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Abstract: How a system generates conscious experience remains an elusive question. One approach
towards answering this is to consider the information available in the system from the perspective of
the system itself. Integrated information theory (IIT) proposes a measure to capture this integrated
information (Φ). While Φ can be computed at any spatiotemporal scale, IIT posits that it be applied at
the scale at which the measure is maximised. Importantly, Φ in conscious systems should emerge to
be maximal not at the smallest spatiotemporal scale, but at some macro scale where system elements
or timesteps are grouped into larger elements or timesteps. Emergence in this sense has been
demonstrated in simple example systems composed of logic gates, but it remains unclear whether
it occurs in real neural recordings which are generally continuous and noisy. Here we first utilise
a computational model to confirm that Φ becomes maximal at the temporal scales underlying its
generative mechanisms. Second, we search for emergence in local field potentials from the fly brain
recorded during wakefulness and anaesthesia, finding that normalised Φ (wake/anaesthesia), but not
raw Φ values, peaks at 5 ms. Lastly, we extend our model to investigate why raw Φ values themselves
did not peak. This work extends the application of Φ to simple artificial systems consisting of logic
gates towards searching for emergence of a macro spatiotemporal scale in real neural systems.

Keywords: integrated information; anaesthesia; emergence; Drosophila; consciousness; information;
integration; time; temporal

1. Introduction

Integrated information theory tackles the question of how physical interactions can
support consciousness by introspecting conscious experience [1,2]. It then deduces pos-
tulates, the necessary physical interactions to support conscious experience, and from
these derives a numerical measure of consciousness which should be high in a conscious
system, and low otherwise. We previously applied the measures proposed by integrated
information theory (IIT) 3.0 to local field potentials (LFPs) from the fly brain, testing the hy-
potheses that system-level integrated information Φ and its associated conceptual structure
should be reduced during reduced level of consciousness as induced by anaesthesia [3].
As expected from the theory, both Φ and associated conceptual structures computed from
the LFPs were indeed reduced during anaesthesia. However, we were unable to apply all
of IIT’s postulates exactly as they are put forward by the theory. Specifically, we did not
fully apply IIT’s exclusion postulate, which states that only one set of overlapping sets of
elements, the complex, can be conscious.

To identify the complex, IIT’s exclusion postulate requires searching across all subsets
of system elements, recomputing Φ for each subset. However, this search quickly becomes
computationally infeasible for larger numbers of elements, due to the rapidly increasing
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cost of repeatedly identifying the minimum information partition (MIP; [2]) for all subsets.
IIT’s exclusion postulate also requires searching for the complex across spatial and temporal
scales. As LFPs are an aggregate measure which summate electrical activity arising from
neurons’ cell bodies, axons and dendrites at a scale much coarser than that of individual
neurons [4], searching for the potential spatial scale of the complex did not seem to be a
promising avenue for investigation. However, searching for the temporal scale is a feasible
and likely more fruitful endeavour, given the high temporal resolution of LFPs.

IIT provides a clear expectation as to the temporal scale of the conscious complex.
Specifically, IIT’s exclusion postulate ties the complex to the scale at which our experiences
occur. Through introspection, it is apparent that, for humans, an instance of experience
occurs most likely at the scale of milliseconds—we are unable to perceive events which
occur at too short a timescale, such as events which occur at the scale of microseconds. This
intuitive scale is backed empirically by psychophysics studies, with humans being able to
discern events at the scale of tens of milliseconds, but not shorter [5]. It is also unlikely to be
at longer timescales such as seconds or longer, where we can differentiate multiple instances
of experience. Consequently, through its exclusion postulate, IIT predicts that Φ should
be maximal at some particular scale, in the order of milliseconds. Conversely, it should
be lower, both at micro timescales which are too short and at macro timescales which are
too long to correspond to the timescale of conscious experience. While the emergence of
maximal Φ at some intermediate scale has been previously illustrated in example binary
systems consisting of logic gate elements [6–8], it is unclear whether it occurs in real neural
data which is typically continuous in nature.

