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Abstract: With the recent developments of Machine Learning as a Service (MLaaS), various privacy
concerns have been raised. Having access to the user’s data, an adversary can design attacks with
different objectives, namely, reconstruction or attribute inference attacks. In this paper, we propose
two different training frameworks for an image classification task while preserving user data privacy
against the two aforementioned attacks. In both frameworks, an encoder is trained with contrastive
loss, providing a superior utility-privacy trade-off. In the reconstruction attack scenario, a supervised
contrastive loss was employed to provide maximal discrimination for the targeted classification task.
The encoded features are further perturbed using the obfuscator module to remove all redundant
information. Moreover, the obfuscator module is jointly trained with a classifier to minimize the
correlation between private feature representation and original data while retaining the model utility
for the classification. For the attribute inference attack, we aim to provide a representation of data
that is independent of the sensitive attribute. Therefore, the encoder is trained with supervised and
private contrastive loss. Furthermore, an obfuscator module is trained in an adversarial manner
to preserve the privacy of sensitive attributes while maintaining the classification performance on
the target attribute. The reported results on the CelebA dataset validate the effectiveness of the
proposed frameworks.

Keywords: privacy; reconstruction attack; re-identification attack

1. Introduction

Deep learning has been widely applied in many computer vision applications in
recent years, with remarkable success. Much progress in deep learning has been made
possible thanks to accessible computational power and the widely available datasets needed
for training. The necessity of memory and computational power has incentivized many
companies such as AMAZON, Google, and IBM to provide their customers with platforms
offering Machine Learning as a Service (MLaaS). MLaaS runs on a cloud environment
and covers most infrastructure issues such as data pre-processing, model training, and
model evaluation. Hence, the users can deploy their machine learning models by simply
uploading their data (e.g., images) into the cloud server.

With all the promises made by MLaaS, this scheme introduces various privacy chal-
lenges for both users and the service provider. From one point of view, the service providers
are concerned that an adversary could be disguised as a client to steal their model parame-
ters. On the other hand, users are worried that sensitive information might be revealed to
unauthorized third parties by uploading their raw data into the cloud server [1]. Further-
more, in some financial or medical data applications, it might not be legally allowed for the
user to upload and submit raw data to the cloud server. One widely used solution is to share
a feature representation of data instead. However, the adversary can still exploit the privacy
leakage in the feature representation and design attacks targeting various objectives.

There are mainly two types of attacks regarding the privacy of users’ data: attribute
inference attack and reconstruction attack [1,2]. In the reconstruction or model inversion
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attack, the adversary’s goal is to reconstruct the original data given the shared feature rep-
resentation. Whereas in attribute inference attack, the adversary is interested in identifying
certain sensitive attributes in the data such as age, gender, race, etc.

In this paper, we consider an image classification task in which users send their
original data to the cloud service provider. The adversary, a malicious user or the MLaaS
provider, wishes to exploit the privacy leakage in the shared feature representation targeting
reconstruction or attribute inference attack.

The rest of the paper is organized as follows: Problem formulation and assumptions
are introduced in Section 2. Section 3 reviews the related work. Two defense frame-
works against the reconstruction attack and attribute inference attack are proposed in
Sections 4 and 5, respectively. Finally, Section 6 concludes this work along with suggestions
for future work.

2. Problem Formulation

As shown in Figure 1, given the high dimensional images in the dataset x ∈ Rn, users
or data owners intend to share a feature representation h for the specific utility task, image
classification. Let Yt denote the corresponding labels for the target class that the central
classifier is trained to predict them and let Yp denote the label information for the private
and sensitive attribute. Concerned about the privacy leakage in the shared representations,
the users, as the defenders, apply an obfuscation mechanism on the shared features before
releasing them to the public as hp. The defender’s ultimate goal is to maintain a good
classification performance while preserving their privacy.

On the other hand, having access to a collection of original images and their corre-
sponding protected features D = {(x1, hp1), (x2, hp2), . . . xN , hpN )}, the adversary aims
to reconstruct the original data or recognize sensitive attributes such as age, gender, etc.
Therefore, in this setting, the utility is a classification task and privacy is defined as the
attacker’s ability to reconstruct the original data or re-identify the sensitive attributes.

