from Figures 8 and 9, the EAoI performances of EAoI-MW derived for the instantaneous
response scenario and the EAoI-WIP derived for the proactive response scenario are very
close to each other.

6.3. Evaluation of QAoI-Aware Scheduling Policies

In this section, we share the results of our experiments. We conducted the experiments
in the simulation environment and the SDR environment. Throughout the experiments, we
evaluated the performance of the QAoI-aware MW policy in terms of QAoI and AoI, and
we used the AoI-aware MW policy as a benchmark.

6.3.1. Results from Simulation Environment

We conducted four experiments in the MATLAB environment. In each experiment, the
frame length was K = 1,100,000, and M = 10 receivers were active in the network. Within
the experiments, we adjusted the query period of the receivers and observed the result of
this increment from the AoI and QAoI perspectives. We initialized query periods to prevent
the overlap of the query frames for each receiver. We assume ai(t) is stationary through
time by taking advantage of non-overlapping queries, and we calculate fi as fi = 1− pi in
Q-MW policy. Channel reliabilities (long-term average packet success rates) measured in
the experiments are summarized in Table 8. Average QAoI and AoI obtained by Q-MW
policy for each experiment are given in Figures 10 and 11, respectively.

Table 8. Channel statistics for simulations.

Experiment Index p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

1 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9
2 0.9 0.9 0.9 0.9 0.9 0.1 0.1 0.1 0.1 0.1
3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
4 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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Figure 10. Evaluation of Q-MW policy in terms of average QAoI (JQ).
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Figure 11. Evaluation of Q-MW policy in terms of average AoI (JA).

6.3.2. Results from the USRP Testbed

We conducted two experiment sets in the SDR testbed. In both experiment sets, we
increased the output signal gain of the transmitter USRP (base station) to observe the effects
of various channel reliabilities (i.e., packet success rates). For each signal gain level, we test
the policies at least ten times and average the results of redundant experiments. The frame
length of each test was K = 7500, and there were M = 3 receivers in the network. In the
first experiment set, the query period of receivers was 25, and in the second experiment set,
the query period of the receivers was 5. In both experiment sets, we initialize the query
periods to prevent the arrival of multiple queries within the same frame. We assume ai(t) is
stationary through time by taking advantage of non-overlapping queries, and we calculate
fi as fi = 1− pi in Q-MW policy.

For the first experiment set, evaluation of QAoI and AoI are given in Figures 12 and 13,
respectively. Channel reliabilities corresponding to USRP gain levels are given in Table 9.
For the second experiment set, evaluation of QAoI and AoI are given in Figures 14 and 15,
respectively. Channel reliabilities corresponding to USRP gain levels are given in Table 10.
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Figure 12. Evaluation of QAoI (JQ) for varying power levels of transmitter USRP, 25 frames length
query period.
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Figure 13. Evaluation of AoI (JA) for varying power levels of transmitter USRP, 25 frames length
query period.

Table 9. Channel statistics.

USRP Power Level p1 p2 p3

2 0.9997 0.2331 0.1681
3 0.9997 0.4203 0.3175
4 0.9997 0.5567 0.4775
5 0.9997 0.7245 0.6589

In the second experiment, we increase the output signal gain of the transmitter USRP
(base station). Throughout the experiments, we test the policies at least ten times for each
gain level and average the results of redundant experiments. In each experiment, the frame
length is K = 7500, and M = 3 receivers are active in the network. In this experiment, the
query period for each receiver is 5 frames. We initialize the query periods such that the
queried frames of receivers do not overlap at the same frame.
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Figure 14. Evaluation of QAoI for varying power levels of transmitter USRP.
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Figure 15. Evaluation of AoI for varying power levels of transmitter USRP.

Table 10. Channel statistics.

USRP Power Level p1 p2 p3

2 0.9997 0.2380 0.1687
3 0.9997 0.4109 0.3167
4 0.9997 0.5721 0.4796
5 0.9996 0.7299 0.6635

6.3.3. Comparison of SDR Testbed Results with Simulations

In this section, we share the results of the comparison between simulation and re-
alization. We use the results of the experiment illustrated in Figure 14 as a reference for
the simulation. We use the same channel reliabilities from Table 10 for the simulation
environment. Results of the comparison in terms of QAoI are given in Figure 16.
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Figure 16. Comparison of simulation and realization results.

6.3.4. Interpretation of the Results

Within the scope of the experiments, we studied the case where query arrivals are
periodic. According to the results of both SDR realization and simulations, the Q-MW
policy outperforms the AoI-MW policy for the QAoI minimization objective. By utilizing
the query arrival information, the Q-MW scheduling policy can select receivers more
efficiently, and thus it can exhibit superior QAoI performance compared to AoI-MW.

Throughout the simulations, we investigated Q-MW in networks with various channel
reliabilities. In the first experiment, we considered ten receivers with good channel relia-
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bility. According to the results of this experiment, in cases where the query periods of the
receivers do not overlap, the QAoI policy can reduce the average QAoI in the network to
approximately one, which is the lowest possible limit. In the first experiment, the expected
number of attempts to update a receiver is close to one. Having a reduced number of
attempts enables the scheduling policy to distribute scheduling decisions more effectively
and eases the alignment of the scheduling decisions with the query periods. In the second
experiment, all receivers have poor channel qualities,and the number of attempts needed to
update a receiver is high. As the channel reliabilities decrease, the expected number of at-
tempts to update a receiver increases, and aligning the scheduling decisions with the query
periods become more challenging. In this case, the performance of query-aware policies
is reduced. As the query period increases, queried frames of the receivers become more
distant from each other, which positively affects the performance of query-aware policies.

