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Abstract: Mobile crowdsensing (MCS) is attracting considerable attention in the past few years as a
new paradigm for large-scale information sensing. Unmanned aerial vehicles (UAVs) have played a
significant role in MCS tasks and served as crucial nodes in the newly-proposed space-air-ground
integrated network (SAGIN). In this paper, we incorporate SAGIN into MCS task and present a Space-
Air-Ground integrated Mobile CrowdSensing (SAG-MCS) problem. Based on multi-source observations
from embedded sensors and satellites, an aerial UAV swarm is required to carry out energy-efficient
data collection and recharging tasks. Up to date, few studies have explored such multi-task MCS
problem with the cooperation of UAV swarm and satellites. To address this multi-agent problem,
we propose a novel deep reinforcement learning (DRL) based method called Multi-Scale Soft Deep
Recurrent Graph Network (ms-SDRGN). Our ms-SDRGN approach incorporates a multi-scale convolu-
tional encoder to process multi-source raw observations for better feature exploitation. We also use a
graph attention mechanism to model inter-UAV communications and aggregate extra neighboring
information, and utilize a gated recurrent unit for long-term performance. In addition, a stochastic
policy can be learned through a maximum-entropy method with an adjustable temperature param-
eter. Specifically, we design a heuristic reward function to encourage the agents to achieve global
cooperation under partial observability. We train the model to convergence and conduct a series
of case studies. Evaluation results show statistical significance and that ms-SDRGN outperforms
three state-of-the-art DRL baselines in SAG-MCS. Compared with the best-performing baseline,
ms-SDRGN improves 29.0% reward and 3.8% CFE score. We also investigate the scalability and
robustness of ms-SDRGN towards DRL environments with diverse observation scales or demanding
communication conditions.

Keywords: mobile crowdsensing; deep reinforcement learning; UAV control; graph network; maximum-
entropy learning

1. Introduction

In the past few years, Mobile Crowdsensing (MCS [1,2]) has rapidly become a popular
research paradigm for large-scale information gathering and data sensing, which is an
essential solution for the construction of smart cities or the Internet of Things [3]. In
general, an MCS task consists of several stages: mobile sensing, crowd data collection, and
crowdsourced data processing [4]. The traditional human-centric MCS paradigm relies
on the perception capabilities of a large crowd of citizens’ mobile devices, such as mobile
phones, wearable devices or portable sensors. Compared with ordinary sensing networks,
a human-centric MCS system makes full use of human intelligence for large-scale sensing
purposes. However, the major challenge to traditional MCS lies that, users may be reluctant
to participate in the MCS system for privacy and security concerns.
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With the help of high-precision embedded sensors and path planning algorithms [5],
smart unmanned vehicles, including automated guided vehicles (AGVs) and unmanned
aerial vehicles (UAVs), are gradually taking the place of human participants for data collec-
tion. A swarm of intelligent unmanned vehicles can perform collaborative sensing tasks
round-the-clock [6,7], or even cooperate with humans [8]. Among all kinds of unmanned
vehicles, UAVs have better maneuverability and versatility compared to ground vehicles.
Hence, UAV-based MCS technology can achieve large-scale, high-quality, long-term, and in-
depth data collection in diverse real-world scenarios, such as efficient area coverage [9,10],
smart city traffic monitoring [11,12], field search and rescue [13], post-disaster relief [14],
communication support [15,16], reconnaissance in future wars [17], etc.

As the rapid developments and applications of modern network technologies [18,19],
several studies have dug deep into heterogeneous networking and proposed an architecture
called Space-Air-Ground Integrated Network (SAGIN [20,21]). SAGIN interconnects space,
air, and ground network segments using different networking protocols. Satellite-based
networks in space could provide global yet fuzzy observations of large-scale areas, but
have some propagation delay due to the operating orbits and long communication ranges.
Aerial networks, such as Flying Ad-Hoc Network (FANET [22]), have high mobility and
self-organizing ability, but their performance are commonly constrained by unstable con-
nections or dynamic network topology [23]. Ground networks have low transmission
latency and efficient power supply, while they cannot maintain network coverage in certain
remote areas.

In this paper, we employ the concept of SAGIN into the data collection task, and
present a new MCS framework with a collection of UAVs, ground nodes and satellites,
namely Space-Air-Ground integrated Mobile CrowdSensing (SAG-MCS). In SAG-MCS scenario,
a UAV swarm is used to cooperate autonomously and fly above an area with multiple
Points of Interest (PoIs) for coverage and sensing. As illustrated in Figure 1, UAV agents can
partially observe ground information using embedded sensors within a fixed observation
range. They also have access to fuzzy global information periodically from remote sensing
satellites in space, which contains ambiguous locations of PoIs and other agents. As the
coverage range is set smaller than the observation radius, UAVs should get close enough to
the observed PoIs for valid data collection. Based on the FANET, UAV pairs that within
maximum communication range can interconnect together and share current states and
observations using Wi-Fi, Bluetooth or LoRa. We consider communication dropout would
occur inevitably during such aerial ad-hoc network connections. As for energy consump-
tion, due to the limitations of the rotor power efficiency and the onboard battery capacity,
we set all UAVs with limited battery attributes as energy constraints. Several charging
stations and barriers are deployed in the SAG-MCS simulation scenario as well. The UAV
swarm is required to avoid collision with obstacles when performing data collection and
flight path planning tasks, and makes proper decisions to go for charging before their
batteries run out. On arrival at the charging stations, UAVs can transfer the data collected
and batteries will be replaced.

On the whole, this paper endeavours to propose a decision-making model for UAVs,
which are powered by limited onboard batteries and distributed charging stations, to
energy-efficiently and persistently sense and collect PoIs on the ground. The multi-UAV
swarm shall perform actions according to local airborne observations and global observa-
tions from satellites. The overall optimization objective of the UAV swarm is to maximize
the data coverage and geographical fairness among all PoIs, and minimize the power
consumed during flying or battery charging.



Entropy 2022, 24, 638 3 of 20

* Ad Hoc Connections between UAVs could cause Communication Dropout
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Figure 1. Proposed SAG-MCS Scenario Schematic.

