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Abstract: Information transmission and storage have gained traction as unifying concepts to charac-
terize biological systems and their chances of survival and evolution at multiple scales. Despite the
potential for an information-based mathematical framework to offer new insights into life processes
and ways to interact with and control them, the main legacy is that of Shannon’s, where a purely
syntactic characterization of information scores systems on the basis of their maximum information
efficiency. The latter metrics seem not entirely suitable for biological systems, where transmission and
storage of different pieces of information (carrying different semantics) can result in different chances
of survival. Based on an abstract mathematical model able to capture the parameters and behaviors
of a population of single-celled organisms whose survival is correlated to information retrieval from
the environment, this paper explores the aforementioned disconnect between classical information
theory and biology. In this paper, we present a model, specified as a computational state machine,
which is then utilized in a simulation framework constructed specifically to reveal emergence of a
“subjective information”, i.e., trade-off between a living system’s capability to maximize the acquisi-
tion of information from the environment, and the maximization of its growth and survival over time.
Simulations clearly show that a strategy that maximizes information efficiency results in a lower
growth rate with respect to the strategy that gains less information but contains a higher meaning
for survival.

Keywords: mutual information; biology; foraging; chemotaxis; growth rate; subjective information

1. Introduction

Information processing and its correlation with survival and evolution in living or-
ganisms have been proposed through the years as unifying concepts to study life across
different scales [1]. The transmission and storage of information are indeed at the basis
of very diverse life processes, ranging from the processing of information via molecular
interactions within a cell to complex codes in inter-organismal communication, and the
consequent emergence of long-term evolutionary patterns [2]. Interestingly, while the
development of a suitable mathematical framework to study and quantify information
in these contexts could revolutionize the way we characterize, analyze, and interact with
biological systems, there is little agreement on the mathematical formalism to be applied [3],
mostly based upon Shannon’s proposed framework.

In its inception, the restriction of Shannon’s mathematical theory of communication [4,5]
to purely syntactic considerations, where the meaning of information is considered irrele-
vant to the engineering problem, was a conceptual sine qua non for its success and applica-
bility within the emerging fields of electronics and telecommunications. In particular, the
concept of information entropy as a universal metric to quantify information, or its absence,
i.e., noise, and the definition of the capacity of a communication channel as the theoretical
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maximum amount of information, or Mutual Information (MI) that can be unequivocally
propagated between two points in space (transmission) or time (storage), have been the
fundamental underpinnings in the study of mathematical algorithms where information
can be represented and received with maximum efficiency.

Despite attempts to apply the aforementioned concepts in biology, from neuroscience
to biochemistry [6], and data analytics for bioinformatics [7], even abstracting biological
systems as communication channels [8–11], the syntactic nature of information theory
provides an obstacle to its application to living systems. Intuitively, within biological
systems, some messages are “more important” than others. There have been attempts to
provide a quantitative basis for this idea [12–14] but a general framework remains lacking.

Here, we develop a simple but rigorous model that illustrates the notion of “subjective
information”, defined as the particular information that an individual organism focuses
on, out of all the potentially useful information available to the organism. We show
that, under certain conditions, maximizing the expected cell division rate (or fitness)
requires maximizing information about a sequence of selected subsets of an input signal’s
components in a way that deliberately discards a larger quantity of less useful information
in favor of a smaller quantity of more useful information. The work presented in the
following builds on preliminary results included in a previous conference publication [15].
In this extended version, we formulate a mathematical model of the biological system
alongside the computational model, and we include the modeling and simulation of death
and division processes, and introduce a new metric to measure cell population growth to
better capture the correlation between information and organism survival. Comprehensive
results presented in Section 5 now enable us to study the effects of cell stress on survival
and its correlation to subjective information, and to propose a simple metric to quantify the
emergence of subjective information in a population.

Other models and frameworks to study information in the context of agents receiving
information to maximize their fitness have been proposed, either in the context of biology
or in more general terms. In particular, a trade-off between a reward or fitness purpose
(value-to-go) experienced by an organism versus how much informational “bandwidth”
can be afforded (information-to-go) for that purpose is analyzed in [14] with a Markov
Decision Process (MDP) formalism. These authors find a trade-off, under the constraint
of a cost for information acquisition, by applying a reinforcement learning optimization
to an MDP model of the organism. In [16], a thermodynamic-based framework (instead
of purely information-theoretic) is employed to study decision-making processes where a
constraint on the information processing resources needed to achieve optimal decision for
maximum reward is considered. Under this framework, a trade-off between reward and
information processing cost is found as a function of this constraint through the theory of
free-energy differences and thermodynamic energy potentials. When processing costs are
ignored, the maximum utility is reached with maximum use of information. In [17], a clear
distinction about relevant and irrelevant information for an organism is made by proposing
a metric to account for the fitness value of information, or Gould–Kelly information [18], i.e.,
the increase in the organism’s fitness resulting from a cue conveying (limited) information
about the environment. In addition, an upper bound limit to the fitness value is found as the
mutual information between this cue and the environment, which can be easily interpreted
as the performance of the communication channel between environment and organism. In
a more recent publication [19], the fitness value of information and its upper bound are
generalized for situations where the environment can vary fitness related parameters in
time and/or space, possibly characterized by gradients, where the value of an informative
cue to the organism becomes a function of the probabilistic distribution of these parameters.
A definition of “semantic information” is proposed in [20] as the minimum amount of
(relevant) information for an organism to ensure maximum viability (fitness). This quantity
is found by gradually degrading a single information channel between the environment
and the organism through a “coarse-graining” function until a decrease in the organism
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fitness is observed. It is here assumed that providing the organism with more information
than the semantic information does not contribute to its fitness.