The fact that the transmission can only be allocated to a single receiver in each frame
is one of the most fundamental limitations of the network. The QAoI-aware MW policy we
recommend, on the other hand, reduces the need for packet transmission in the network by
taking into account the query periods of receivers’ timely information requests and eases
the transmission allocation constraint in line with the query periods.

7. Conclusions and Future Work

Within the scope of the paper, we have examined the AoI, EAoI, and QAoI, which are
semantic communication metrics that prioritize information freshness. We implemented a
multi-user wireless network with SDRs to examine these metrics in real-world scenarios.
We investigated the performance of AoI-aware scheduling policies by comparing their AoI
performance with traditional scheduling policies. The emulation results reveal that the
WI and MW policies are superior to the round-robin and greedy policies, as they exploit
the information on the link reliabilities and AoIs of the receivers. Experimental results
obtained in the SDR testbed are close to simulation results when packet drops are rare, but
as the link reliabilities decrease, they begin to show some slight discrepancies. We attribute
this to the following: the AoI-aware policies adopted in this work were derived under
Bernoulli-distributed packet drops; however, as channels get poorer, the sequence of packet
drops tends to acquire a memory.

We have also studied the Effective AoI and Query AoI metrics to examine the freshness
of information from the perspective of the query source in pull-based networks. For the
EAoI domain, we proposed EAoI-MW policy by leveraging the formerly defined AoI-aware
policies. We implemented and tested the EAoI-MW and EAoI-WI policies on the SDR
Network. Experiment results show that utilizing the statistical information about the query
process significantly improves EAoI performance. We observed that EAoI-MW policy
exhibits a comparable performance with EAoI-WI and yields better results throughput. For
the Query AoI metric, we have proposed a scheduling policy by adapting the max-weight
policy to the QAoI case for multi-user pull-based network scenarios. We tested the resulting
Q-MW policy in simulation and SDR implementation environments. Results reveal that
utilizing the Q-MW policy can reduce QAoI significantly compared to AoI-aware policies.

In future studies, we seek to examine different semantic metrics beyond AoI. To this
end, we want to expand the scope of our work on the QAoI. We also aim to investigate and
optimize the Q-MW policy for the stochastic query arrival scenarios.
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Appendix A

The framework of the Lyapunov optimization aims to minimize the Lyapunov function
at every time instant t. Lyapunov function at time t is given in (A1).

L(t) =
1
M

M

∑
i=1

∆2
qi
(t) (A1)

At frame transitions, each receiver causes a drift in L. For the EAoI concept, we focus on the
drift between consecutive frames. The drift is associated with the receiver’s AoI evolution.
For each receiver, calculation of the Lyapunov drift Yi(t) between the frames t and t + 1 is
given in (A2).

Yi(t) = E
[
∆2

qi
(t + 1)− ∆2

qi
(t)
]
= E

[
di(t)∆2

i (t + 1)− di(t)∆2
i (t)

]
(A2)

Since we assume that policies are non-anticipative, which means the policies do not
have information about future channel or query status, we can argue that ∆i(t) and di(t)
are independent.

E[di(t)∆i(t)] = E[di(t)]E[∆i(t)] (A3)

We rewrite the Lyapunov drift using E[di(t)] = qi and E[di(t + 1)] = qi.

Yi(t) = E
[
qi∆2

i (t + 1)− qi∆2
i (t)

]
(A4)

After this modification, the derivation process becomes identical with [5]. We write
the transition of ∆i(t) between consecutive frames in (A5).

∆i(t + 1) =ui(t) + (1− ui(t))(∆i(t) + 1)

=ai(t)ci(t) + (1− ai(t)ci(t))(∆i(t) + 1)
(A5)

Then, we rewrite the Lyapunov drift by expressing ∆i(t + 1) in terms of ∆i(t).

Yi(t) = E
[
qi[ui(t) + (1− ui(t))(∆i(t) + 1)]2 − qi∆2

i (t)
]

(A6)
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Since ui(t) is 0-or-1 variable, we can argue that u2
i (t) = ui(t), (1− ui(t))2 = (1− ui(t))

and ui(t)(1− ui(t)) = 0. With these simplifications, we can rewrite Yi(t).

Yi(t) =E
[
qi

[
ui(t) + (1− ui(t))(∆i(t) + 1)2

]
− qi∆2

i (t)
]

=E
[
qi

[
∆2

i (t) + 2∆i(t) + 1− ui(t)∆2
i (t)− 2ui(t)∆i(t)

]
− qi∆2

i (t)
]

=E
[
qi

[
2∆i(t) + 1− ui(t)∆2

i (t)− 2ui(t)∆i(t)
]]

=qi

[
2∆i(t) + 1−E[ui(t)]∆2

i (t)− 2E[ui(t)]∆i(t)
]

=
[
2qi∆i(t) + qi − qi piE[ai(t)]∆2

i (t)− 2qi piE[ai(t)]∆i(t)
]

(A7)

The ai(t) is the decision variable that we can select zero or one. We only aim to
investigate the effect of changing ai(t). Since the results of other terms in Yi(t) do not
change as ai(t) change, we omit them and focus on the terms that have ai(t) as a coefficient.

Ŷi(t) =− qi piE[ai(t)]∆2
i (t)− 2qi piE[ai(t)]∆i(t)

= −E[ai(t)]
(

qi pi

(
∆2

i (t) + 2∆i(t)
))

= −E[ai(t)]Ci(t)

(A8)

Ci(t) = qi pi

(
∆2

i (t) + 2∆i(t)
)

(A9)

The max-weight policy aims to minimize the average Lyapunov drift by selecting the
receiver i with maximum Ci(t) = qi pi

(
∆2

i (t) + 2∆i(t)
)

at every frame t.
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