For such an MCS task that has multiple complex objectives, existing approaches that
modeling MCS as an optimization problem is no longer effective. However, recently well-
explored Deep Reinforcement Learning (DRL) could be a feasible solution. It has achieved
great performances in several game-playing tasks [24] or path planning problems [25].
Based on powerful deep neural networks, DRL models can extract more complicated
features of higher dimensions from environmental states, thereby can optimize action
policies to achieve different objectives. For multi-agent systems such as our SAG-MCS,
typical methods that take the whole system as a single agent cannot guarantee promising
results, while recent studies on Multi-Agent Deep Reinforcement Learning (MADRL) focus
on controlling multiple agents in a fully distributed manner. The action strategy of each
agent in MADRL depends on not only the interaction with the environment, but also other
agents’ actions, observations, etc.

Contributions

To this end, this paper formulates the problem as a Partially Observable Markov
Decision Process (POMDP) and proposes a stochastic MADRL algorithm in SAG-MCS
environment, to perform data collection and task allocation simultaneously. The main
contributions of this article are summarized as follows:

1. We design a realistic SAG-MCS environment with obstacles and charging stations for
simulation. To further enhance exploration of the global area, the UAV swarm can
acquire multi-source observation inputs from embedded sensors and satellites.

2. We propose a DRL algorithm based on graph attention mechanism, namely Multi-Scale
Soft Deep Recurrent Graph Network (ms-SDRGN). It integrates a multi-scale convolu-
tional encoder to process different sizes of observations. This method also utilizes
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graph attention network (GAT [26]), gated recurrent unit (GRU [27]), as well as a
maximum entropy method.

3. Although UAV swarm can receive parts of global observations from satellites, SAG-
MCS is formulated as a practical partially-observed problem, and UAVs cannot have
access to the overall system states during training. Therefore, we propose a heuristic
reward function that only utilizes local observed information, but manages to train
the UAV swarm to properly act for optimizing several global metrics.

4. We have designed and conducted several simulation case studies to verify the effec-
tiveness of our stochastic MADRL method and reward function. Additionally, we
validate the robustness of the trained model and the multi-scale CNN encoder under
different communication conditions and at different environment scales.

The remaining part of this paper proceeds as follows: Section 2 reviews the related
research efforts about MCS and DRL approaches. Section 3 introduces the SAG-MCS
problem definition and the 2D simulation environment in detail. Section 4 presents the
proposed solution ms-SDRGN for SAG-MCS problem. We introduce simulation settings
and present the experimental results and analysis in Section 5. Then, Section 6 discusses
the practical implementation issues and limitation of the proposed approach. Finally,
conclusions are made in Section 7.

2. Related Works

In this section, we review the literature related to mobile crowdsensing problem, DRL
approaches for multi-agent systems, and the joint studies of these two topics.

Threat to validity [28,29]: For this review, we have used multiple strings to search and
identify relevant literature in recent decade, such as ‘UAV swarm and mobile crowdsensing’,
‘multi-task allocation and mobile crowdsensing’ and ‘multi-agent deep reinforcement
learning’. Google Scholar is used for forward searches and most of the related works are
retrieved from five databases: IEEE Xplore, SpringerLink, Web of Science, ScienceDirect
and Arxiv.

2.1. Multi-Task Allocation for Mobile Crowdsensing

MCS scenarios usually have multiple constraints and objectives. One of the key
issues is how to perform task allocation, or how to choose appropriate action strategies
for different tasks. The main tasks of SAG-MCS are data collection by covering PoIs and
energy management by keeping batteries charged. UAVs need to automatically select
action strategies to meet the data collection requirements under the energy-efficiency
constraint. Solving such multi-agent task allocation is an NP-hard problem, and the related
research is still in a relatively early stage. Feng et al. [30] utilized dynamic programming
for path planning in UAV-aided MCS and used Gale-Shapley-based matching algorithm
to allocate different tasks for agents. Wang et al. [31] modeled multi-task allocation as
a dynamic matching problem, then proposed a multiple-waitlist based task assignment
(MWTA) algorithm. In addition, several surveys of task allocation have demonstrated
the effectiveness of heuristic algorithms. Hayat et al. [13] proposed a genetic algorithm
approach to get the minimum task completion time for UAV path planning. Similarly,
Xu et al. [32] formulated this problem as a specific mathematical model, and tried to
minimize incentive cost under the constraint of sensing quality based on greedy algorithms
and genetic algorithms.

2.2. Deep Reinforcement Learning (DRL) for Multi-Agent Systems

In multi-agent systems, Reinforcement Learning (RL) generally targets at problems of
agents sequentially interacting with local environment. At timestep t, the environment is at
state st and agent i obtains a observation oi

t. Then, agent i selects and executes an action ai
t

based on oi
t, and then gets a reward ri

t from the environment. In POMDP, agents cannot
directly perceive the underlying states and oi

t is not equal to st. The objective of RL is to
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learn a policy πi(ai | oi) for agent i. The policy is expected to maximize the discounted
reward E[Rt] = E

[
∑∞

k=0 γkri
k

]
, with a discounted factor γ ∈ [0, 1].

Currently, DRL methods have achieved state-of-the-art performance in various RL
tasks [24,25], and can be categorized into value-based or policy-based ones. In this paper,
we adopted the value-based method. Deep Q-learning (DQN [24]) is one of the most vital
value-based DRL approaches. Based on Q-learning, DQN uses deep neural networks to
learn a Q-value function Q(o, a), which could estimate the expected reward return E[Rt]
and be recursively updated. DQN regards the action with biggest Q-value as the most
optimal policy π

′
(s) = arg max Qπ(o, a), and selects it to interact with the environment. In

addition, DQN integrates fixed target network and experience replay methods to make the
training process more efficient and stable [33]. Specifically, the Q-value function Q(o, a) is
updated through minimizing the Q-loss function as:

Qloss =

(
rt + max

at+1
Q′(ot+1, at+1)−Q(ot, at)

)2
. (1)

where Q is the learned network and Q′ is the target network. Note that the policies learned
by DQN are deterministic, therefore DQN should be trained with action policies such as
ε− greedy to enhance exploration.

Compared with classical heuristic algorithms, agents can learn a strategy more effi-
ciently and independently through DRL algorithms, so as to achieve multiple objectives in
the sensing area simultaneously.

2.3. DRL Methods for UAV Mobile Crowdsensing

To date, several studies have investigated the application of DRL algorithms in the
UAV Mobile Base Station (MBS) scenario, which is a sub-topic of MCS. In the UAV MBS sce-
nario, a swarm of UAV serve as mobile base stations to provide long-term communication
services for ground users. Liu et al. [15] proposed a DRL model based on Deep Determinis-
tic Policy Gradient (DDPG [34]) to provide the long-term communications coverage in the
MBS scenario. Further, Liu et al. [16] implemented DDPG in a fully distributed manner.