All these previous contributions, amongst other results, seem to conclude that, for a
biological organism (or a model/generalization thereof), more “relevant” information is
always better, with its cost of acquisition or processing being the constraint, i.e., there is
always a trade-off between utility/reward and work to be done. In contrast, our contribu-
tion shifts the focus from constraints on information cost, to constraints in the capability of
an individual organism to opportunistically manipulate the information channel between
the environment and itself. As we demonstrate through our model, where we consider
two essential metabolic sources for growth and survival corresponding to competing
space-varying chemotactic information cues from the environment, the variability of this
information channel across the organism population has the two-fold effects of increasing
the overall fitness while also decreasing the average information necessary to achieve
this fitness.

The rest of the paper is organized as follows: in Section 2, we introduce a mathematical
abstraction and consequent mathematical and computational models of a living system
exhibiting the aforementioned characteristics, based on an organism that requires two
essential molecular species, and information on their distribution, to survive and grow. In
Section 3, we define two metrics to quantify information and survival from the output of
simulations based on the model organism. In Section 4, we introduce and discuss how the
simulation framework is implemented from the computational model. In Section 5, we
present numerical results obtained from our simulations and the subsequent estimation of
the metrics, while, in Section 6, we discuss our findings, finally proposing a simple metric
to quantify the emergence of subjective information in the simulated living system. Finally,
we conclude the paper in Section 7.

2. Two-Resource Foraging Model

In this paper, we consider an abstract model of an organism that requires two essential
metabolic substrates to survive and grow, and whose behavior is simple but essential for
appreciating the concept of “subjective information” and its correlation with survival. In
this model, the two substrates have different spatial distributions, and the organism detects
their local concentrations and gradients through a noisy receptor-binding process [21,22],
which in turn informs its chemotaxis [23]. This model is then used to compare the organism
survival (in terms of population growth rates [18,24]) upon adoption of strategies based
either on maximizing information on the two essential substrates [25] or, alternatively,
reducing this information by focusing on what is more important for survival [12], which
corresponds to the emergence of a “subjective information”.

2.1. Mathematical Model

Our organism is a motile species of cells of length `, inhabiting a one-dimensional
circular (periodic) environment of length L� `, for a time t ∈ [0, T] as illustrated in Figure 1.
In particular, our mathematical model is defined according to the following assumptions:

• The cell is rod-like (an abstraction of many motile bacteria), for which we distinguish
“right” and “left” ends relative to its position axis.

• The metabolic substrates, denoted A and B, are present in the environment at determi-
nate concentrations for each environment location x ∈ [0, L). We impose a nonuniform
distribution of metabolites A and B, given by local concentration functions A(x) and
B(x). For simplicity, we consider these concentrations to be static within the timescale
of microbial population growth T.

• Each cell at environment location x(t) at time t maintains an internal storage of
both substrate A and B molecules, i.e., Ain(t) and Bin(t), by absorbing A and B
molecules from the environment proportionally to the concentrations A(x(t)) and
B(x(t)), respectively, according to a determinate constant absorption coefficient k.
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Figure 1. Model components and topology. (A) Each individual cell has an internal storage of
metabolic resources Ain and Bin, and receptors Atot/2 and Btot/2 on the right and Atot/2 and Btot/2
on the left end of the cell. The cell has length ` and moves through space with velocity dx/dt driven
by differences in bound receptors. (B) Each cell’s internal resources exist in an L-shaped domain
given by {0 ≤ Ain ≤ Athresh, 0 ≤ Bin} ∪ {0 ≤ Ain, 0 ≤ Bin ≤ Bthresh}. Starting from an initial
resource profile (green dot), the cell accumulates metabolic resources (orange trajectory) until it
reaches a cell division boundary Sdiv (see text for details). Upon reaching Sdiv, the cell divides into
two, partitioning its metabolic resources (black arrow). On the contrary, a cell dies if its internal
storage of either A or B decreases to zero (orange “X”). (C) The geometry of the environment can be
thought of as a 1D ring, 0 ≤ x < L. The environmental concentrations of metabolites A(x), B(x) vary
with position around the ring.

• The cell receives information about its environment by sensing, which is realized
through the binding of distinct chemical receptor proteins to A and B molecules.

• We endow each cell with a fixed budget of Rtot receptor proteins in total, equally
distributed between the right and the left sides. The cell has Atot(t) receptors for A
molecules and Btot(t) receptors for B molecules at time t, respectively, where Atot(t) +
Btot(t) ≡ Rtot and Rtot is constant over time.

• The cell reacts to its surroundings by moving along the direction of and proportionally
to an estimation of the gradients of the concentrations A(x(t)) and B(x(t)) from the
numbers of bound receptors for A and B molecules on the right and left sides, denoted
as A∗R, B∗R, A∗L, and B∗L, respectively.

• The cell can control the amount of received information about the concentrations
A(x(t)) and B(x(t)) and their gradients by way of (re-)allocating the Rtot receptors
between Atot(t) receptors for A molecules and Btot(t) receptors for B molecules. In
this paper, we contrast two different strategies, namely, a constant equal receptor
allocation and an adaptive receptor allocation, the latter with the goal of acquiring more
information about the more scarce substrate in its internal storage. We make the
(strong) assumption that these cells can rapidly convert receptors between A-specific
and B-specific types, without incurring a substantive metabolic cost for the transition.

