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Abstract: In this paper, we attempted to find a relation between bacteria living conditions and
their genome algorithmic complexity. We developed a probabilistic mathematical method for the
evaluation of k-words (6 bases length) occurrence irregularity in bacterial gene coding sequences.
For this, the coding sequences from different bacterial genomes were analyzed and as an index of
k-words occurrence irregularity, we used W, which has a distribution similar to normal. The research
results for bacterial genomes show that they can be divided into two uneven groups. First, the smaller
one has W in the interval from 170 to 475, while for the second it is from 475 to 875. Plants, metazoan
and virus genomes also have W in the same interval as the first bacterial group. We suggested that
second bacterial group coding sequences are much less susceptible to evolutionary changes than the
first group ones. It is also discussed to use the W index as a biological stress value.

Keywords: cds; genome; bacteria; plants; metazoa; Gini coefficient

1. Introduction

For some time, genetic information has been generated exponentially along with the
development of sequencing technologies [1]. Thereby, the role of mathematical methods
and algorithms, which can be applied to nucleotide and amino acid sequences research,
increases. In this sense, the development of such methods is really important, as it allows
to obtain new information about genomes and individual gene structures. In the last years,
there was progress in mathematical methods for studying base correlations in nucleotide
sequences. These methods can be divided into two groups. The first one includes spec-
tral methods, such as Fourier transformation [2–4], wavelet analysis [5] and information
decomposition [6]. All of them can be used to search for different length correlations in
the DNA sequences having more than 2.0 substitutions per nucleotide [7]. However, the
limiting factor for them is the fact, that they are very sensitive to nucleotide insertions and
deletions. Insertions and deletions are common mutations in the DNA sequences of differ-
ent origins [8]. There are also mathematical methods developed specifically for accounting
for insertions and deletions using dynamic programming [9]. Some examples are: TRF [9],
Mreps [10], TRStalker [11], ATRHunter [12], T-REKS [13], IMEX [14], CRISPRfinder [15],
SWAN [16] and tandem repeat search tools, reviewed in [17].

Previous research studies allowed us to find different length periodicity in eukaryotic
and prokaryotic genomes [3,8,18,19]. Three base periodicity is the most common in both
eukaryotic and prokaryotic genomes [20]. The second most common is the two base
periodicity, which usually occurs in noncoding regions [21]. Three base periodicity occurs
in protein coding regions. Its origin is due to several factors, first of all, amino acids are
not equiprobable in proteins, also genetic code is degenerative and finally, synonymous
codons are not equiprobable in their use in genes. At the same time, triplet periodicity is
different for genes from different genomes [22]. That is why triplet periodicity can be seen
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as a feature, which corresponds to the organism's adaptation to a certain environment, as
well as gene and protein resistance to base substitution. If all the mutational substitutions
were possible in genes, triplet periodicity would be absent. So, triplet periodicity can be
used as a feature for genome classification [22]. For every studied genome an analog to the
Gini coefficient (W), which is commonly used for economic inequality measurement, can
be calculated [23].

However, here we could estimate inequality using triplets or any k-words, which are
multiples of three bases. Then, having W scores for each genome, we could classify the
studied genomes by the W index. It is important to note, that by using this method, k-word
frequencies are ranked in ascending order, so their original order has no effect on W.

In this study, we used k = 6. Such a length choice was made because of several factors.
Firstly, k should be proportional to three bases, so that triplet periodicity could be included
in the words without any phase shifts. It is also desirable to select the largest k possible so
that most of the correlations could be taken into account. Finally, the k value is limited by
the genome size, so for the sake of statistical significance, it could not be too large. Because
the size of bacterial genomes does not exceed several millions of bases and the number of
words for k = 9 is 262144, some of them could not be seen in the coding sequences due to
the small sample effect. That is why we selected k = 6 for this study.