Different from policy gradient methods, Dai et al. [35] applied Graph Convolutional
Reinforcement Learning (DGN [36]) in MBS. They modeled the UAV swarm as a graph,
and used Graph Attention Network (GAT [26]) as a convolution kernel to extract adjacent
information between neighboring UAVs. To further explore the potential of graph networks,
Ye et al. [37] designed a FANET based on GAT, named GAT-FANET, allowing two adjacent
UAV agents within the communication range to communicate and exchange information at
low costs. This work also applied Gated Recurrent Unit (GRU) as a memory unit to record
and process long-term temporal information from the graph network.

On the basis of MBS, Liu et al. [38,39] took practical factors such as obstacles and
charging stations into consideration in the UAV MCS scenario. Based on the actor-critic
network of DDPG, their DRL models used CNN to extract observed spatial information,
and deployed a distributed experience replay buffer to store previous training information.
Piao et al. [40], Dai et al. [41] and Liu et al. [38] utilized the concept of the Long Short-
term Memory (LSTM [42]) network to store sequential temporal information of previous
interaction episodes. As a specific application of MCS, Dai et al. [41] designed an approach
for mobile crowdsensing, where mobile agents are required to retrieve data and refresh the
sensors distributed in the city, with limited storage capacities of the sensors. Wang et al. [43]
proposed a more practical and challenging 3D MCS scene for disaster response simulation,
where the UAVs’ action space had been expanded to three dimensions.

Compared with the UAV MBS and MCS works mentioned above, this paper proposes
a more complicated and promising SAG-MCS scenario, which incorporates global and
local observations from space and air, respectively, and encourages UAVs to interact with
charging stations as ground nodes. While [38–41] proposed multi-UAV MCS scenarios
and used policy-based DRL methods as solutions which utilized LSTM to store temporal
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information of MCS systems, our approach selects the value-based method based on
DQN and uses GRU as the memory unit, which performs similarly to LSTM but is more
computationally efficient [44]. Furthermore, when most MADRL studies about MCS solved
the problem with deterministic policies, our method learns a stochastic policy following
Ye et al. [37] to improve robustness.

3. System Model and Problem Statement

In this section, we design a partially observable space-air-ground integrated MCS
system, with space-based remote sensing satellites and an aerial UAV swarm jointly per-
forming the MCS task. We define the problem and present the 2D simulation system model
specifically. Then, we describe the design of evaluation metrics.

3.1. System Model

As illustrated in Figure 1, the SAG-MCS scenario is simplified to a 2-dimensional
continuous square area with the size of L× L pixels. The simulation area has fixed bor-
ders and multiple obstacles that UAVs cannot fly over. We assume that there are a set
K , {k | k = 1, 2, . . . , K} of PoIs, and each PoI is assigned a certain data amount d(k), ∀k.
Note that PoIs are regarded as persistent information nodes and are not going to disappear
after coverage. Additionally, we consider a set C , {c | c = 1, 2, . . . , C} of charging stations
and a set B , {b | b = 1, 2, . . . , B} of round and rectangular obstacles. At the beginning
of each simulation episode, the locations of all the PoIs, charging stations, and obstacles
are randomly distributed in the 2D map. Each PoI’s data amount d(k), ∀k is randomly
assigned in a certain range as well, but the total data volume Σkd(k) of different episodes
remains consistent.

Let U , {u | u = 1, 2, . . . , U} be U UAV agents deployed in the simulation area, where
the UAVs can perform continuous and horizontal flying movements at a fixed altitude. We
define Robs as the observation range, and Rcov as the coverage range or sensing range of
each UAV. Arbitrary UAV can observe the local map within the radius Robs in real-time
and receive Lsat × Lsat fuzzy global map captured by satellites every some timesteps. Any
PoI k within a UAV’s Rcov is recognized as covered and all its data d(k) is collected once at
each timestep t. Note that Rcov is smaller than Robs, as UAVs can only collect data when
approaching to PoIs, but they can observe a wider range of area in general. Moreover, we
consider the UAV swarm can autonomously form the ad-hoc network, and each pair of
agents can be interconnected within communication range Rcomm and exchange observed
information for joint decision making. Considering the delays and packet losses in real-
world ad-hoc networking, we set a communication dropout probability p between adjacent
UAV nodes in training and evaluation. As for the energy consumption, we set the onboard
battery status φ(u) ∈ [0, 100%], ∀u.

For each simulation episode, the data collection task in SAG-MCS scenario will last
for T timesteps in total. Each UAV’s position is randomly assigned and their batteries are
fully-charged in the beginning. At each timestep t, UAV u can obtain local observation
from embedded sensors; while every few timesteps, it can obtain fuzzy global observation
from the satellite. Using the multi-scale observations {ou

t }u∈U , UAV u performs an action
{au

t }u∈U . We set the battery φ(u) consumed at timestep t as {eu
t }u∈U , which is determined

by the current flying speed {vu
t }u∈U and will be introduced in Section 3.4. When flying

close to charging stations, their batteries will be fully charged in next timestep, simulating
the real-world battery replacement process on the ground.

3.2. Observation Space

In SAG-MCS, each UAV agent u can obtain the multi-scale observation {ou
t }u∈U at

timestep t from different sources, as introduced in Section 3.1. In Figure 2, we formulate
the observation space with three elements: O , {ou

t = (Ou
local ,Ou

global ,Ou
sel f )}∀u∈U .
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Figure 2. The observation space of UAV u in SAG-MCS.

(1) Local observation Olocal from embedded sensors: UAV can observe local infor-
mation within a circle of radius Robs in real-time, centering on itself. Let Olocal , {ou

l =

(Ou,1
local ,O

u,2
local ,O

u,3
local)}∀u∈U denotes local observation space, which consists of three 2D

vector channels. The first channel contains the data amounts and distribution of surround-
ing PoIs. We set the data value d(k) as the corresponding pixel value if it refers to PoI k,
otherwise 0. The second channel contains the locations of obstacles relative to the UAV,
where we set pixel value 1 for coordinates of obstacles, otherwise 0. The third channel
includes the locations of other UAVs within Robs. In addition, we define pixel value 1 for
coordinates of UAV agents as well, otherwise 0.