• The cell consumes the substrates from its internal storage with a rate corresponding
to a basal maintenance rate of metabolism S [26,27]. To grow and divide, a cell must
maintain positive internal storage Ain(t) and Bin(t). The occurrence of cell division
and cell death events are consequently decided by assessing the values of the current
internal storage Ain(t) and Bin(t): when both the amounts of Ain(t) and Bin(t) exceed
a specified threshold, the cell divides into two daughter cells, each receiving half of
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the mother cell’s internal storage. If either of the amounts of Ain(t) and Bin(t) in a
particular cell becomes zero, the cell dies.

According to these assumptions, we express the behavior of a cell according to the
following mathematical model.

Absorbing. The internal concentrations of A and B, Ain(t) (respectively Bin(t)), of a
cell located at position x(t) evolves according to

dAin(t)
dt

= kA(x(t))− S, (1)

where the absorption coefficient k [28] translates from concentration to rate of molecules
absorbed, and quantifies how easily a cell can absorb molecules. Bin(t) is computed by
substituting B in place of A. The parameter S represents a constant metabolic mainte-
nance cost [27], assumed to be the same for both A and B. Table 1 lists the simulation
parameters used.

Sensing. We model the state of the receptors at time t as a sample taken at equilibrium
from a binomial binding/release process [22,29]. Thus, the receptor noise is binomial,
meaning the numbers of bound receptors satisfy

A∗R ∼ Binom
(

pbind,AR ,
Atot

2

)
,

A∗L ∼ Binom
(

pbind,AL ,
Atot

2

)
,

B∗R ∼ Binom
(

pbind,BR ,
Btot

2

)
,

B∗L ∼ Binom
(

pbind,BL ,
Btot

2

)
,

pbind,AR =

(
A(x) + `

2 · ∇A(x)
)

Kd +
(

A(x) + `
2 · ∇A(x)

) ,

pbind,AL =

(
A(x)− `

2 · ∇A(x)
)

Kd +
(

A(x)− `
2 · ∇A(x)

) ,

pbind,BR =

(
B(x) + `

2 · ∇B(x)
)

Kd +
(

B(x) + `
2 · ∇B(x)

) ,

pbind,BL =

(
B(x)− `

2 · ∇B(x)
)

Kd +
(

B(x)− `
2 · ∇B(x)

) ,

(2)

where pbind,AR is the probability of binding A molecules for a single receptor at the right
side of the cell, A(x)± `

2 · ∇A(x) is the the local concentration of A (resp. B) at the right and
left end of the cell,∇ is the gradient operator (here, d

dx ), and Kd is the chemical dissociation
constant of the receptor [30]. For simplicity, we omitted the time variable t, we presume
that samples taken at successive time steps and at opposite sides of the cell are independent,
and we assume the same dissociation constant for each receptor.

Moving. We set the cell velocity to be proportional to the difference between the
number of receptors bound on the right versus left sides of the cell:

dx
dt

= v

(
2vmax

1 + e−(A∗R+B∗R−A∗L−B∗L)
− vmax

)
, (3)

where v is a constant parameter that converts a number of bound receptors to velocity, and
vmax corresponds to the maximum velocity.

(Re-)allocating. The equal receptor allocation strategy seeks the greatest possible in-
formation about the environmental concentrations A(x) and B(x), regardless of their
importance for cell survival, by setting a static distribution Atot = Btot for all t, regardless
of the cell’s internal storage of A and B molecules.
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The adaptive receptor allocation strategy, in contrast, attempts to increase the probability
of survival for the cell by distributing receptors among the two types in a way that takes
into account Bin(t) and Ain(t). The receptor apportionment rule is given as follows:

Btot(t) = Rtot

(
Ain(t)

Ain(t) + Bin(t)

)
,

and Atot(t) = Rtot − Btot(t). In this way, the cell redistributes its receptors in proportion
to its relative deficit of one metabolite versus the other. For example, if the cell has fewer
B than A molecules, it will move a greater portion of its receptors to receptor type B. It is
this apportionment rule that implements the “subjectivity” of information reception in this
model, which is reflected in the simulation results in Section 5.

Assessing. A cell divides if its internal metabolites Ain(t) and Bin(t) both surpass
a division threshold Athresh = Bthresh = D. We define the cell division time τdiv to be
the first passage time of the cell’s (Ain(t), Bin(t)) trajectory to the cell division “surface”
Sdiv ≡ SA ∪ SB, where

SA = {(a, b) | a = Athresh, b ≥ Bthresh}
SB = {(a, b) | a ≥ Athresh, b = Bthresh}.

(4)

Figure 1B illustrates the division surface. Thus, as t → τdiv, the cell’s internal state
approaches (A∗in, B∗in) ∈ Sdiv. At time τdiv, the old cell is replaced with two daughter cells
at the same current location, each with internal state

(Ain(τ
+
div), Bin(τ

+
div)) =

(
A∗in
2

,
B∗in
2

)
, (5)

and increment the total population count by one. The two daughter cells then move
independently of one another.

A cell dies if its internal storage (Ain(t), Bin(t)) reaches the death threshold Sdeath ≡
{(a, b) | a = 0 or b = 0}. In this case, the old cell ceases to exist, and the total population
count is decremented by one.

2.2. Computational Model

To appreciate the emergence of “subjective information” and its correlation with
organism survival in the mathematical abstraction detailed in Section 2.1, we derive here a
computational model that is later utilized to obtain numerical simulation results.

In the rest of this section, we consider a sampled environment [0, L] so that each
discrete location in the environment x̄ ∈ {i L/N | i = 0, . . . , N − 1}. Here, we impose
periodic boundary conditions, where x̄ = 0 (i = 0) and x̄ = L (i = N) represent the same
location. Likewise, we sample the time variable into t̄ ∈ {j ∆t | j = 0, . . . , T/(∆t)}.