In this study, we developed a probabilistic mathematical method for the evaluation of
k-words (six bases long) occurrence irregularity in bacterial genomes coding sequences. We
used the Monte Carlo method for the probabilistic estimates. All of the coding sequences
from different bacterial and other organisms’ genomes were analyzed and the W index
of k-word occurrence irregularity for them was calculated. W has a distribution similar
to normal. W statistical significance was estimated using the Monte Carlo method. Such
calculations were made to find a relation between bacteria living conditions and their
genome complexity. Genome complexity is seen as an algorithmic complexity (Kolmogorov
complexity [24]) of a gene. For a random DNA sequence, it would be similar to the
sequence length and vice versa. If for example the sequence is composed only of {att}n
subsequences, then the algorithmic complexity for this sequence would be slightly larger
than 0. In this sense, the larger the W value, the lesser the genome algorithmic complexity
is. There is no effective method for calculating algorithmic complexity [25], so we used W
for its estimation.

The research results for bacterial genomes show that they are divided into two uneven
groups. The first, the smaller one, has W in the interval from 170 to 475, while for the second
it is from 475 to 875. This shows that the second group maintains a much higher irregularity
level of k-word occurrence than the first group. Additionally, algorithmic complexity [24]
for the first group is much higher than for the second one.

It can also be seen, that six-word occurrence irregularity in bacterial, metazoan and
plant cds is mainly due to the triplet periodicity. However, triplet correlation contribution to
the six-word occurrence irregularity is the highest in bacterial genomes. Generally, the six-
word occurrence irregularity is much higher in bacterial genomes, than in the genomes of
plants and metazoa. Based on the results, it could be suggested, that the coding sequences
from the second bacterial group are far less sensitive to evolutionary changes than the ones
from all the other organisms studied.

2. Materials and Methods
2.1. DNA Sequences

Prokaryotic gene coding sequences, used in this study were taken from http://bacteria.
ensembl.org/index.html (accessed on 27 September 2021). For the calculations, only one
strain for each bacterial species was used. In total, we used 9236 bacterial genomes.
Plant gene coding sequences were taken from http://plants.ensembl.org/index.html
(accessed on 5 October 2021) and metazoan gene coding sequences were taken from
http://metazoa.ensembl.org/index.html (accessed on 5 October 2021). Virus gene coding
sequences were taken from ftp server ftp://ftp.ncbi.nlm.nih.gov/genomes/Viruses (ac-
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cessed on 11 October 2021). In total 70 plant species, 73 metazoan species and 54718 virus
species were used. When selecting genomes, for each species only one strain was taken to
avoid overrepresentation.

2.2. W Calculation Algorithm

For W calculation we filled a 4096 size U array for each coding sequence of the studied
genome. If S is cds, then s(i) is the numerically encoded cds, where 1 = a, 2 = t, 3 = c, 4 = g.
Such encoding was made just to ease computation. We started with i = 1 s(i) sequence for
every cds and calculated:

j = s(i) +
i+5

∑
k=i+1

(s(k)− 1)4k−i (1)

Where i is in the {1, 4, 7, . . . , l − 5} series. Here, l is the length of S sequence. For every
calculated j we added one to the corresponding U array cell: U(j) = U(j) + 1. This means that
we calculated a number of six-words with three base steps. So, every six-word intersected
the previous one by three bases. Three base shifts were selected as the least possible not to
interrupt triplet periodicity [20], but we still could consider six-words generated in both
phases. Here, is an example. Let S = {atgtagctgactgta} and step length is six bases. Then in
the first phase, there are atgtag, ctgact words, and in the second phase with a three bases
shift there are tagctg actgta words. If we calculate the number of six-words with three bases,
there are atgtag, tagctg, ctgact and actgta words, which is a sum of words in both phases.

These calculations were made for all the coding sequences of a single studied genome.
After U array filling, it was normalized by 106. The sum of the array:

Sum =
4096

∑
k=1

u(k) (2)

was calculated. Here, u(k) is an element of the U array. Next, the Q array was
calculated for each j = 1, . . . , 4096 as q(k) = 106u(k)/Sum. q(k) is an element of the Q
array. Such normalization is needed to eliminate the set size influence on the array. Then,
the Q array was sorted in ascending order. The resulting array was named Q1. Such
procedures are similar to those used in Gini coefficient calculation [23] and when applying
Zipf’s law to k-words bp from different DNA sequences [26–28].