(2) Global observation Ou
global from satellites: Every n timesteps, satellites will capture

fuzzy global observation and transmit the information to all UAVs. As shown in Figure 2,
Ou

global consists of three 2D channels with reduced size of Lsat × Lsat(Lsat < L), which

cannot provide precise locations of the environment elements globally. We define Oglobal ,

{ou
g = (Ou,1

global ,O
u,2
global ,O

u,3
global)}∀u∈U in absolute positioning coordinates. The encoding

method for global observation is nearly the same as local observation, except in the third
channel of UAV locations, we set −1 as the corresponding pixel value if it refers to the
absolute location of UAV u in global map.

(3) Auxiliary observation Ou
sel f : Then we utilize information from onboard flight

control computer to assist UAV to learn optimal policy. Specifically, we define Osel f ,{
ou

s = concatenate
(

x(u), y(u), vx(u), vy(u), φ(u), {∆x(c), ∆y(c)}∀c∈C
)}
∀u∈U . For UAV u,

ou
s includes its absolute position, velocity and current remaining battery, and the relative

locations of all charging stations towards UAV u.

3.3. Action Space

The rotor UAVs are capable of applying different thrust at all directions responsively.
We choose to discretize the entire 2-dimensional continuous space into eight directions
for simplicity, and UAV agents can apply maximum-thrust (denoted as 1.0 unit), half-thrust
(0.5 unit), or zero-thrust (0 unit) at any direction. Note that zero-thrust represents hovering
in place. Therefore, the action space in SAG-MCS is defined as:

A ,
{

au
t = (θu

t , f u
t ) | θu

t ∈ {
kπ

4
| k = 0, 1, . . . , 7}, f u

t ∈ {0, 0.5, 1.0}
}

. (2)
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where θu
t denotes the thrust angle and f u

t is the thrust magnitude. The action space A
consists of 17 actions in total. Since the timestep interval in the simulation is quite short,
we assume the physical model is a uniform acceleration process. UAV can adjust the
magnitude and direction of velocity using certain actions.

3.4. Evaluation Metrics

As stated in Section 3.1, the UAV swarm is aimed at collecting maximum information
over PoIs as long as possible. UAVs should avoid collisions with obstacles and borders
during movement, and recharge in time when power is low. Following Ye et al. [37] and
Liu et al. [45], we propose three global evaluation metrics to evaluate the effectiveness of
the joint cooperation of the UAV swarm in this SAG-MCS task. These metrics are ultimately
used to evaluate the DRL policy we have trained.

The first metric is Data Coverage Index, which describes the average data amounts
collected by the whole UAV swarm per timestep, as:

ct =
∑K

k=1 wt(k)d(k)
Kt

, t = 1, . . . , T. (3)

where wt(k) denotes the number of timesteps when PoI k was successfully collected from
timestep 1 till t. d(k) denotes the data amount carried by PoI k and K is the number of PoIs.

We noticed that in some cases, isolated PoIs in rural areas may not be covered even
when the data coverage index is quite high; however, isolated or sparse PoIs in remote areas
can carry valuable information in certain scenarios such as disaster relief. Considering
the comprehensiveness of the data collection task, we propose the second global metric
Geographical Fairness Index to evaluate the exploration ability of the UAV team, as:

ft =

(
∑K

k=1 wt(k)d(k)
)2

K ∑K
k=1(wt(k)d(k))

2 , t = 1, . . . , T. (4)

where wt(k) and d(k) are defined the same as Equation (3). When all PoIs are evenly
covered, Equation (4) gives ft = 1.

In addition, the third metric Energy Consumption Index is used to indicate the energy-
saving status of the UAV swarm. In order to further simulate the energy consumed by
multi-rotor UAV in reality, we adopt an equation of power on the flight speed [46], as:

PT =
1
2

CD Aρv3 +
W2

ρb2v
, (5)

where CD is the aerodynamic drag coefficient, ρ is the density of air and v is the current
flying speed. Parameter A, W, b denote UAV’s front facing area, total weight, and width,
respectively. For simplicity, we adopt a general UAV model and specific values are omitted
in this paper. In timestep t, we assume the consumed energy eu

t by UAV u is linear to its
battery power, as:

eu
t = e0 + ηePT

u
t , (6)

where e0 represents hovering energy consumption and ηe is an energy coefficient. PT
u
t

refers to the output power of UAV u in timestep t. Equations (5) and (6) reveal that UAV’s
battery is more efficient at an optimal cruising flight speed, while hovering or flying at
maximum speed will consume more power. Note that energy consumed during flight is
mainly from rotors and embedded sensors, and we ignore the communication budgets in
the ad-hoc network. Therefore, we define the energy consumption index by taking the
average of all U UAVs in T timesteps:

et =
1

t×U

t

∑
τ=1

U

∑
u=1

eu
τ , t = 1, . . . , T. (7)
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After a complete simulation episode, we calculate the metrics mentioned above as final
global metrics, denoted as {cT , fT , eT} = {ct, ft, et}t=T . We hope to maximize the coverage
and fairness index for sensing data adequately, while minimize the energy consumption
index for energy-saving. Therefore, following Ye et al. [37], we define the overall objective
coverage-fairness-energy score (CFE score) by a DRL policy π:

CFEt(π) =
ct × ft

et
, t = 1, . . . , T. (8)

Obviously, our objective is to optimize the policy π to maximize CFET(π) of the whole
episode. As our SAG-MCS is a practical partially observable scenario, UAV agents cannot
be aware of these global metrics of the whole swarm. They can only make actions according
to the decentralized policy πu, ∀u ∈ U and self-owned information. Therefore, we propose
a heuristic reward function to train the optimal policy π, which will be further introduced
in Section 4.4.

4. Proposed ms-SDRGN Solution For SAG-MCS

Due to the multi-scale observation space and complicated SAG-MCS task, we propose
a heuristic DRL method named Multi-Scale Soft Deep Recurrent Graph Network (ms-SDRGN).
As illustrated in Figure 3, we first utilize a Multi-scale Convolutional Encoder to integrate
local and global observed information for better feature extraction from observation space.
Based on the concept of DRGN [37], we use graph attention mechanism (GAT [26]) to
aggregate neighboring information through ad-hoc connections, and adopt gated recurrent
unit (GRU [27]) as a memory unit for better long-term performance. In addition, we utilize
a maximum-entropy method to learn stochastic policies via a configurable action entropy
objective, and control each UAV agent in a distributed manner. Furthermore, a customized
heuristic reward function is proposed for decentralized training.
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Gated Recurrent
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Affine Transform

Deep Recurrent Graph NetworkMulti-Scale Convolutional Encoder

…… Q-value
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Aggregated

Concatenate Hidden
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Figure 3. ms-SDRGN Model Architecture.