In Figure 2, we show a state machine diagram of our computational model, which
is based on the definition and the cell behavior abstractions presented in Section 2.1. In
particular, the discrete states of the cell and the transitions that may occur within a time
sample ∆t at time t̄ include the following: absorption of A and B molecules, resulting
into the changes ∆Ain(t̄) and ∆Bin(t̄) in the internal storage of A and B molecules, respec-
tively; sensing through the chemical receptors, which results into the numbers of bound
receptors for A and B molecules, i.e., A∗R, B∗R, A∗L, and B∗L, respectively, according to (2);
movement by a discrete length ∆i based on the estimated concentration gradients, and
received information modulation via receptor (re-)allocation, which follows one of the
two aforementioned strategies to allocate Atot(t̄ + ∆t) and Btot(t̄ + ∆t). Finally, the cell
divides if it assesses a surplus of molecule A and B that both exceed the threshold D, or
dies if its internal storage (Ain(t̄), Bin(t̄)) reaches the death threshold Sdeath. Each of the
aforementioned states reproduces the cell behaviors detailed in Section 2.1 as follows.
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Figure 2. State machine diagram of the cell computational model formulated in this paper. See text
for details.

Absorb. The cell absorbs A and B molecules according to the average of the external
concentrations A(x) and B(x) at the left and right of the cell, x̄(t̄)− `

2 and x̄(t̄) + `
2 , respec-

tively. To compute the absorbed A (or B) molecules ∆Ain(t̄) (or ∆Bin(t̄)), Equation (1) is
changed into

∆Ain(t̄) =

⌊(
k

A(x̄(t̄)− `
2 ) + A(x̄(t̄) + `

2 )

2
− S

)
∆t

⌋
, (6)

where ∆Bin is computed by substituting B in place of A. ∆Ain and ∆Bin are then added to
the internal storage of A and B molecules to obtain Ain(t̄) and Bin(t̄), respectively. If the
resulting Ain(t̄) and Bin(t̄) are negative, then they are set to zero independently and cell
death is assessed later on.

Sense. The state of the receptors at time t̄ is a result of the same Binomial random
processes as in (2), where this time we define the probability of binding A molecules at the
right side of the cell as follows:

pbind,AR =
A(x̄ + `

2 )

Kd + A(x̄ + `
2 )

, (7)

Similarly, we define the probability pbind,AL of binding A molecules for a single receptor
at the left end of the cell (at location x̄− `

2 ), with analogous definitions for the probabil-
ities pbind,BR and pbind,BL for the B receptors. We assume in (7) that the time step ∆t of
the simulation is long enough that the receptors and surrounding concentration reach a
steady state.

Move. We express the cell movement at time t̄ according to an estimate of the local
gradient of the concentration of molecules of type A and B, similarly as in (3):

ψ = A∗R + B∗R − A∗L − B∗L

∆i =


−vmax ψ ≤ −vmax

ψ −vmax ≤ ψ ≤ vmax

vmax ψ ≥ vmax

(8)
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where ∆i is the change in cell location, corresponding to ∆x̄ = ∆i L/N, and vmax is the
maximum allowed movement in a single step.

Receptor (Re-)Allocation. In the equal receptor allocation strategy, the cell behaves
as detailed in Section 2.1. In the adaptive receptor allocation strategy, at time t̄, the cell
redistributes the receptors that will be considered in the absorption and sensing at time
t̄ + ∆t among the two types based on the ratio of A to B molecules internal to the cell
as follows:

Btot(t̄ + ∆t) = 2
⌊

Rtot

2
Ain(t̄)

Ain(t̄) + Bin(t̄)

⌋
, (9)

where Btot(t̄ + ∆t) is the new B-receptor count, Ain(t̄), Bin(t̄) are the internal A, B molecule
storage after the cell absorption, and Atot(t̄ + ∆t) = Rtot − Btot(t̄ + ∆t)

Assess. The cell moves to the Divide state if the internal molecule numbers Ain(t̄)
and Bin(t̄) both exceed the division threshold D or, equivalently, if the trajectory of
(Ain(t̄), Bin(t̄)) has crossed the division surface Sdiv, as defined in Section 2.1 and (4).
The threshold D is set to the minimum energetic requirement needed in both A and B
molecule storage for the cell to survive five time steps. If either of the internal molecule
numbers Ain(t̄) and Bin(t̄) is equal to zero, the cell moves to the Death state. If a cell does
not divide or die, then its state moves back to Absorb, and the process is repeated.

Divide. In this state, the cell loses half of Ain and Bin and an identical daughter cell is
created at the same position x̄ with an equal amount of Ain(t̄ + ∆t) and Bin(t̄ + ∆t) in the
subsequent time step. The cell subsequently transitions to the Absorb state.

Death. In this state, the cell is considered dead and will be removed from the environment.
Figure 3 shows an example of the trajectory of (Ain(t̄), Bin(t̄)) in a simulation of the

computational model. In this example, each time step is represented by an orange arrow
and cell divisions by black arrows. The cell starts to gather Bin, moves through the divide
threshold, and proceeds to divide twice in two time steps and ends with a higher Ain count
below the division threshold. (This example shows how in a discrete computational model
the cell could exist beyond the division threshold for multiple time steps.)