Server

Shared 
Representation

Adversary

Age, Gender, …

Eavesd
rop

p
ing

Private Data

Figure 1. Threat model. The user sends the private representations to the server for final classification.
Eavesdropping on the private features, the adversary wishes to reconstruct the original data or infer
sensitive attributes. The adversary does not have access to the local obfuscation mechanism used by
the user, shown in blue dashed lines.
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3. Related Work

Several techniques have been introduced to preserve the users’ data privacy, such as
image obfuscation, homomorphic encryption, secure multi-party computation, and private
feature representation.

Classical image obfuscation: In image obfuscation techniques, the original image
is perturbed to hide sensitive information or details and make it visually unidentifiable.
Conventional methods include pixelating [3], blurring [3,4], and masking [5]. However,
as discussed in [6,7], these protected images can still be identified or reconstructed using
deep learning-assisted methods. Recently, more advanced frameworks of deep obfuscation
based on deep generative models have been introduced [8–10].

Homomorphic encryption: Homomorphic encryption (HE) is another method that al-
lows one to carry out computations on encrypted data without the need for decryption [11].
This means that data can be processed securely even though they have been outsourced
in untrusted and public environments. HE can be categorized into three types, namely
partially homomorphic (PHE), somewhat homomorphic (SWHE), and fully homomorphic
encryption (FHE) [11]. However, the operations in HE are limited to be represented as a
polynomial of a bounded degree. They cannot, therefore, be used with complicated and
nonlinear computation functions. Moreover, HE is highly computationally intensive and
leads to an extremely slow training process.

Deep and private feature sharing: With the recent advancements of deep models,
a new line of work has been introduced to share deep private and obfuscated feature
representations of images. Osia et al. [12] considered a client-server setting in which the
deep model architecture is separated into two parts: a feature extractor on the client’s side
and a classifier on the cloud. The extracted features are then protected against attribute
inference attacks by adding noise and Siamese fine-tuning. However, their proposed
framework is not feasible during training due to its interactive training procedure and high
communication throughput between the clients and servers [13].

Later, Li et al. proposed PrivyNet, a private deep learning training framework [13].
PrivyNet splits a neural network into local and cloud counterparts. The feature representa-
tions of private data are extracted using the local model while the cloud neural network
is trained on publicly released features for the target classification task. The authors con-
sidered a reconstruction attack on the shared features and measured privacy through the
reconstruction error. In ref. [14], the authors used an adversarial training scheme between
an encoder and a classifier to preserve the privacy of intermediate encoded features from
attribute inference attacks.

Along the same line of research, Lie et al. [15] introduced an adversarial privacy
network called PAN to learn obfuscated features. The learned that obfuscated features are
designed to be effective against both reconstruction attacks and attribute inference attacks.
Similarly, DeepObfuscater was introduced in ref. [16], and the authors extended PAN to
include perceptual quality.

In the context of privacy of published datasets, Huang et al. [17] proposed a framework
based on a minmax game between a privatizer and an adversary. By employing generative
adversarial networks (GAN) in their framework, users can directly learn to privatize their
dataset without having access to the dataset statistics.

4. Defense Against a Reconstruction Attack

This section introduces a framework to maintain a good classification accuracy while
avoiding the invertibility of shared representations. In other words, the proposed frame-
work is designed to keep only relevant information for the specific classification task.
The model consists of three modules: encoder, obfuscator, and classifier. The encoder
is trained using supervised contrastive loss to provide maximal discrimination for the
classification task. The encoded features are obfuscated by minimizing their statistical
correlation to the original input images. Finally, a classifier is jointly trained to maintain
the classification performance.
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4.1. Proposed Architecture

The overall private data-sharing framework, shown in Figure 2, consists of three steps:

1. An encoder fφ is pre-trained on the public data using supervised contrastive loss.
The encoder is later used to extract discriminative representation for the targeted
classification task;

2. An obfuscator fψ is learned to remove irrelevant information in representation h by
minimizing its correlation to the original data x;

3. A classifier gθ is jointly trained with the obfuscator to ensure that the useful information
for the intended classification task is preserved in the obfuscated representation.