In this paper, we will test the above prediction using both real neural recordings and
related computational generative models. First, by using a toy auto-regressive model, for
which temporal interactions among system elements are known a priori [9], we verify that
Φ identifies the timescale of system interactions from continuous data generated by the
model. Next, we apply Φ to the fly recordings previously analysed in [3], to search for
a potential temporal scale of interactions in the complex. However, we find Φ to either
increase or decrease in a monotonic fashion with changes in temporal scale both when flies
were wakeful and anaesthetised, depending on how the recordings were pre-processed
to characterise timescale. Meanwhile, the ratio of wakeful to anaesthetised Φ identifies a
potential temporal scale of interactions, again depending on how timescale is characterised.
Given these findings, in the last section of this paper, we expand the auto-regressive
simulation to explore limitations of our application of Φ to the fly recordings, namely
non-Markovianity and partial observation.

2. Results
2.1. Integrated Information Identifies the Timescale of Interactions in a Nonlinear
Autoregressive Process

Example interactions between system elements leading to maximal Φ occurring not at
the most fine-grained scale, but rather at a macro scale, have previously been illustrated
in toy systems with binary elements. However, this illustration has not been extended to
systems with continuous elements. So, to check the in-principle feasibility of searching for
emergence of Φ at a macro scale in continuous data, we first utilised a toy autoregressive
model, where the value of each time-sample is determined by values at previous times [10].
We modelled a bivariate, bidirectionally connected system as follows:

X(t) = aX(t− l) + bY(t− l) + εX(t)

Y(t) = cY(t− l) + dX(t− l) + εY(t)

where X(t) and Y(t) are voltages for two system elements (which we refer to as channels) at
a given time t. a and c are autoregressive coefficients representing self-connections, while
b and d are autoregressive coefficients representing cross-connections between the two
elements X and Y. We set both a and c as −0.1, simulating self-inhibition. l is the time delay
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between self- and cross-connections among system elements, which we set to be 10. εX(t)
and εY(t) represent uncorrelated Gaussian noise, with mean 0 and variance both set to 0.5.

As the neural mechanisms underlying LFPs are known to have nonlinear dynamics,
we included nonlinearity in the model. We set the cross-connectivity to be dependent on
the voltages of X and Y:

b =

{
0.9, Y(t− l) > threshold

0, otherwise

d =

{
0.9, X(t− l) > threshold

0, otherwise

where threshold was set as 0.9. This adds a nonlinear dynamic which simulates reliable
neural communication through bursting [11,12]. Note that, overall, the system elements
are bidirectionally connected, and only interact with a delay of 10 timesteps. Consequently,
we expected Φ to be non-zero for this system (which we previously reported for l = 1 in [3],
S7 Text), and critically, maximal at the timescale corresponding to 10 timesteps.

To check that Φ does indeed identify this timescale of 10 timesteps, we simulated the
model for 10 runs (see Section 5). For each run we operationalised the state of each channel
at a given time point by binarising it with respect to the median voltage of that channel.
Then we constructed a transition probability matrix (TPM) by finding, for each state of the
system at time t, the empirical probabilities of each channel being in an “on” state at t + τ.
This is the same method we previously used to compute TPMs for real neural recordings
in [3] (see also Discussion in [3] for issues regarding observation versus perturbation in
constructing TPMs). From this method, which we hereafter refer to as the “skipping”
method, timescale is characterised as the delay τ. We repeatedly computed TPMs for
exponentially increasing values of τ (Figure 1B,C) and, from these TPMs, computed Φ
values at each τ value.

Figure 1F shows the trend of Φ with respect to τ when using the skipping method.
While there existed multiple local maxima of Φ (peaks at roughly τ = 10, 60 and 360
timesteps), Φ was, as expected, maximal at τ = 10 timesteps, corresponding to the time
delay l = 10 in the model.

While the skipping method is consistent with how empirical estimates of Φ from
previous versions of IIT have been applied [13–15], simulation papers illustrating maximal
Φ at macro temporal scales have utilised different methods [6–8]. Specifically, they utilise
coarse-graining or black-boxing, whereby micro timesteps are collated together to form
macro timesteps. Following this approach, we characterised timescale in a second way, by
averaging voltages in bins of size τ (green and blue rectangles in Figure 1B,D). Then, in
the same manner as to the skipping method, we operationalised states of each channel by
binarising the resulting downsampled voltages based on their medians to construct TPMs
for increasing τ (Figure 1E). We refer to this method as the “downsampling” method.