4.1. Multi-Scale Convolutional Encoder

Exploiting observations properly is essential for agents to perceive the current state of
RL systems and make corresponding actions. Previous DRL methods (e.g., DQN, DGN,
MAAC) apply multi-layer perceptron (MLP) as linear encoders to process raw observations,
which is preferred for scenarios with smaller observation dimensions or less information,
such as Cooperative Navigation [47]. However, in our SAG-MCS task, observations and
environment states are more complicated and their input sizes are relatively larger.

Our intuition lies that compared with MLP, convolutional neural network (CNN) is
more capable of processing data that has spatial information and large receptive fields,
such as images. CNN can integrate information from different input channels as well.
So we treat the local observation Olocal and satellites’ fuzzy global observation Oglobal as
simplified real images, and design two CNN to extract spatial feature representations of
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local and global input states separately. Specifically, we construct the local CNN with two
convolutional layers and two fully connected layers, which outputs local embedding elocal

u .
The global CNN has a larger input scale, and we use five convolutional layers, which yields
global embedding eglobal

u . As for the auxiliary information in Osel f , we simply use a fully

connected layer and take esel f
u as output from UAV self-owned information. Finally, we use

concatenation operation to combine them as a multi-scale observation embedding eu for
UAV u:

eu = concatenate(elocal
u | eglobal

u | esel f
u ), ∀u ∈ U . (9)

Such multi-scale features can help UAVs better select actions, by taking full account
of: (a) the relative position between current UAV and surrounding PoIs, obstacles or other
agents; (b) the correlation of current UAV’s remaining battery and the distance to the closest
charging station; (c) the distribution of PoIs in the fuzzy global map for better exploration
and coverage.

4.2. Aggregate Adjacent Information with Graph Attention Mechanism

For the purpose of multi-agents exchanging information through ad-hoc connections in
SAG-MCS, we model the UAV swarm as a graph network, where each node is represented
as a UAV, and the edges are the communication links of neighboring UAV pairs. For
each node i, we denote ei extracted from observation space as its node embedding. Let
all UAVs networked with UAV node i as a set Gi. This is implemented by an adjacency
mask A, which is a U ×U symmetric matrix and satisfies A(i, j) = 1 if UAV node i is
interconnected with UAV node j. For all UAV node j ∈ Gi, we utilize GAT to determine
the weight of UAV node i towards its different neighbors j as αij. Building on the concept
of self-attention [48], an attention coefficient between node i and its neighboring node
j is defined as eij = a(Wei, Wej), where a() is a shared attentional mechanism. Then,
we calculate the attention weight αij by normalizing eij across all possible node j using
softmax function:

αij = softmaxj
(
eij
)
=

exp
((

WKej
)T ·WQei

)
∑k∈Gi

exp
(
(WKek)

T ·WQei

) , (10)

Then GAT aggregates information from all adjacent nodes j by weighted summation,
which is given by:

gi = ∑
j∈Gi

αk
ij ·WVej. (11)

where we denote gi as the aggregated output embedding of UAV j after one GAT layer.
In addition, WQ, WK, WV ∈ W are learnable weight matrics related with query, key, and
value vector.

As shown in Figure 3, we utilize two GAT layers to aggregate information from
neighboring UAV agents within a two-hop communication range, which could further
expand the perception range and enhance cooperation of the UAV swarm. For better
convergence, we then use skip connections [49] by concatenating the input observation
embedding ei, the outputs of the first GAT layer gi,1 and the second GAT layer gi,2, as
gi = concatenate(ei | gi,1 | gi,2).

Additionally, to make full use of temporal information during the interaction with RL
environments and improve long-term performance, we integrate a gated recurrent unit
(GRU) to memorize temporal features as:

ht = GRU(gi | ht−1). (12)

where we take gi as input and ht is the hidden state of timestep t stored in the memory unit.
After adjacent information aggregation and GRU, we apply an affine transformation layer
to ht for calculating Q-value Q(Ot, at).
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4.3. Learn Stochastic Policies with Adjustable Action Entropy

Based on the Q-value produced by DRGN, we can learn a deterministic policy, where
each Q-value represents a fixed probability of the corresponding action. However, deter-
ministic policies can easily jump into local optimum and lack for exploration in complex,
real-world scenarios. Inspired by the maximum entropy RL framework [50,51], we utilize
soft Q-loss to learn a stochastic policy in SAG-MCS, with the objective of maximizing
expected reward and optimizing the action entropy towards a certain target. A flow chart
of the training process is presented in Figure 4.

ms-SDRGN

learned model

Action Probability
 Temperatue

Parameter

Action Entropy

Replay Buffer

sample
experiences

Q-value Soft Q-loss ms-SDRGN

target model

update parameters periodically

argmin

temperatured
softmax

Figure 4. The training process of ms-SDRGN. In the flow chart, solid lines indicate feed forward
propagation, and dashed lines denote updating parameters by backpropagation.

Firstly, we sample previous interaction experiences from the replay buffer as training
inputs. The ms-SDRGN learned model infers a set of Q-value from the experiences. Then,
we apply temperatured softmax operation to Q-value for getting the action probability:

π(Ot, at) = softmaxat

(
Q(Ot, at)

α

)
= exp

(
Q(Ot, at)

α
− log Σat exp

(
Q(Ot, at)

α

))
, (13)

where α is an adjustable temperature parameter, and Q-value Q(Ot, at) is produced by the
learned model when receiving Ot and at as inputs. Specific action during simulation is
sampled from the action probability. Then, we use Equation (13) to estimate the action
entropy by calculating the information entropy expectation from sampled experiences:

E[Hπ(O, a)] = E[−Σat∼ππ(Ot, at) · log π(Ot, at)], (14)

The action entropy represents the action uncertainty of policy π, which can be ad-
justed by the temperature parameter α. Therefore, we preset a target action entropy as
Htarget

π = pα ·maxHπ , where the maximum action entropy is determined by action space as
maxHπ = log(dimA), and pα is a hyper-parameter named target entropy factor. Note that
different RL tasks require different levels of exploration, so pα shall be modified according
to specific scenarios. More concretely, our goal is to let the action entropy E[Hπ(O, a)]
approach the pre-defined target action entropy Htarget

π , by updating the temperature pa-
rameter α through gradient descent:

∇α = f
(
Htarget

π −E[Hπ(O, a)]
)

. (15)
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where f is a customized activation function andHtarget
π denotes the target action entropy.