Next, we calculated R and T arrays using the Monte Carlo method. In the case of R,
coding sequences were mixed randomly and it was made in a way that no stop codons
would be generated in the mixed sequences. Then we used the (1) formula and filled R
array the same way as Q. For each studied genome each cds was mixed 100 times to reduce
the statistical fluctuation influence on R. After that every element R(j), j = 1, 2, ..., 4096 was
divided by 100.

T array is calculated the same way as R, but this time cds were mixed in triplets
instead of single bases. This means that codons in cds remained the same, but their order
was changed. All the other procedures were the same as for the R array.

After R and T were calculated, we sorted them in ascending order, the same as for
Q array. The resulting arrays were named R1 and T1 accordingly. Then we determined
the difference between Q1 and R1 distributions. For that matrix M(2,4096) was filled:
M(1, i) = Q1(i) and M(2, i) = R1(i) for i = 1, ..., 4096. Next, we calculated I:

I =
2

∑
i=1,

4096

∑
j=1

m(i, j) ln m(i, j)−
2

∑
i=1

x(i) ln x(i)−
4096

∑
j=1

y(j) ln y(j) + L ln L (3)

Where x(i) =
4096
∑

j=1
m(i, j), y(j) =

2
∑

i=1
m(i, j) and m(i, j) is an element of M matrix. L is

the sum of all M matrix elements. This is the mutual information formula for considering
correlations between rows and columns features [29]. p(i,j) = m(i,j)/L, p(i,*) = x(i)/L, p(*,j)
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= y(j)/L. As in [29] we are checking two hypotheses. Hypothesis H1 is that p(i,j) 6= p(i,*)
p(*,j) and hypothesis H2 is that p(i,j) = p(i,*) p(*,j). Then, I is mutual information for
discrimination for H1 against H2. This means the more difference between m1(1,j) and
m2(1,j), j = 1,2,...,4096, the greater I is. 2I can be considered as a random value having χ2

distribution with 4095 × 15 degrees of freedom [29]. We calculated the normal distribution
argument W1 =

√
4I−

√
2 ∗ 4095 ∗ 15− 1. Such approximation of χ2 distribution to normal

distribution works well in the W1 range from −10.0 to 1500.0. That is enough for bacterial
genomes and other species research. The full W1 value range depends on L. In our case
y(1) = y(2) = 106, and therefore, L = 2× 106. For such L values, minimum W1 =−89.7, while
the maximum possible value is about 7400. This value can be obtained only theoretically
if, for example, in Q1 there would be only four nonzero cells (for instance, there would be
only a (a)6, (t)6, (c)6, (g)6 six-words). The greater the value W1 is, the lower the probability
of Q1 and R1 being different due to random factors. If Q1 and R1 are identical, then I is zero
(W1 = −89.7).

We have also determined the normal distribution argument W2, which allows estimat-
ing the difference between Q1 and T1 arrays. All the calculations were the same as for W1,
but the T1 array was used instead of R1. W2 has approximately the same distribution as
W1. We calculated W1 and W2 for all genomes listed in Section 2.1.

Schematic representation of the algorithm is shown in Figure 1.
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Figure 1. Structure of the algotithm for normal distribution arguments W1 and W2 calculation from
cds for each species.