Figure 2. General diagram of the proposed framework for defense against reconstruction attack. LCE

denotes cross-entropy and LCorr stands for a similarity metric.

4.1.1. Encoder

As shown in Figure 3, the encoder fφ is initially trained with a contrastive loss to
output a well-discriminated feature representation. To this end, we used a ResNet backbone
with contrastive loss similar to the SimCLR approach [18].

The basic idea behind contrastive learning is to pull similar instances denoted as
positive pairs together and push dissimilar ones, negative samples, apart. Given a random
augmentation transform Tt(.), two different views xi, xj of the same image x are considered
as positive pairs, and the rest of the batch samples as negative pairs. A projection head
gθ(.) maps the feature representations of the base encoder to the latent embedding z [18]:

xi = Tti (x), hi = fφ(xi), zi = gθ(hi);

xj = Ttj(x), hj = fφ(xj), zj = gθ(hj).
(1)

Using cosine similarity, the similarities between positive pairs are maximized while
the negative ones are minimized. The self-supervised contrastive loss is defined as:

Lssl = −∑
i

log
exp(sim(zi, zj))

∑k,k 6=i exp(sim(zi, zk))
. (2)

This idea was further extended to include target class information in the loss where
feature representations from the same class are pulled closer together than those from
different classes [19].

Lsupcon = −∑
i

1
|P(i)| ∑

p∈P(i)
log

exp(sim(zi, zp))

∑k,k 6=i exp(sim(zi, zk))
, (3)

where P(i) are all the positive samples belonging to the same class as xi.
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Figure 3. Encoder training using supervised contrastive learning.

4.1.2. Obfuscator

The obfuscator fψ is trained to avoid the invertibility of shared feature representation.
From an information-theoretic point of view, X → H → X̂ forms a Markov chain. To
mitigate the reconstruction attack, I(X, X̂) should be minimized. A widely used approach is
to jointly train an adversary image decoder to achieve reconstruction disparity by minimiz-
ing the Structural Similarity Index Measure (SSIM) [20]. This is done through a min-max
optimization game between the obfuscator and adversary decoder.

Nevertheless, considering the information processing inequality based on the above
Markov chain, minimizing the mutual information between the original image X and the
feature representation H upper bounds the I(X, X̂) as I(X, H) ≥ I(X, X̂).

To minimize I(X, H), one should estimate the mutual information, which is a well-
known and challenging problem and would involve a more complicated optimization.
To solve this issue and to accelerate and simplify the training, we adopted two statistical
correlation measures between random variables, namely, Hilbert–Schmidt Independence
Criterion (HSIC) [21,22] and Distance Correlation (DistCorr) [23]. Consequently, the obfus-
cator network fψ is trained to minimize the correlation between the original images and
the protected representation:

LCorr = Corr(x, hp), (4)

where Corr(.) can be either based on distance correlation DistCorr or Hilbert–Schmidt In-
dependence Criterion HSIC. The idea of minimizing the statistical dependencies of features
has been around in the literature of federated or distributed learning and physics [24–26].

Hilbert–Schmidt Independence Criterion (HSIC): Let F be a reproducing kernel
Hilbert space (RKHS), with the continuous feature mapping φ(x) and kernel function
k(x, x′) = 〈φ(x), φ(x′)〉. Similarly, assume G be an RKHS, with the continuous feature
mapping ψ(h) and kernel function k(h, h′) = 〈ψ(h), ψ(h′)〉.

The cross-covariance operator Cxh : G → F can be defined as [21,22]:

Cxh := Ep(x,h)[(φ(x)− µx)⊗ (ψ(h)− µh], (5)

where⊗ is the matrix product and µx = Ep(x)[φ(x)], µh = Ep(h)[ψ(h)]. The largest singular
value of the cross-covariance operator ‖Cxh‖ is zero if and only if x and h are independent

The Hilbert–Schmidt Independence Criterion is defined as the squared Hilbert–Schmidt
norm of the associated cross-covariance operator Cxh:

HSICx,h(F ,G) = ‖Cxh‖2
HS. (6)