The configurable action entropy mentioned above guarantees the balance between interac-
tion stability and exploration capability of the policy.

Following Soft Q-learning [50], we also include the temperature parameter α to help
define a V-value function for the target model. Finally, we use the mean squared error
calculated by Q-value function and V-value function as Qloss:

V(Ot) = α · log Σat exp
(

Q(Ot, at)

α

)
, (16)

Qloss =
1
S

Σ(rt + V(Ot+1)−Q(Ot, at))
2. (17)

where rt is the reward earned in timestep t, V(Ot) denotes the V-value function and S
is the batch size. The Q-value function Q(o, a) of the learned model is updated through
minimizing the Qloss in Equation (17). In the learning process, ms-SDRGN target model
will be updated periodically by duplicating the parameters of the learned model directly.

4.4. Heuristic Reward Function

In this section, we design a heuristic reward function to evaluate the result when the
UAV swarm conducted action at based on respective observation ot. Since each UAV agent
in SAG-MCS is only exposed to local information and acts in a decentralized manner, we
expect the reward function can help agents to achieve a better CFE score, while not directly
aiming at optimizing the global metrics mentioned in Section 3.4. Therefore, the reward
function considers the impact of data collection, battery charging, energy consumption and
collision with boundaries.

Firstly, we encourage the UAV swarm to collect data as much as possible. Note that
PoIs that within UAV’s coverage range Rcov are referred as ‘covered’. For UAV u, we design
an individual coverage term rsel f

u and a swarm coverage term rswarm
u :

rsel f
u =

{
η1 · Σpd(p), if PoI p is covered only by UAV u
−1, if none PoI is covered by UAV u

(18)

rswarm
u =

{ η2
nu
· Σqd(q), if PoI q is covered by other UAVs in Gu

0, if UAV u is not networking with others
(19)

where rsel f
u counts the data amounts collected individually by UAV u, and rswarm

u counts
the data amounts covered by agents that network with UAV u in one-hop connection. They
are expected to improve the data coverage index through both individual exploration and
swarm cooperation. Let nu denote the number of UAV u’s one-hop neighboring nodes.
In addition, we set balance coefficients η1 = 0.4, η2 = 0.04.

Secondly, in order to guide UAVs to charging stations when their batteries are low,
we propose a charge term rcharge

u as:

rcharge
u = −min θu

c , ∀c ∈ C, (20)

where θu
c ∈ [0, 1] is normalized euclidean distance between UAV u and charging station c.

The charge term rcharge
u will increase as UAV moving closer to its nearby charging station.

We deem the UAV is in charging state when the relative distance meets θu
c ≤ 2.0, then an

extra reward of 2.0 points will be added to rcharge
u .

Other factors such as energy consumption and collisions are considered as well.
According to Equation (6), we simply define an energy term as renergy

u = 1/eu
t . UAVs that

consume less energy are expected to gain higher rewards. Then, we define a penalty term
pu = 1 when UAV u collides with the fixed boundary in our scenario, otherwise put pu = 0.
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We integrate local evaluation terms and define the heuristic reward function as:

ru =

(
rsel f

u + rswarm
u

)
× ε + rcharge

u × (1− ε)

renergy
u

+ pu, if φ(u) > 0, (21)

where the weight parameter ε refers to the remaining battery percentage, denoted as
ε = φ(u)/100%. Equation (21) only functions when battery is not empty, otherwise the
reward function is defined as:

ru = renergy
u , if φ(u) ≤ 0. (22)

For training simplicity, UAV can still operate when its battery has drained, but it
cannot get reward from data collection and will get an extra punishment.

5. Experiments

In this section, we introduce the setup of experiments and performance metrics. Then,
we compare our approach with three state-of-the-art DRL baselines. Case studies are
performed to analyze the effectiveness, expansibility and robustness of ms-SDRGN.

5.1. Experimental Settings

In this section, we use Pytorch 1.9.0 to perform experiments on Ubuntu 20.04 servers
with two NVIDIA 3080 GPUs and an A100 GPU. In the SAG-MCS simulation environment,
we set the 2D continuous target area of 200× 200 pixels, where 120 PoIs, 3 charging stations,
and 50 obstacles (20 round obstacles and 30 rectangular obstacles) are randomly initialized.
PoIs are scattered around 3 major points from Gaussian distribution, each PoI is randomly
assigned associated data within [1, 5]. We deploy 20 UAVs in the training stage with a
parameter-shared model for action inference. We define their coverage range Rcov = 10,
the observation range Rcov = 13, and the communication range Rcomm = 18 with the
probability p = 0.5 of communication dropout. The fuzzy global observation with the size
of 40× 40 pixels is updated from satellites to UAVs every 5 timesteps. Each UAV’s battery
is initially fully charged to 100% and the consumed energy at each timestep is calculated
after every movement, according to Equations (5) and (6).

In our implementation, the target entropy factor is set to pα = 0.3 and the discounted
factor γ is 0.99. We use Adam for optimization with the learning rate of 1 × 10−4, and
ReLU as the activation function for all hidden layers. The experience replay buffer is
initialized with the size of 2.5 × 104 for storing interaction histories, and the batch size is
set to 256. As for the exploration strategy, we apply ε−multinomial for stochastic policies
such as ms-SDRGN, letting ε start with 0.9 and exponentially decay to 0 in the end. For
deterministic policies, we use ε− greedy strategy and set ε to exponentially decay to 0.05 at
30,000 training episodes.

One simulation episode lasts for 100 timesteps, and each DRL model interacts with the
simulation environment for 50,000 episodes in total. Interaction experiences will be pushed
to the replay buffer concurrently. After each simulation episode, the learned network
is trained for 4 times using the experiences sampled from the replay buffer, while the
target network is updated every 5 episodes by directly copying the parameters from the
learned network. After training, we test the converged models for 1000 episodes to reduce
randomness.

As introduced in Section 3.4, we use the following metrics to evaluate the performance.

• Episodic Reward: calculates the accumulated reward of the whole evaluation episode. It
generally evaluates the SAG-MCS task achievements by the UAV swarm, considering
data collection, battery management and collisions.

• Data Coverage Index (cT): describes the average data amount collected from PoIs.
• Geographical Fairness Index ( fT): shows how evenly the PoIs are covered by all UAVs

geographically and represents the UAV swarm’s exploration level.
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• Energy Consumption Index (eT): calculates the average energy consumed by the UAV
swarm, according to the flight speed and hovering status.