It is important to note, that triplet order in M(1,j) and M(2,j) (j = 1,2,...,4096) arrays can
be totally different. At the same time, each of these arrays is sorted in ascending order. This
lets us avoid local unevenness impact on W1 and W2 when studying different genomes.
For instance, if we take unsorted expected frequencies as an R1 array and use them in
the M(2,j) string, then local unevenness may have a strong impact on W1 and W2. Here
is an example, let there be a gene, composed of 300 codons (900 nucleotides) with a, t, c
and g frequencies being 0.3, 0.1, 0.3 и 0.3, respectively. Let a, c and g bases be randomly
dispersed along the gene sequence. Additionally, let all 90 t only be found in a row (ttt . . .
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t). Then, the number of tttttt six-words would be 29. The total number of six-words, that
can be found with 3 bases step is 299. The expected number of tttttt words can be estimated
as 299 × (0.1)6 ≈ 3 × 10−4. Z is a normally distributed observable number of these six-
words deviations from the estimated number. For its calculation, a normal approximation
for binomial distribution is used. Z = (29 – 3 × 10−4)/{(3 × 10−4)(1 − 10−6)}0.5 ≈ 1700. 3
formula is an informational analog to χ2 distribution used for theoretical and experimental
distributions comparison [29]. This way, these six-words contributions to I in the (3) formula
will be significant. However, as the rest of the sequence is random, the use of unranged
expected frequencies in R1 will lead to a significant undervaluation of such gene algorithmic
complexity. That is why six-words sorted in the ascending order were used in M(2,j).

3. Results
3.1. Comparison of Q1 and R1 Arrays with Q1 and T1 Arrays

An example of resulting arrays Q1 and R1 for the E. coli genome is shown in Figure 2
(continuous line for Q1 and dotted line for R1). It can be seen that there is a distinct
difference between them. An example of Q1 and T1 arrays is shown in Figure 3. It is
obvious that there is much less difference between Q1 and T1 than between Q1 and R1
arrays. That is because the difference between Q1 and R1 is due to triplet cds periodicity as
well as the correlation between triplets in every six-word, while all the difference between
Q1 and T1 is only due to the correlation between neighboring triplets.
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Figure 2. Six-word distribution sorted in ascending order. Continuous line shows Q1 distribu-
tion for E. coli genome cds. Dotted line shows R1 distribution for the same genome after every
cds was randomly mixed. Mixing was performed in a way, that no stop codons can be found in
resulting sequences.

Here is an example, if S1 = {atc}100 is a sequence, containing only an atc triplet repeated
100 times, then the atcatc six-word appearance is only due to triplet periodicity. This can be
demonstrated with a little math. The Sum for this sequence, calculated using (2) formula, is
99 and p(a) = p(t) = p(c) = 1/3, p(g) = 0. S2 is the sequence we can obtain if we were to shuffle
the S1 sequence randomly. Then the probability of atcatc word appearance can be calculated
as p(atcatc) ≈ p(a)2p(t)2p(c)2 = (1/3)6 ≈ 0,0014. There are Sum*p(atcatc) such words on
average in the S2 sequence. The normal distribution argument can be calculated as:

Z =
(N − Sum ∗ p)

(Sum ∗ p(1− p)0.5)
(4)
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Figure 3. Six-word distribution sorted in ascending order. Continuous line shows Q1 distribution for
E. coli genome cds. Dotted line shows T1 distribution for the same genome after every cds was mixed
by triplets.

Here, N = 99 is the number of atcatc words in the S1 sequence when searched with
a step length of three bases, p = p(atcatc). Z12 ≈ 267 is the normal distribution argument,
showing a six-word frequency deviation between S1 and S2 sequences. This means that
the probability of obtaining 99 atcatc words in a row is P(x > 267), where x is a normally
distributed random variable. It is an extremely low value. At the same time, if we were
to create an S3 sequence by mixing S1 in triplets, for such sequence p = p(atcatc)=1 and
calculated by the formula (4) normal distribution argument Z13=0. So, this example shows
that when shuffling the S1 sequence in triplets, there is no effect of triplet periodicity on the
six-words frequency. This means, that for the S1 = {atc}100 sequence, Q1 and R1 distributions
would be different and Q1 and T1 would be identical.