Divides

Figure 3. Trajectory of a simulated cell projected onto the Ain and Bin plane. The black line defines
the threshold at which the cell can divide, and upon which it loses half its Ain and Bin to its daughter
cell. The black arrows define cell division and the cell’s internal state when division takes place. In
this example, after one cell division (upper black arrow), the cell has enough Ain and Bin to divide
again on the next timestep (lower black arrow).
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The numerical results presented in Section 5 are obtained by simulating this computa-
tional model according to the parameter values listed in Table 1.

3. Performance Metrics

We compare the two receptor allocation strategies using two metrics: one based on
the amount of information cells acquire from the environment, and the other based on the
cell growth. The former is formulated as the average mutual information [5] between the
input environmental concentration of A and B molecules and the output number of bound
receptors A∗R, B∗R, A∗L, and B∗R, which are then used by the cell to estimate their gradients.
The latter is expressed as the cell growth rate, which quantifies the exponential growth rate
of the cells by utilizing the resources in the environment.

Information Efficiency. The Mutual Information (MI) formula is expressed as fol-
lows [5]:

MIX,Y = ∑
y∈Y

∑
x∈X

P(X,Y)(x, y) log2
P(X,Y)(x, y)
PX(x)PY(y)

, (10)

where X is the set of input values, Y is the set of output values, PX(x) and PY(y) are the
marginal probabilities of X and Y, and P(X,Y)(x, y) is the joint probability of X and Y,
respectively. The exact MI calculation in the simulation given a set of input and output
data is defined in Algorithms 1–3.

Algorithm 1: Entropy (X)
Result: Entropy of a data set X
input :Set of data, X;
output : entropyX
initialize (_, bins)← Binning(X);
entropyX← 0;
for each index i in bins do

entropyX← entropyX− bins[i] log2(bins[i])
end

Algorithm 2: MI(X,Y)
Result: Estimated Mutual Information Calculation
input : set of data X set of corresponding data Y
output : MI
(boundsY, binnedY)← Binning(Y);
YallData← two-dimensional array of size k initialized to empty arrays;
for each index i in X/Y do

for each index j in boundsY do
if boundsY[j + 1] > Y[i] then

YallData[j] = YallData[j] append X[i]
end

end
end
entropyXgivenY← 0;
for each index i in YallData do

entropyXgivenY← entropyXgivenY + Entropy(YallData[i]) ∗ binnedY[i]
end
MI ← Entropy(X) − entropyXgivenY;
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Algorithm 3: Binning (Y)
Result: Array of bins containing the probability of selecting that bin
input : Y set of data points Y
output : bin bounds bounds, binned data points bins
min← Y(0);
max← Y(0);
ε← 0.001;
k← 20;
for each receptor count i in Y do

if Y(i) < min then
min← Y(i);

else if Y(i) > max then
max← Y(i);

end
min← min - ε;
max← max + ε;
bins← zero indexed array the size of k with each index initialized to 0;
bounds← zero indexed array the size of k + 1;
len← length(Y);
for each index i in bounds do

bounds(i)← (min−max)
k i + min;

end
for each index i in Y do

for each index j in bounds do
if bounds(j + 1) > Y(i) then

bins(j) = bins(j) + 1
len ;

end
end

end

The average MI at time t (MI(t)) of the cells in the environment is defined as

MI(t) = ETotal # of cells,t[MIcell ] , (11)

where ETotal # of cells,t[·] denotes the average computed over the entire population of cells
present in the environment and over time up to time t, and MIcell is the MI of a cell, computed
as follows:

MIcell = MIAR,A∗R
+ MIBR,B∗R

+ MIAL,A∗L
+ MIBL,B∗L

, (12)

where AR = A(x̄ + `
2 ), BR = B(x̄ + `

2 ), AL = A(x̄ − `
2 ), and BL = B(x̄ − `

2 ) are the
environmental concentrations of molecules A or B on the right and left of a cell, respectively.
The MI of the individual channels between the external concentration and bound receptors
are assumed to be uncorrelated and are therefore added together. To express (12), we
assume that each of the environmental concentrations and consequent number of bound
receptors are independent from each other [30].

Growth Rate. We introduce death into the model and simulation to make the growth
of the cells more realistic representations of in vivo environments. The growth rate over a
time T is defined here in the same way as growth is defined in other systems, namely as
the exponential rate of growth, that is, the doubling rate (or multiplication rate) over time,

GT =
∆t
T

(T/∆t)−1

∑
j=0

log2

(
Pj+1

Pj

)
, (13)



Entropy 2022, 24, 639 11 of 23

where Pj is the population size at the end of the discrete time step with index j, as defined
in Section 2.2. To obtain the growth rate results presented in Section 5, we discarded an
initial transient and evaluated Pj+1/Pj by sampling from an ensemble at equilibrium.

4. Simulation Implementation

We simulate the model from Section 2.2 with many cells and their interaction with the
environment using a computer program. The simulation results presented are obtained for
different initial conditions and simulation parameters. The simulation is divided into time
steps, where each step j is a cycle of the state machine. The main simulation parameters
with their description and initialization values are shown in Table 1. Additional choices
made for this simulation are as follows.

Table 1. Simulation parameters.