Distance Correlation (DistCorr): Let X and H be two random vectors with finite
second moments. Assume that (X, H), (X′, H′), (X′′, H′′) are independent and identically
distributed. Then, the distance covariance can be defined as:

dCov(X, H) =E(|X− X′||H−H′|)
+ E(|X− X′|)E(|H−H′|)
− 2E(|X− X′||H−H′′|),

(7)
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where |.| is the pairwise distance. Subsequently, the definition of the distance correlation
will be:

DistCorr(X, H) =
dCov(X, H)√

dCov(X, X)dCov(H, H)
. (8)

4.1.3. Classifier

The classifier gθ is a lightweight neural network with two fully connected layers and
Relu activation functions. The classifier is jointly trained with the obfuscator to maintain
the classification accuracy for the utility task:

(θ̂, ψ̂) = argminθ,ψ LCE(yt, ŷt) + γLCorr(x, hp), (9)

where γ is the utility-privacy trade-off parameter. LCE denotes the cross-entropy between
the utility attribute yt and its estimate ŷt and LCorr denotes either DistCorr or HSIC accord-
ing to Equations (6) and (8).

4.2. Experimental Results
4.2.1. Experimental Setup

Dataset: We conducted experiments on a celebrity face image dataset, CelebA [27],
which consists of over 20,000 celebrity images, where each image is annotated with 40 at-
tributes. Every input image is center-cropped by 178× 178 and then resized to 128× 128.
We select the “gender” attribute for our intended classification task.

Attacker setup: The adversary has a set of publicly available protected representations
hp with the corresponding original images x and aims to train a decoder to reconstruct the
original image for the model inversion attack.

4.2.2. Visualizations of Encoded Features

This section investigates the effect of using supervised contrastive loss in the encoded
features. To do so, we visualized the 2D t-SNEs of extracted features for the target class
label of “gender,” as depicted in Figure 4. As expected, the output features of the encoder
trained with supervised loss are more discriminative compared to those trained in the
unsupervised way.

Figure 4. T-SNE visualization of output features for unsupervised and supervised contrastive losses.

4.2.3. Classification Performance

In this section, the utility-privacy trade-off is investigated in the form of classification
accuracy vs. decorrelation. More specifically, we are interested in analyzing the extent to
which classification accuracy decreases if we decorrelate the features from original images.
As shown in Table 1, with only 0.2 loss in the accuracy, the correlation between input
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images and the features drops for both similarity measures. In the case of HSIC, however,
the reduction in correlation is remarkable. The considerably smaller loss in the accuracy is
mainly due to the supervised contrastive loss used in training the encoder, as we obtain
discriminative features with respect to the target class. In Section 4.2.4, we demonstrate that
an attacker can still reconstruct completely recognizable images using these discriminative
features. Consequently, the obfuscator aims at removing all the redundant information
about the images and only keeping the ones related to the intended classification task.

Table 1. Classification vs. Correlation.

Correlation Type Accuracy DistCorr HSIC

without 98.48 0.714 0.62

DistCorr, γ = 2 98.2 0.24 0.25
DistCorr, γ = 20 98.1 0.21 0.23

HSIC, γ = 2 98.23 0.32 0.026
HSIC, γ = 20 98.17 0.29 0.007

4.2.4. Reconstruction Attack

According to Figure 5, the adversary model for the reconstruction attack consists of a
generator Gθx and a discriminator Dθxx̂ . The generator network maps the protected and
obfuscated feature representation hp to the image space, while the discriminator evaluates
them. The discriminator network assigns a probability that the image is from the real data
distribution rather than the generator distribution. Thus, the discriminator is trained to
classify images as being from the training data or reconstructed from the generator:

LD = log(Dθxx̂(x)) + log(1−Dθxx̂(Gθx(hp)). (10)

Therefore, the decoder and generator are trained in a min-max optimization problem:

mingx maxθxx̂ Ep(x)[log(Dθxx̂(x))] + Ep(hp)[log(1−Dθxx̂(Gθx(hp))]. (11)

To improve the performance of the generator, a perceptual loss similar to SRGAN [28]
was also employed. The perceptual loss for the generator network consists of an adversarial
loss and a content loss:

Lperceptual = Lmse + Lvgg︸ ︷︷ ︸
content loss

+ LDg︸︷︷︸
adversarial loss

, (12)

and:

Lmse = Ep(x,hp)‖x−Gθx(hp)‖,

Lvgg = Ep(x,hp)‖ vgg19(x)− vgg19(Gθx(hp))‖,

LDg = Ep(hp)[− log(Dθxx̂(Gθx(hp)))],

(13)

where vgg19(.) is the output of a pre-trained 19-layer VGG network [29].
We conducted experiments on the reconstruction attack for different correlation losses

and different values of γ in Equation (9). The performance of the attack model is evaluated
using multi-scale structural similarity (MSSIM) [30] and SSIM [20]. To better evaluate
the effectiveness of the proposed obfuscation model, the reconstruction quality from the
following scenarios has been considered:
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• h: The feature representations of original images;
• hxnoisy : The raw images are perturbed by adding Gaussian noise and fed to the encoder

to get the features;
• hnoisy: The feature representations of original images are perturbed by adding Gaus-

sian noise;
• hp: The obfuscated and protected features.

Figure 5. Adversary model for reconstruction attack.

The average SSIM and MSSIM for reconstructed images from the protected features and
three other scenarios are reported in Table 2. As the SSIM and MSSIM scores were very close for
both correlation measures and different values of γ, we only reported the one for DistCorr and
γ = 2 in Table 2. The results show that both similarity measures are dropped by a large margin
with only a 0.2% loss in accuracy, therefore validating the effectiveness of the obfuscator.

Table 2. Image reconstruction comparison.

Obfuscation SSIM MSSIM Accuracy

h 0.4 0.56 98.48
hxnoisy 0.36 0.50 98.41
hnoisy 0.30 0.43 98.37

hp 0.19 0.16 98.2

Moreover, the visualization of the reconstructed images is illustrated in Figure 6. The
reconstructed images from the raw features are completely recognizable, but not very sharp.
This is mainly because the encoder is trained with the supervised contrastive loss, where
the information about the target class is mostly left in the last layer. On the other hand,
the output images become completely unrecognizable with our proposed obfuscator, and
even a powerful decoder can only output an average image. To further investigate the
effect of correlation measure and γ in Equation (9), the output images for different cases
are presented in Figure 7. Even though the attacker outputs an average image for both
cases of correlation measures, it is interesting to note that features learned by HSIC produce
different average images for males and females. In other words, the gender information is
clearly preserved in the protected representation.



Entropy 2022, 24, 643 9 of 16

Figure 6. Visual performance of the reconstruction attack from different features. First row: h, second
row: hxnoisy , third row: hnoisy, and the last row: hp for DistCorr, γ = 20.

Figure 7. Visual performance of reconstructed output from the protected features for different
correlation measures. Firs row: original images, row 2, 3: DistCorr for γ = 2, 20, row 4, 5: HSIC for
γ = 2, 20.
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5. Defense Against an Attribute Inference Attack

Herein, our primary focus is to design a framework for defense against attribute
inference attacks. The defender attempts to share a representation with relevant information
about the target class label, but keeps the sensitive attribute private.

The model consists of four modules: encoder, obfuscator, target classifier, and ad-
versary classifier. The encoder is trained using supervised and private contrastive loss
to provide maximal discrimination for the classification task while protecting the private
attribute. Furthermore, the encoded features are obfuscated, and the target classifier is
jointly trained to maintain the classification performance. Finally, adversarial training is
applied between the target classifier and the adversary classifier.

5.1. Proposed Architecture

The overall private data-sharing framework, shown in Figure 8, consists of four steps:

1. An encoder fφ is pre-trained on the public data using supervised and private con-
trastive loss. The encoder is later used to extract discriminative representation for the
targeted classification task;

2. An obfuscator fψ is learned to remove relevant information in the representation h
about the private attribute;

3. A target classifier gθt is jointly trained with the obfuscator to ensure that the useful infor-
mation for the intended classification task is preserved in the obfuscated representation;

4. An adversary classifier gθa is adversely trained to minimize the classification error for
the private attribute.

Figure 8. General diagram of the proposed framework for defense against an attribute inference attack.