For the next example, S4 = {tttccc}50, consisting of tttccc word repeated 50 times. Here,
p(a) = p(t) = 0.5, p(c) = p(g) = 0. Sum = 99 for such sequence ((2) formula), N=50 for tttccc
word. S5 is the randomly mixed sequence S 4, and for S5 p = p(tttccc) ≈ (0.5)6 ≈ 0.016. So,
there are Sum*p ≈ 1.6 such words on average in the S5 sequence. The normal distribution
argument calculated by the (4) formula is Z45 ≈ 38. The S6 sequence is created by shuffling
the S4 sequence in triplets. Here, p = p(tttccc) increases because there are only four possible
types of six-words: tttccc, cccttt, cccccc и tttttt. So, p = p(tttccc) and the normal distribution
argument Z46 = 5.6 as calculated by (4) formula. As a result, Q1 and R1 distributions are
different (Z45 ≈ 38) for S4 = {tttccc}50 sequences, but Q1 and T1 are also different (Z46 ≈ 5.6).
The reason for this is that in addition to quite an evident triplet periodicity, sequence S4 has
a six-word periodicity. At the same time, the S1 sequence only has a three base periodicity,
which is fully taken into account when mixing the sequence S1 in triplets, since Z12 ≈ 267
and Z13 ≈ 0.

This example shows that when mixing is performed randomly, there are three nu-
cleotide long words contributing to W1 as well as longer than three bases words (6, 9, 12, ...
nucleotides long). When shuffling in triplets, only six nucleotides and longer correlations
can affect W2. Such phenomena can be seen when comparing Figures 2 and 3, which were
computed for the E. coli genome. Here, the differences between Q1 and T1 are much smaller
than between Q1 and R1. Presumably, the Q1 distribution irregularity is partially due to
triplet periodicity and partially due to triplets’ correlation in six-words. W1 and W2 for the
E. coli genome are 799.13 and 439.11, respectively. These values show that the six-words
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distribution irregularity in the E. coli genome is due to both the triplet periodicity presence
and the triplets’ correlation in six-words.

3.2. W1 and W2 Distributions for Bacterial, Metazoan and Virus Cds

W1 and W2 distributions for bacterial genomes are shown in Figure 4. It can be seen,
that W1 and W2 are greater than zero, which shows, that correlation between nucleotides is
present for all bacteria studied. The W1 distribution is shown as a grey area and the W2
is shown as an area with a black outline. It can be seen, that the W1 distribution has two
peaks. The first one is located in W = 325 range and the second one is in W = 600 range. As
can be seen, bacterial genomes can be divided into two groups. The first of them has W1
between 175 and 425 and the second is between 425 and 875. There is a slight irregularity
in the six-word distribution for the first group relatively to mixed sequence (W1). For the
second group, the difference is much larger.
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It should be also mentioned, that when switching from W1 to W2 there is a significant
change in distribution form. Instead of two peaks, as seen before, there is only one in the
W2 = 200 range. Such behavior is due to six-word distribution irregularity being mostly
subject to triplet irregularity in the cds instead of triplet correlation.

We have also made a scatter plot for W1 and W2 for all bacteria genomes studied,
which is shown in Figure 5. Here, three clusters can be seen. The first W1 peak be-
tween 175 and 425 from Figure 4 is transformed into an elongated cluster with a center at
(W2, W1) ≈ (135, 320) in Figure 5. The second W1 peak from Figure 4 is transformed into
two clusters in Figure 5. The first one has its center at (W2, W1) ≈ (120, 600), and the second
one is at (W2, W1) ≈ (220, 610). The first cluster has a high triplet periodicity impact on
six-word frequency, while for the second one this impact is much lower, but it is still there.
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W1 and W2 distributions for metazoan genomes are shown in Figure 6. There is only
one peak for W1, located in the same region as the first bacterial group. This means, that
there is much less irregularity in six-word use in metazoan cds, than in the bacterial ones.
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The second peak from Figure 4 is almost absent in Figure 6. W2 distribution in Figure 6
is also located to the left as opposed to the one for bacterial genomes. So, the irregularity in
six-word use being due to triplet correlation is much lower in metazoan genomes, than in
bacterial ones.
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The same can be seen for plant genomes’ W1 and W2, as shown in Figure 7. There is
also only one W1 peak and W1 distribution for plants is located in about the same area, as
the one for metazoan genomes. W2 distribution is even more offset to the left relative to the
metazoan genome W2. All of this means, that there is quite a large triplet periodicity contri-
bution to six-word distribution for plant genomes, while the triplet correlation is minor.
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We have also analyzed all the virus genomes available. All the virus cds were com-
bined in one set because the genomes are quite short. For this set W1 = 233.6 and
W2 = 188.7. So, for virus cds, the six-word distribution is the closest to the one for randomly
mixed sequences as opposed to other organisms studied. W2 is not that much smaller than
W1, which means, that triplet correlation is quite significant and triplet periodicity is not
the main factor in six-word distribution irregularity.