• CFE Score (CFET): represents the overall performance by combining cT , fT and eT as
Equation (8). We expect CFE score to be as large as possible.

5.2. Analysis of Training Convergence and Heuristic Reward Function

To validate the feasibility and effectiveness of our SAG-MCS environment design
and the heuristic reward function, we first present the learning curves of episodic reward
and the global metrics over time. During the training phase, we evaluate the model for
20 episodes after every 100 training episodes, and calculate the average global metrics and
accumulated reward, as illustrated in Figure 5.

(a) (b)

Figure 5. (a) The episodic reward learning curves of DRL algorithms. (b) The global metrics learning
curves of ms-SDRGN.

In Figure 5a, we observe the average episodic reward of ms-SDRGN improves very
quickly at the beginning, and gradually converges at around 20,000 episodes. Figure 5b
presents the changes of four global metrics during the training progress of ms-SDRGN. The
final energy index gradually drops and stabilizes to 0.9 at 20,000 episodes, indicating that
UAVs have learned to operate at an optimal cruising speed. In addition, the final coverage
and fairness index quickly grow and converge at around 10,000 episodes. Correspondingly,
the overall CFE score has a similar growth trend and reaches convergence rapidly. Therefore,
it can be proved that ms-SDRGN has learned the policy to fulfill the overall objective of
maximizing the CFE score. After convergence, the UAV swarm can continuously collect
PoIs maximumly using energy-efficient flying speed. The training results have suggested
the effectiveness of the heuristic reward function.

Through visualization, we can observe that UAVs have learned to appropriately assign
tasks at different remaining batteries. When its battery drops to around 25~40%, the UAV
will proceed to the closest charging stations for battery exchange. In each simulation
episode with 100 timesteps, the whole swarm rarely runs out of power, as such a charging
process will happen two times for each UAV.

5.3. Comparing with DRL Baselines

We then compare our approach ms-SDRGN with three DRL baselines, including
DGN [36], DQN [24] and MAAC [52]. DQN is a simple and efficient single-agent DRL
approach, but it is still applicable for multi-agent tasks. Based on DQN, DGN uses GAT
for modeling and exploiting the communication between agents. MAAC integrates self-
attention mechanism with MADDPG [47], and provides agents with fully observable
information to learn decentralized stochastic policy using a centralized critic. Thus, we
compare ms-SDRGN with DGN to show the effectiveness of the multi-scale encoder and
memory unit. Then, we compare with MAAC to validate the necessity of communication
for the multi-agent swarm, especially in a partially observable environment.
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We have evaluated the converged methods for 1000 episodes, and taken the mean
value and standard deviation of all metrics, as shown in Table 1. Note that for a fair
comparison, we also provide fuzzy global observations for the baselines, to ensure the raw
observation inputs are the same.

Table 1. Comparison of DRL Baselines.

Algorithm Reward CFE Score Coverage Fairness Energy

ms-SDRGN 6025.82± 911.13 0.8911± 0.1699 1.5345± 0.1509 0.5205± 0.0423 0.9067± 0.0347
DGN 4730.38± 840.32 0.8104± 0.1802 1.4636± 0.1600 0.5032± 0.0514 0.9226± 0.0514

MAAC 4670.71± 783.61 0.8587± 0.1799 1.4496± 0.1519 0.5255± 0.0484 0.8992± 0.0373
DQN 3291.03± 631.22 0.6273± 0.1367 1.3332± 0.1554 0.5027± 0.0521 1.0819± 0.0227

The evaluation results are presented in Table 1. Then, we conduct a independent
T-test between our approach and other three DRL baselines on every evaluation metric. It
can be concluded that ms-SDRGN has a significant difference comparing to the baselines
(p < 0.05). We can obtain the following observations from Table 1:

Firstly, the proposed approach ms-SDRGN outperforms all other baselines in terms
of reward and coverage index significantly. It demonstrates that with the help of multi-
scale convolutional encoder and graph-based communication, ms-SDRGN achieves better
data collection and energy management efficiency in SAG-MCS scenario. Compared with
DQN and DGN, ms-SDRGN can better sense the surrounding environment from previous
experiences in the memory unit, and make decisions more efficiently between seeking for
more PoIs or returning for charging.

Secondly, from the perspective of fairness and energy, MAAC improves 0.005 fairness
and 0.0075 energy index than ms-SDRGN. As a fully observable algorithm, we believe that
MAAC can achieve similar cooperative exploration as ms-SDRGN using the observation
embeddings from the whole UAV swarm. Regardless of extracting features from neigh-
boring UAV nodes or from the memory unit, MAAC has a simpler objective to reduce its
energy consumption for getting a higher reward.

Furthermore, the reward standard deviation of ms-SDRGN is higher than other meth-
ods, which may be attributed to randomness generated by the complex MADRL framework.

5.4. Analysis of Communication Dropout

In practical wireless networking applications, communication losses commonly occur
in forms of delay, congestion or packet losses. To better cope with such real-world demand-
ing communication conditions, we assume a p = 0.5 probability of communication dropout
between interconnected UAVs during the training phase. Theoretically, this setting can
improve the robustness of our model when implemented in different conditions. Therefore,
we have trained two ms-SDRGN models in environments with and without communication
dropout, respectively. Then, we test them in SAG-MCS, where the random communication
dropout rate p varies in [0, 1], with an interval of 0.1. The evaluation result is shown in
Figure 6.

From Figure 6a, it is observed that as the dropout rate grows in evaluation environment,
the reward of the model trained w/o dropout continuously decreases. While the model
trained w/ dropout achieves more stable evaluated reward and outperforms the other
when the dropout rate p is larger than 0.4. In terms of the major metric CFE score in
Figure 6b, ms-SDRGN trained w/ dropout continuously surpasses ms-SDRGN trained
w/o dropout. When the evaluating communication dropout rate changes from 0 to 1.0,
the CFE score of ms-SDRGN trained w/ dropout drops around 0.05 point. By contrast,
ms-SDRGN trained w/ dropout gets 0.19 point of degradation on CFE score.

Random communication dropout can affect the stability of timing correlation in GRU
memory unit. However, after trained in environment with 50% probability of communica-
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tion losses, our ms-SDRGN is proved to be more robust, and will not result in significant
performance loss even under unreliable communication conditions.

(a) (b)

Figure 6. The evaluation results in environments with different communication dropout rate:
(a) mean episodic reward and (b) CFE score.