5.1.1. Encoder

As displayed in Figure 3, the encoder fφ is initially trained with supervised and
private contrastive loss to output a well-discriminated feature representation and protect
the private attributes. As mentioned in the previous section, the key idea behind contrastive
loss is to push negative pairs apart and pull positive ones close. In a supervised contrastive
loss, the positive pairs are those with the same target labels. Maximal discrimination can
thus be achieved with respect to the target class.

This concept can be further extended to preserve the privacy of private attributes
by allowing minimal discrimination regarding the sensitive label. In other words, for a
supervised and private contrastive loss, we will assume:

• Positive pairs: Those with the same target label as the anchor image;
• Negative pairs: Those with the different target labels and the same private label as the

anchor image.

Therefore, for an augmented dataset ofD = {(x1,i, x1,j, y1,t, y1,p), . . . (xN,i, xN,j, yN,t, yN,p)},
we can define the positive and negative set for each sample xk as:

P(xk) = {(xl,i, xl,j) if (yk,t = yl,t}N
l=1,

N(xk) = {(xl,i, xl,j) if (yk,t 6= yl,t & yk,p = yl,p)}N
l=1.

(14)
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The supervised and private contrastive loss based on SupCon [19] can thus be de-
fined as:

Lprivate−supcon = −∑
i

1
|P(i)| ∑

p∈P(i)
log

exp(sim(zi, zp))

∑k∈N(i) exp(sim(zi, zk))
, (15)

where P(i) and N(i) denote positive and negative sets with respect to sample xi. Similar
to SupCon [19], Dai et al. introduced a supervised contrastive loss based on Momentum
Contrast (MoCo) [31] denoted as UniCon [32]:

Lunicon = log

1 + ∑
{k−}

exp (sk−) ∑
{k+}

exp (−sk+)

, (16)

where s denotes the similarity score and {k−}, {k+} are the subset of negative and positive
pairs, respectively. Likewise, we can extend UniCon loss to take into account private and
sensitive attributes as:

Lprivate−unicon = log(1 + ∑
k−∈N(xk)

exp (sk−) ∑
k+∈P(xk)

exp (−sk+)). (17)

5.1.2. Obfuscator

The obfuscator fψ is trained to hide sensitive and private attributes from the shared
representation while keeping the relevant information regarding the target class label.

5.1.3. Target Classifier

The classifier gθt is a lightweight neural network with three fully connected layers and
Relu activation functions. The classifier is jointly trained with the obfuscator to maintain
the classification accuracy for the target class label:

(θ̂t, ψ̂) = argminθt ,ψ LCE(yt, ŷt), (18)

where LCE indicates the cross-entropy between the target attribute yt and its estimate ŷt.

5.1.4. Adversary Classifier

The adversary classifier gθa plays the role of an attacker attempting to infer private
attributes using the eavesdropped features. We simulate a game between the adversary
and the defender through an adversarial training procedure. The attacker tries to minimize
the classification error for the private attributes as:

θ̂a = argminθa
LCE(yp, ŷp). (19)

Meanwhile,the defender aims to degrade the performance of the adversary classifier
and minimize the private attribute leakage while maintaining good performance on the
target classification task. Hence:

ψ̂ = argminψ LCE(yt, ŷt)− γLCE(yp, ŷp), (20)

where γ is the utility-privacy trade-off parameter. Algorithm 1 delineates the overall steps
in our proposed adversarial training procedure.
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Algorithm 1 Adversarial Training Procedure
Input: dataset D and parameter γ
Output: φ, ψ, θt, θa

1: for every epoch do
2: Sample a minibatch from dataset
3: Train φ using Lprivate−supcon or Lprivate−unicon in Equations (15) and (16)
4: end for
5: for every epoch do
6: Sample a minibatch from dataset
7: Train ψ to minimize LCE(yt, ŷt)− γLCE(yp, ŷp)
8: Train θa to minimize LCE(yp, ŷp)
9: Train θt to minimize LCE(yt, ŷt)

10: end for

5.2. Experimental Results

This section analyzes the effectiveness of the proposed framework. For the rest of this
section, we refer to utility as the classification accuracy on the target class label. Similarly,
privacy is defined as the classification performance on the private and sensitive attribute.