Variable Description Initialization

Atot, Btot Total A/B receptor count 200 receptors

A(x̄), B(x̄) A/B external concentrations at location x̄ 0

A∗R, A∗L, B∗R, B∗L A/B left/right bound receptor count 0

Rtot Total number of receptors for a cell to allocate 400 receptors

Ain, Bin Internal A and B molecule count 0

i Cell Location [51, 1–100]

k Absorption Coefficient [1.0–5.0]

Kd Dissociation Constant 2.0

S Basal Energetic Requirement [1, 5]

D Division Threshold 5S

T/∆t Total Simulation Time Steps [30–100]

vmax Max Cell Velocity 10

Cellmax Max Cell Count [2000, 10,000]

Celladjusted Adjusted Cell Count [1000, 9000]

Cellmulti Cell Multiplier 1

The cells’ environment consists of discrete locations that define the external concentra-
tion and the position of the cells. The cells have length ` = 2, with the left and right defined
as being the current position minus one and the current position plus one, respectively. The
simulation is optimized for limited computational resources through approximation of the
real cell count in the environment by keeping the max number of environment cells lower
than Cellmax during any single time step. If Cellmax is surpassed in a given time step, the
number of cells at each location is reduced, and individual cells are removed at random
so that the total number of environment cells is equal to a lower cell count Celladjusted, as
defined by the system parameters in Table 1. These decrements of the total population are
carried out in such a way that the overall spatial distribution of cells remains the same. A
running multiplier Cellmulti is then iterated upon, by multiplying it with the ratio between
the initial high cell count and Celladjusted. A real cell count is then calculated by multiplying
the current number of environmental cells by this multiplier. The cell stress c∗ = S/k
is defined here as the of the metabolic cost S to the substrate absorption coefficient k, as
defined in Section 2.1. Heuristically speaking, the cell stress parameter c∗ represents the
average concentration of either substrate that a cell would have to experience along its
spatial trajectory, in order to maintain a net gain in metabolites (cf. (1)).
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We employ a non-uniform distribution of A and B molecule concentrations in order
for the cells to sense and respond to spatial differences in substrate concentrations. The con-
centrations of molecular substrates A and B, which remain static throughout the simulation
time despite cell intake, are given by the von Mises distribution as

[C]i = [C]max exp
[

κC
cos(2π(x̄i − µC)/L)

(L I0(κC))

]
, (14)

where C ∈ {A, B}, µA = 25 and µB = 75, respectively, κA = κB = 0.1, and I0 is the
modified Bessel function of the first kind [31]. We choose the von Mises distribution
because it is the maximal entropy distribution on a periodic support for a given mean and
circular variance [32]. [A]max = [B]max = 500 for all simulations and they remain static
over time and do not change in response to the cell’s absorption process. The nonuniform
distribution of molecules of type A and B across the environment results in a non-zero
expected gradient in the number of bound receptors along a cell. Therefore, cells can use
chemotaxis to improve their food intake, setting the stage for a non-trivial analysis of the
two receptor allocation strategies.

5. Numerical Results

In the following, we present the numerical results obtained by running the simulations
described in Section 4, based on the computational model detailed in Section 2.2, and
computing the metrics defined in Section 3 from the obtained data.

In Figures 4 and 5, we show the cell’s environment for the equal and the adaptive
receptor allocation strategies, respectively. The lower plot of either figure shows the A and
B external concentrations following the von Mises distribution for the entire simulation
space L. The center of the figures show two cells, each represented by a different color,
moving left or right in the environment space. ‘x’ is used here to represent if a cell is
divided in a given time step. The simulation for this figure is based on the parameters
from Table 1, where i is equal to [1–100], k is equal to 3.0, S is equal to 5, Cellmax is equal
to 2000, Celladjusted is equal to 1000, and T/∆t is equal to 100 time steps. The upper plot
of the figures represents the division density, where the cells divide, and the cell density,
where the cells are. The cell’s distribution statistics were compiled from 100 time steps and
an initial cell at each location. Here, the cells have an infinite vmax.

In Figures 6 and 7, we show a heat map of the cell density in the Ain and Bin plane for
equal and adaptive receptor allocation strategies, respectively. A black line that runs from
25 to 200 in each direction represents the cell division surface Sdiv, as defined in Section 2.1.
The simulation parameters used in these figures are the same as in Table 1, specifically
with i equal to [1–100], k equal to 5, S equal to 5, Cellmax equal to 10,000, Celladjusted equal
to 9000, and T/∆t equal to 30. Here, the figure is split into a two-dimensional bin matrix
where the corresponding color of each bin represents the portion of cells corresponding
to the bin. The color representations are consistent between Figures 6 and 7 to the same
portion of cells in each figure. Internal resource levels Ain and Bin are recorded in each time
step once before the cell has a chance to divide, but after the absorption state, and again
after the cell has a chance to divide. This method allows for a better visualization of the
internal state of the cell.

In Figures 8 and 9, we show a heat map of the A(x̄) and B(x̄), respectively, given Ain and
Bin, for the equal receptor allocation strategy. The simulation parameters used here are the
same as Figures 6 and 7. Here, each bin in the figures represents the portion of A(x̄) or B(x̄)
weighted on how many visits a cell makes to location x̄. This figure gives some insight into
where the average cell is when it has some internal state. As in Figures 6 and 7, A(x̄) and B(x̄)
are recorded once before the cell can divide, and again after the cell has a chance to divide.
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Figure 4. Simulation environment of the equal receptor allocation strategy.
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Figure 5. Simulation environment of the adaptive receptor allocation strategy.
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Figure 6. Cell density in Ain, Bin space of the equal receptor allocation strategy.

0 20 40 60 80 100
Internal A Molecule Count

0

20

40

60

80

100

In
te

rn
al

 B
 m

ol
ec

ul
e 

co
un

t

0.000816

0.00163

0.00245

0.00326

Cell Density

Figure 7. Cell density in Ain, Bin space of the adaptive receptor allocation strategy.
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Figure 8. Heat map of the external A concentration with respect to Ain Bin in the equal receptor
allocation strategy.