5.5. Impact of Simulation Environment Scale Setting

Next, we proceed to verify the performance of the multi-scale convolutional encoder.
In actual MCS tasks, UAVs could encounter various densities of overground PoIs. For
regions with dense PoI distributions such as modern cities, we hope to perform finer-
grained observations for higher feature resolution. While we can perform coarse-grained
or lightsized observations for areas with sparse PoIs. In order to handle tasks of different
observation scales and enhance robustness, we implement CNNs as the multi-scale encoder,
which technically is more applicable than linear encoders for large-scale observations.
Therefore, we expect to compare the front-end multi-scale convolutional encoder with
original linear encoder using different local observation scales.

In this experiment, we simulate different sizes of observation inputs by proportionally
scaling the whole map, which could maintain the distribution of all elements and ensure
comparison fairness. Specifically, we set the original environment setting introduced in
Section 5.1 as scale 1.0 unit, and adjust the scale factor from 0.5 to 2.0 with the interval of
0.5 unit. The major settings of different scale factors are listed in Table 2.

Table 2. Simulation Environment Scale Experiment Settings.

Environment Scale Factor 0.5 1.0 1.5 2.0

Environment Size in Pixels 100× 100 200× 200 300× 300 400× 400
Coverage Range Rcov 5 10 15 20

Observation Range Robs 7 13 20 26
Communication Range Rcomm 9 18 27 36

The evaluation results of four environment scales are presented in Figure 7. As
size of local observation space varying with observation range Robs, we can observe that
CNN encoder outperforms linear encoder consistently on episodic reward. As for CFE
score, ms-SDRGN with local CNN encoder achieves better CFE score than linear encoder
when the scale factor is greater than or equal to 1.0, while linear encoder exceeds CNN
encoder by 0.04 points at scale 0.5. The above result demonstrates that linear encoder can
efficiently extract features from small-size input. In addition, the local CNN used in our
multi-scale convolutional encoder has better representational capacity for large observation
space. This finding demonstrates the expansibility of ms-SDRGN towards various scales of
raw observations.
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(a) (b)

Figure 7. The evaluation results in environments with different scale factors: (a) mean episodic
reward and (b) CFE score. (‘w/o local CNN encoder’ denotes using linear encoder to process local
observations).

5.6. Ablation Study

Finally, we conduct an ablation study by separately removing components of ms-
SDRGN, including multi-scale encoder, GAT layers, and GRU. We evaluate each case for
1000 episodes and the average results are listed in Table 3.

Table 3. Ablation study of ms-SDRGN method.

Algorithm Reward CFE Score

ms-SDRGN 6025.82± 911.13 0.8911± 0.1699
ms-SDRGN-ms 5198.48± 877.04 0.8674± 0.1985
ms-SDRGN-Soft 5337.79± 814.41 0.8592± 0.1791

ms-SDRGN-1GAT 5523.05± 905.01 0.8102± 0.1762
ms-SDRGN-2GAT 4984.57± 837.96 0.7956± 0.1729
ms-SDRGN-GRU 4318.14± 815.62 0.8017± 0.1878

‘-ms’ means removing local CNN encoder. ‘-Soft’ means training a deterministic policy instead of a stochastic
policy. ‘-1GAT’ and ‘-2GAT’ denotes disabling one GAT layer and two GAT layers separately. ‘-GRU’ means
disabling GRU memory unit.

It can be observed in Table 3 that when removing any components, our ms-SDRGN will
generally result in performance degradation. Firstly, removing local CNN encoder in case
‘-ms’ will reduce average CFE score and reward, which demonstrates the validity of CNN
encoder, as discussed in Section 5.5. Secondly, case ‘-Soft’ demonstrates the stochastic policy
outperforms the deterministic policy by improving exploration and coverage efficiency.
Thirdly, case ‘-1GAT’ disables one GAT layer and limits the ad-hoc communication to
one-hop range, which decreases 0.08 points on CFE score and 530 points on reward. Case
‘-2GAT’ disables both two GAT layers, which completely cuts off the communication of the
UAV swarm and causes further performance loss. This finding suggests the necessity of
GAT mechanism for modeling the communication between agents. Moreover, case ‘-GRU’
removes the memory unit and significantly reduces the average reward and CFE score. For
complex MARL tasks such as SAG-MCS in this paper, the memory unit can help agents
recall long-term experiences, especially when the positions of PoIs and obstacles are fixed.

6. Discussion

In this section, we discuss two limitations of our method and explore future directions
for practical implementation.

Firstly, the computational complexity is crucial for practical applications. The proposed
MADRL approach functions in a decentralized manner. Each UAV agent infers its action
using on-board processor and executes the action subsequently. In addition, the multi-
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scale convolutional encoder introduced in Section 4.1 becomes the major computational
burden for embedded processors. Therefore, future works will focus on introducing more
computationally efficient spatial feature extractors.

Secondly, hand-crafted reward function limits the scalability. The heuristic reward
function designed in Section 4.4 is customized for SAG-MCS simulation environment.
When migrated to other application scenarios, the reward function requires modification
case to case. Inverse reinforcement learning can be a solution for agents to infer reward
functions from expert trajectories [53].

7. Conclusions

This paper introduced a partially observable MCS scenario named SAG-MCS, with
an aerial UAV swarm jointly performing data collection task under energy limits. We
proposed a value-based MADRL model named ms-SDRGN to address this multi-agent
problem. Conclusively, ms-SDRGN applied a multi-scale convolutional encoder to handle
the multi-scale observations, and utilized GAT and GRU for modeling communications and
providing long-term memories. Effectively, a maximum-entropy method with configurable
action entropy was employed to learn a stochastic policy. Experiments were conducted
to demonstrate the superiority of our model compared with other DRL baselines, and
validate the necessity of major components in ms-SDRGN. In addition, we analyzed the
effectiveness of the communication dropout setting and the front-end CNN encoder. Future
works will be focused on implementing fully continuous action space and exploring multi-
stage multi-agent scenarios.
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MCS Mobile Crowdsensing
SAG-MCS Space-Air-Ground integrated Mobile CrowdSensing
DRL Deep Reinforcement Learning
MADRL Multi-Agent Deep Reinforcement Learning
UAV Unmanned Aerial Vehicle
PoI Point of Interest
POMDP Partially Observable Markov Decision Process
ms-SDRGN Multi-Scale Soft Deep Recurrent Graph Network
GAT Graph Attention Network
GRU Gated Recurrent Unit
CFE Coverage-Fairness-Energy Score
CNN Convolutional Neural Network
MLP Multi-Layer Perceptron
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