5.2.1. Experimental Setup

Dataset: We conducted experiments on a celebrity face image dataset, CelebA [27],
which consists of over 20,000 celebrity images, where each image is annotated with 40 at-
tributes. Every input image is center-cropped by 178× 178 and then resized to 128× 128.
We select the “gender” attribute for our intended classification task and “age” with two
classes of young and old as the sensitive attribute.

Attacker setup: The adversary has a set of publicly available protected representations
hp with the corresponding original images x and their protected labels yp and aims to train
a classifier to re-identify the protected attribute.

Defender setup: The primary goal of the defender is two-fold: the defender aims to
preserve the high accuracy of classification expressed by “target accuracy” with respect
to the utility attribute yt. At the same time, the defender wishes to decrease the correct
classification accuracy on the attacker’s side, which is represented by “private accuracy”
with respect to the protected attribute yp. The privacy utility trade-off is controlled by
different values of γ in Equation (20). This trade-off is best achieved when, firstly, the
publicly available representation hp is discriminative with respect to the target attribute.
Secondly, there needs to be an obfuscation mechanism to remove relevant information in
hp regarding the private attribute.

5.2.2. Impact of the Obfuscator

In this section, we investigate the impact of the obfuscator. Therefore, keeping the
encoder constant, we design an attribute inference attack to classify the private and sen-
sitive attribute with and without the obfuscator. To analyze the privacy trade-off, we
experimented with different values of γ in Equation (20), and the results are reported in
Table 3.

As shown in Table 3, the classification accuracy significantly drops when the obfusca-
tion is applied, thus validating the effectiveness of the obfuscator module. The obtained
results show that the decline in utility is significantly small with only a 0.3–0.7% decrease
in target accuracy. Moreover, the increase in γ decreases the private classification accuracy.
However, in view of privacy protection, random guessing is the ultimate goal in a binary
classification setting, as the adversary can flip his guess for any accuracy lower than the
random guessing threshold. In order to account for this, the flipping accuracies are also
reported in the last row of Table 3 accordingly. For the CelebA dataset, the class label
“age” is slightly imbalanced and distributed as 75–25%; thereby, the corresponding random
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guessing threshold is 62.5% (0.75 × 0.75 + 0.25 × 0.25 = 0.625). Therefore, from a privacy
protection point of view, the best result is obtained for γ = 1 for UniCon loss.

Table 3. Classification accuracy on the CelebA dataset on target and private attributes for UniCon
and SupCon loss and different values of γ.

Accuracy
UniCon Supcon

w/o obfs.
γ = 1 γ = 2 γ = 10 γ = 1 γ = 2 γ = 10

target accuracy 98.37 98.34 98.30 98.33 98.31 98.30 98.34
private accuracy 32.5 25.32 19.58 25.32 25.32 17.89 82.2

100 − private accuracy 67.5 74.68 80.42 74.68 74.68 82.11 -

5.2.3. Privacy-Utility Trade-Off Comparison

To better evaluate the effectiveness of the proposed framework model, the privacy–
utility trade-off for different scenarios has been investigated. The results in Table 3 validate
the effectiveness of the obfuscator module. Putting the obfuscator aside, we are interested
in analyzing the impact of using supervised and private loss compared to the conventional
contrastive loss in Equation (2). To evaluate that, we considered the following scenarios:

• h: the feature representations of original images from an encoder trained with a
conventional contrastive loss in Equation (2);

• hxnoisy : the feature representations of noisy images from an encoder trained with a
conventional contrastive loss in Equation (2);

• hnoisy: noisy feature representations of original images from an encoder trained with
a conventional contrastive loss in Equation (2);

• hprivate−unicon: the feature representations of original images from an encoder trained
with private UniCon loss in Equation (16);

• hprivate−supcon: the feature representations of original images from an encoder trained
with private SupCon loss in Equation (15);

• hpunicon : the obfuscated and protected features of the proposed framework using
UniCon loss in Equation (16);

• hpsupcon : the obfuscated and protected features of the proposed framework using
SupCon loss in Equation (15).