In Figures 10 and 11, we show a heat map of the A(x̄) and B(x̄), respectively, given
Ain and Bin, for the adaptive receptor allocation strategy. These figures use the same
simulation parameters as Figures 6 and 7. The color coding of the densities of A(x̄) and
B(x̄) is consistent across Figures 8–11.
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Figure 9. Heat map of the external B concentration with respect to Ain Bin in the equal receptor
allocation strategy.
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Figure 10. Heat map of the external A concentration with respect to Ain Bin for the adaptive receptor
allocation strategy.
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Figure 11. Heat map of the external B concentration with respect to Ain Bin for the adaptive receptor
allocation strategy.

In Figures 12 and 13, we show the growth rate GT of the cells and the average MI
MI(T), respectively, as defined in Section 3, for the equal receptor allocation strategy and
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the adaptive receptor allocation strategy as a function of the cell stress c∗. The simulation
parameters used to obtain these results are the same as in Table 1, where i is equal to [1–100],
S is equal to 1, for Cellmax equal to 10,000, Celladjusted equal to 9000, and T/∆t equal to 31.
The growth rate GT was found in another simulation with the same parameters, where the
cell’s movement was sampled from a uniform random distribution between −vmax and
vmax at cell stress c∗ = 1 This growth rate was found to be 0.17 slightly below the equal
receptor strategy.
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Figure 12. Growth rate of the receptor strategies with respect to cell stress.
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Figure 13. Mutual information of the receptor strategies with respect to cell stress.
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In Figures 14–16, we show the average input entropy E# of cells,T [Hcell(X)] and average
conditional entropy E# of cells,T [Hcell(X|Y)], the growth rate GT of the cells, and the average
MI MI(T), respectively, of the Equal Receptor and Adaptive Receptor strategies as a func-
tion of the noise factor γ. The input entropy Hcell(X) and conditional entropy Hcell(X|Y)
of a cell are defined as follows:

H(X) = − ∑
x∈X

PX(x)log2PX(x) , (15)

H(X | Y) = − ∑
x∈X

∑
y∈Y

PX,Y(x, y)log2
PX,Y(x, y)

PY(y)
, (16)

Hcell(X) = H(AR) + H(BR) + H(AL) + H(BL) , (17)

Hcell(X|Y) = H(AR|A∗R) + H(BR|B∗R) + H(AL|A∗L) + H(BL|B∗L) , (18)

where AR, BR, AL, and BL are the environmental concentrations of molecules A or B on
the right and left of a cell, respectively, and A∗R, B∗R, A∗L, and B∗R are the consequent output
number of bound receptors on the cell. Finally, in Figure 17, we show a combined plot of
the growth rate GT for the Equal Receptor and Adaptive receptor strategies against the
corresponding MI MI(T), both as a function of an increasing γ factor. The simulation
parameters used to obtain these results are the same as for the results shown in Figure 13.
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Figure 14. H(X) and H(X|Y) for the equal receptor and adaptive receptor strategy.
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Figure 15. Growth of the equal receptor strategy and adaptive receptor strategy with respect to
receptor noise.
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Figure 16. MI(T) of the equal receptor strategy and the adaptive receptor strategy with respect to
receptor noise.
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Figure 17. Growth of the equal receptor strategy and the adaptive receptor strategy with respect to
the MI(T) as the receptor noise is increased.

The noise factor γ is defined as the ratio between the variance of a Gaussian dis-
tribution and the variance of the Binomial distribution defined in (2), respectively. This
Gaussian distribution is utilized in place of the Binomial in (2) to obtain the results in
Figures 14–16 as a function of a varying receptor noise. This is expressed as a Gaussian
with the same average as the corresponding Binomial, and a variance equal to the variance
of the corresponding Binomial multiplied by the noise factor γ, as

A∗R ∼ N
(

Atot

2
pbind,AR ,

(
Atot

2

)
pbind,AR

(
1− pbind,AR

)
γ

)
, (19)

where Atot and pbind,AR are defined in (2). We utilize similar Gaussian distributions with
analogous definitions for A∗L, B∗R, and B∗L, respectively.

6. Discussion

The cell division and cell density distributions plotted in Figures 4 and 5 show how
the cell strategies are responding to stress and the static substrate distribution in the
environment. Considering that the cells with the equal receptor allocation strategy have a
lower growth rate, as shown in Figure 12, the higher density of cells in the interval of two
concentration peaks is likely a necessity in that cells in this region would be close to either
peak in order to stay alive. In contrast, the cells in the adaptive receptor allocation strategy
are clustering around the two highest peaks of the [A]i and [B]i distributions. Considering
that these cells have a comparatively higher growth rate, this can be interpreted as the cells’
ability to stay in higher A or B concentration regions for longer.

When a large number of cells have a higher division rate in a particular region of the
environment that region’s average effect on the cells’ state will result in a higher density.
The cell density in Figure 6, for the equal receptor allocation strategy, is larger near the
origin. Considering that the cell’s divide density location in Figure 4 is centered around the
middle of the two concentration masses, the larger number of cell divisions in this region
could reveal that the majority of the distribution of the cells exist in a state having an equal
and relatively low, compared to the adaptive allocation strategy, internal storage Ain and
Bin. This is also consistent with Figure 12, where the equal receptor allocation strategy has
a lower growth rate compared to the adaptive receptor allocation strategy. Conversely,
in Figure 7, the adaptive receptor allocation strategy has a spread-out cell density with a
larger portion contained in the area corresponding to less than 50 Ain and 50 Bin. This can
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be interpreted as this strategy allowing for a larger internal storage of Ain and Bin during
the simulation.