4. Discussion

The K-words frequencies ranging procedure is used in the Gini coefficient [23] and
when studying Zipf’s law in DNA [26–28]. However, Zipf’s law is that there is a quantitative
relationship between a word’s rank and its frequency in the text [30]. However, the use of
Zipf’s law for assessing gene algorithmic complexity seemed exigent for us. That is why in
this paper we used k-words ranging as in the Gini coefficient calculation but calculated a
quantitative estimate of the difference between k-words ranged frequencies and frequencies,
obtained for shuffled gene sequences.

In this study W1 and W2 characterize the difference between ranged in ascending
order six-word distributions in cds and random distributions obtained by mixing cds bases
randomly (W1) and in triplets (W2), respectivelly. Distributions are ranged in ascending
order with no respect to the specific six-word position. This kind of impersonality allows
considering the six-word appearance irregularity in cds as a specific genome feature, repre-
senting genetic text information redundancy. The greater W is, the greater cds information
redundancy is with a simultaneous decrease in information volume, which can be cal-
culated by Shannon formulas [31]. The greater text redundancy, the more mutations are
needed to distort the original meaning.
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Previously, informational redundancy has been studied for European languages (in-
cluding Russian) and it turned out that their redundancy exceeds 50% [32,33]. Some special
tests conducted for the English language by Shannon [34] showed that missing letters
recovery can be made only if their number does not exceed 25% of the text length. When
the text reduction rate is higher, the original meaning cannot be recovered as the text
becomes a meaningless set of letters, based on which it cannot be imagined, what the
original point was. Simply speaking, informational redundancy shows the percentage of
excess symbols (letters, words, etc.). In a text with 0 informational redundancy no error can
be fixed without a meaning loss.

Considering the results of studies [32,33] and study [34], the second group of bacteria
with W2 between 425 and 875 have cds with a high level of informational redundancy.
We can suggest that this redundancy is needed for better genome noise immunity. In this
sense, metazoan and plant cds noise immunity is much lower (Figures 6 and 7). Virus
noise immunity is about at the same level as the metazoan and plants one (W1 = 233.6 and
W2 = 188.7). The biological interpretation is that the virus life cycle in a cell is quite short
and there are a lot of them. In this condition, noise immunity is not the key factor for virus
survival, but genome volatility and new virus strain creation ability are.

We attempted to compare the bacteria from both sides of the W1 spectrum shown in
Figure 4. The first 10 bacteria with the highest W1 are listed in Table 1. For most of these
bacteria, their habitat is limited to mammalian intestinal microbiota or the oral cavity. For
example, Alysiella filiformis habitat [35] is mostly limited to the animal oral cavity. The same
is true for Elusimicrobium_sp_an273 [36], Moraxella caviae [37], Alysiella crassa [38], Kingella
kingae [39], Acidaminococcus sp cag_542 [40], Helicobacter_ailurogastricus [41]. Urubureella
suis [42] was isolated from the heart and lungs of pigs with pneumonia and pericarditis.
Moraxella atlantae [43] was isolated from a female cancer patient with aerobic blood cultures.
Out of all the bacteria in Table 1 only Herpetosiphon geysericola [36] is unrelated to
mammals and is an extremophile. It was isolated from the biofilm of a hot spring in lower
California, Mexico. This organism is able to live in extreme environments, such as extreme
temperature, radiation, salinity or pH levels [44].