The privacy–utility tradeoff in the form of target and private accuracy for various
settings is reported in Table 4. The final accuracies were flipped in cases lower than the
random guessing threshold for a fair comparison.

Impact of supervised and private contrastive loss: As reported in Table 4, the accu-
racy on the target class is higher for both cases of SupCon and Unicon compared to the
unsupervised contrastive loss. This is mainly due to the fact that there was no label infor-
mation used in the conventional contrastive loss (Equation (2)). In addition, the accuracy
on the private attribute is 4% lower in hprivate−supcon and hprivate−supcon compared to h,
showing benefits of using supervised and private loss.

Impact of adding noise: Adding noise to raw images or extracted features can be
considered as a defense mechanism. Injecting Gaussian noise into the data has been
widely used in federated learning [33,34]. Indeed, the results in Table 4 demonstrate that
the privacy increases as we add noise to the images or the features. Moreover, raising
the variance of the noise leads to more privacy gain. However, the private classification
accuracies for noisy data are still far from the results we can achieve using the proposed
framework. Besides, by adding noise, we also lose utility as the target accuracy drops.

Comparison to DeepObfuscator [16]: We carefully explored and examined other
papers in state-of-the-art for a fair comparison. Unfortunately, the differences in the
problem formulation make this comparison difficult and unfair in some cases. For example,
several works have studied the privacy leakage of a face verification system different
from the attribute classification problem formulation. In ref. [35], the authors proposed an
adversarial framework for reducing gender information in the final embedding vectors
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used for the verification system. Hence, we can argue that even though the privacy task of
attribute leakage in the embeddings is the same, the utility is defined differently, thereby
making the comparison infeasible.

Moreover, several studies have investigated the same utility–privacy formulation
as our proposed framework. However, they differ in their overall setting. For example,
Boutet et al. [36] proposed a privacy-preserving framework against attribute inference
attacks in a federated learning setting. In their experiments, the main target label is
“smiling,” while the protected label is the “gender” of users.

Nevertheless, a very similar problem formulation and setting are studied in ref. [16].
Li et al. [16] exploit an adversarial game to maintain the classification performance on
the public class label while preserving against an attribute-inference attack. As they have
used different attributes as the target and private, we re-run their obfuscator model for
our public and private attributes. The DeepObfuscator model in [16] is further adapted to
only consider the attribute inference attack. The results reported in Table 4 demonstrate the
superior performance of the proposed method compared to DeepObfucator.

Table 4. Privacy-Utility trade-off.

Accuracy

Target Accuracy Private Accuracy

h 98.24 86.3
hxnoisy 98.03 86.05
hnoisy 97.61 84.5

hprivate−unicon 98.38 82.23
hprivate−supcon 98.34 82.2

our: hpunicon and γ = 1 98.30 67.5
our: hpsupcon and γ = 1 98.30 74.68
DeepObfuscator [16] 97.75 76.03

6. Conclusions

This paper addressed the problem of template protection against the most commonly
used attacks, namely, reconstruction and attribute inference attacks. Two defense frame-
works based on contrastive learning were proposed.

For defense against the reconstruction attack, we directly minimize the correlation
and dependencies of encoded features with the original data, avoiding the unnecessary
complications of a min-max adversarial training. Furthermore, training an encoder with the
supervised contrastive loss would minimize discrimination in the feature space and remove
redundant information about the original images. Hence, there is no substantial loss in
classification performance, and the proposed framework provides a better utility-privacy
trade-off.

In the attribute inference attack, the adversary wishes to access the private attribute
given the shared protected templates. Therefore, in the first defense step, we propose
an encoder trained with the supervised and private contrastive loss. Furthermore, an
obfuscator module is trained in an adversarial manner to preserve the privacy of private
attributes while maintaining a good classification performance. The reported results on
the CelebA dataset validate the effectiveness of the proposed framework. The future work
aims at designing a framework based on contrastive loss considering both reconstruction
and attribute inference attacks. Another interesting avenue of research is to investigate the
performance of the proposed framework on other datasets.
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