Both receptor allocation strategies have a sharp cutoff in the A(x̄) and B(x̄) when Ain
or Bin are less than 10 (Figures 8–11), which is likely due to cell death in the simulation. In
this region of the heat map plots, there is a non-zero cell density, albeit very low. This can
be interpreted as the cells’ chance of survival being greatly reduced for these low values of
internal storage.

The equal receptor allocation strategy has a relatively uniform density of internal
storage A(x̄) and B(x̄) along a strip between Bin = [10, 25] and Ain = [10, 25], as shown in
Figures 8 and 9. The adaptive receptor allocation strategy in this same strip is not as uniform,
while a high density in A(x̄) and B(x̄) occurs when Bin = 60 and Ain = 60, respectively.

The results shown in Figures 12 and 13 clearly demonstrate that, for every value of
cell stress imposed in the simulation, the adaptive receptor allocation strategy results in a higher
growth rate and correspondingly lower average MI(T) than the equal receptor allocation
strategy, where these differences increase as the cell stress increases. In addition, as the cell
stress increases, both allocation strategies result in not only a lower growth rate, which is
expected, but also a higher average MI(T). This might be explained by how cells survive
with respect to their strategy [33]. With higher stress, cells with a higher “capacity” to
receive information (either because of their locations or their receptor allocations) from the
environment have a higher probability to be naturally selected over others. This selection
seems more pronounced for the equal receptor allocation and more subtle for the adaptive
strategy, where cells tend to adapt their “capacity” to the more stringent constraint and
increase their fitness.

In Figure 14, the initial rise in input entropy for low noise, as the noise increases,
is due to a higher mobility of the cells to sample more diverse environmental locations,
and a higher range of different Ain and Bin values. The corresponding growth rate in
Figure 15 and mutual information in Figure 16 for the equal receptor allocation seem
to reach optimal values (maximum growth with minimum mutual information) before
plunging when the noise increases further. The same does not happen for the adaptive
receptor strategy. The input entropy then stabilizes for both strategies after the noise factor
γ reaches value 1. For higher noise, the subtle variations in the conditional entropy seem to
dominate the variations in MI(T), shown in Figure 16, which is therefore more stable, as
the growth rate in Figure 15. As the noise increases, MI(T) and the growth rate decrease
for both strategies, as expected. Nevertheless, for all the noise values, the adaptive receptor
allocation results in higher growth rates, achieved with a lower mutual information for all
but in the aforementioned optimal noise region for the equal allocation.

The combined plot in Figure 17 offers the opportunity of a direct comparison with
the work presented in [20]-(Figures 1c, 2b, 3b and 4b). In particular, while our model does
not allow for an independent selection of the mutual information between organisms and
environment during simulation, it is clear that the definition of “semantic information”
from [20] is here not directly applicable since the degradation of the information channel
operated by an increased noise is in our case countered by an optimization of the channel
by each individual organism in the simulated population. This cannot be represented by a
single average mutual information, and underscoring the need for a metric to measure the
emergence of “subjective information”, i.e., mutual information between environment and
organism that varies across individuals in the same population.

Measuring the Emergence of Subjective Information

Given the results detailed above, we proposed to measure the emergence of “subjective
information” (SI) over a time T by taking the average over time of the standard deviation
of the MI of each individual cell MIcell over the population, as

SI = ET [σTotal # of cells(MIcell)], (20)
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where σ(.) denotes the standard deviation operator. According to this definition, the
equal receptor allocation strategy has by definition SI equal to 0, as demonstrated also
empirically in Figures 18 and 19, while the adaptive allocation strategy shows a positive SI
in all considered situations. The proposed measure is relatively stable as a function of the
noise, as shown in Figure 18, but, in the case of the adaptive receptor allocation strategy, it
has an overall tendency to increase with cell stress. We reserve further study of “subjective
information” measurements to future work.
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Figure 18. Subjective information of the equal receptor and adaptive receptor strategies as the noise
factor (γ) is increased. The simulation parameters used to obtain these results are the same as for the
results shown in Figure 13.
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Figure 19. Subjective information of the equal receptor and adaptive receptor strategies as the cell
stress factor is increased. The simulation parameters used to obtain these results are the same as for
the results shown in Figure 13.
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7. Conclusions

In this paper, we introduced a simulation-based scenario to analyze the emergence
of a form of “subjective information” and its correlation with the survival of a biological
organism. In particular, we defined an abstract mathematical model able to capture the
parameters and behaviors of a population of single-celled organisms while they move
through chemotaxis to absorb two essential nutrients from the environment. This model is
then translated into a computational state machine, which is then utilized in a simulation
framework constructed specifically to characterize and measure the emergence of the
aforementioned information. For this, two different strategies adopted by these cells
are considered, namely, based either on maximizing information on the two essential
substrates or, alternatively, reducing this information by focusing on what is more important
for survival. Simulation results based on these two strategies for different parameters
related to cell’s survival stress are compared in terms of information efficiency of the
cells Vs growth rate. The obtained results clearly reveal that the strategy that maximizes
information efficiency results in a lower growth rate with respect to the strategy that has
lower information efficiency but optimizes the information channel of each individual to
better focus on the pieces of information from the environment that are more important for
survival, i.e., the “subjective information”.

A more robust model and in vivo experiments will be required to better define and
quantify “subjective information” of a living system. With this analysis, this new informa-
tion concept may identify an important aspect of biological systems that can be used in
tandem with other information theoretic principles studied in prior literature.
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