Table 1. Names and accession numbers for 10 bacteria with the highest W1 value.

№ Bacterial Name Accession Number W1

1 Alysiella_filiformis dsm_16848 gca_900230205 1037.38

2 Uruburuella_suis gca_004341385 964.25

3 Elusimicrobium_sp an273 gca_002159705 940.01

4 Moraxella_caviae gca_002014985 933.66

5 Alysiella_crassa gca_900445245 922.0

6 Kingella_kingae gca_001458475 914.74

7 Acidaminococcus_sp cag_542 gca_000437815 907.44

8 Moraxella_atlantae gca_001678995 893.4

9 Herpetosiphon_geysericola gca_001306135 880.38

10 Helicobacter_ailurogastricus gca_001282985 871.84

It is important to note, that all the bacteria in Table 1 are gram-negative. Due to stronger
and less permeable cell walls, gram-negative bacteria are more resistant to antibodies and
live under stress than gram-positive bacteria [45].

Next, let us have a look at Table 2. Here, 10 bacteria with the lowest W1 value are
listed. Rickettsiales bacterium [46] has the lowest W1 value and it was isolated from the
south part of the Atlantic ocean. Its life cycle consists of two stages: vegetative and resting.
The resting form of Rickettsiales is a spherical still cell, located in arthropod and warm-
blooded organisms’ cells. Their reproduction happens only in live calls, similar to viruses.
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In the resting stage Rickettsiales bacterial cells are not affected by any actions from their
carrier. Then there are some bacteria from the Archaea domain in Table 2. Such bacteria are
Lokiarchaeum_sp_gc14_75 [47], Nitrosopumilales_archaeon [48] and Candidatus nitrosocosmicus
franklandus [49]. Additionally, there are groups of bacteria living in water and soil. Such
examples are Sulfurovum_sp. [50], Cryomorphaceae bacterium [51], Alkaliphilus_sp [52], Ver-
rucomicrobiales_bacterium [53], Legionellales_bacterium [54], Puniceicoccaceae_bacterium [55].
It can be suggested with enough confidence that these bacteria are living in a natural
environment for a long enough evolutionary time and their level of environmental stress is
at a minimum.

Table 2. Names and accession numbers for 10 bacteria with the lowest W1 value.

№ Bacterial Name Accession Number W1

1 Rickettsiales_bacterium gca_002691145 134.34

2 Sulfurovum_sp gca_002733355 158.68

3 Lokiarchaeum_sp gc14_75 gca_000986845 176.05

4 Cryomorphaceae_bacterium gca_002682945 179.68

5 Nitrosopumilales_archaeon gca_003856905 183.85

6 Alkaliphilus_sp gca_002733545 184.78

7 Candidatus_nitrosocosmicus_franklandus gca_900696045 185.51

8 Verrucomicrobiales_bacterium gca_002705125 192.75

9 Legionellales_bacterium gca_002719415 198.52

10 Puniceicoccaceae_bacterium gca_002690565 206.6

There are almost equal amounts of both gram-positive and gram-negative bacteria in
Table 2. That is not surprising, as their living conditions are less stressful and a strong cell
wall presence is not an essential condition for survival.

In Table 1, there are only extremophiles or bacteria isolated from mammals. In the
latter case, bacteria have to fight against the mammalian immune system, which can
be a big stress for them. On the other hand, bacteria shown in Table 2 are living in an
environment with minimal stress levels. The method for W1 determination, used in this
study is the modified Gini method. The only difference is that we use a probability measure
for Q1 and R1 distribution differentiation, but the distributions are obtained the same
way as with the Gini coefficient calculation. In economics the Gini coefficient is a social
stress indicator, showing the level of wealth inequality [56]. Based on Tables 1 and 2
we can suggest that in the case of cds it also represents stress, but this time a biological
one. Algorithmic complexity [25] for bacteria from Table 1 is less than for bacteria from
Table 2. This suggests that bacteria gene sequences are less complex for bacteria living in
less stressful environments.
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