The downsampling method has a notable drawback compared to the skipping method.
Specifically, for a given time-series, when τ is increased by some factor, the number of time-
samples available for building a TPM is decreased by that factor. For example, doubling
τ would result in half the original number of samples in the time-series. Due to the
fewer number of samples and thus fewer overall state transitions, empirical transition
probabilities in the TPM can rapidly become unreliable as τ increases. To address this, we
constructed TPMs from multiple rounds of downsampling, by offsetting the starting time
sample of each bin (Figure 1D) before downsampling and then binarising voltages. In this
manner, a TPM for a given τwas constructed using all transitions from all offsets. Using
this method, the number of transitions used to construct a TPM was equal to the number of
transitions used in the skipping method.
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the downsampling method, τ contiguous time-series values are averaged together to form coarse-
grained time-series. Multiple downsampled time-series are obtained by offsetting the time sample 
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Figure 1. Relationship between integrated information Φ and timescale τ in a system with nonlin-
earity. (A) We generate continuous time-series by modelling a nonlinear, bidirectionally connected
system. (B) For the skipping method, continuous time-series values (red, top) are discretised into
binary states (black/white, bottom) by comparing to the median value for each run. Displayed is
an example of 20 samples from 1 run. (C) State-by-node transition probability matrices (TPM) are
constructed using the skipping method for increasing τ. For each possible system state at time t
(each row in the TPM), each entry describes the probability a node will take state “1” at time t + τ.
(D) For the downsampling method, τ contiguous time-series values are averaged together to form
coarse-grained time-series. Multiple downsampled time-series are obtained by offsetting the time
sample from which to begin coarse-graining, from 0 up to τ − 1 samples. Green rectangles indicate
the first bin of contiguous time samples, for τ = 2, from the original time-series in (A) which are
averaged together, for the first offset (of 0 samples). Blue rectangles indicate the second bin for the
second offset. Coarse-grained time samples are then discretised into binary states by comparing
the median value for each offset, at each run. (E) TPMs are constructed for the downsampling
method using all transitions across all offsets. Each entry describes the probability a node will have a
coarse-grained state “1” at a coarse-grained time t + 1, given the system state at t. (F) Φ values in
relation to τ when using the skipping method. Dotted and solid lines indicate individual simulation
runs and the average across runs, respectively. Error bars indicate standard deviation across runs.
(G) Same as (F), but for Φ values computed using the downsampling method.
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Figure 1G shows the trend of Φ with respect to τ when using the downsampling
method. While Φ seemed to be non-minimal for a larger range of τ when compared to the
skipping method, it was, again as expected, maximal at τ = 10, corresponding to the time de-
lay l = 10 in the model. These results indicate that, Φ identifies the timescale of interactions
among continuous processes both when using the skipping and downsampling methods.

2.2. Normalised Empirical Integrated Information Identifies a Timescale of Interactions

We next sought to find some timescale in neural recordings at which Φ is maximised.
We utilised 15 local field potentials (LFPs, hereafter referred to also as “channels”) recorded
from across the brains of 13 fruit flies using a linear multi-electrode array as previously
described in [3,16].

As we did previously for the simulation, we operationalised the state of each channel
by binarising voltages based on the median voltage for the channel before then constructing
a TPM at increasing values of τ (skipping method), as well as by repeatedly binarising
voltages based on median voltages after downsampling at increasing values of τ (downsam-
pling method). Given the computational cost of computing Φ, and needing to repeatedly
compute Φ at each τ value, we restricted analysis to two channels at a time, treating every
pair of channels as a system.

Figure 2 shows the trend of Φ (log transformed) with increasing τ across the flies, for
both methods of characterising timescale. On average across all the channel pairs, there
was no visual indication of Φ being maximal at a timescale other than the smallest or largest
timescales. Rather, Φ trended such that it tended to be larger for smaller timescales when
using the skipping method (Figure 2A), and larger for larger timescales when using the
downsampling method (Figure 2B).

As a control, we also computed Φ for the channel pairs when the flies were anaes-
thetised. We reasoned that, during loss of consciousness, Φ should not have a clear
maximum at some timescale. Rather, assuming that there is no consciousness under anaes-
thesia, it should be minimal at all timescales. Any variations in Φ across timescale should
correspond not to a potential complex of consciousness, but instead to other things such
as background neural activity which does not support consciousness (or supports some
minimal consciousness) or issues regarding empirical observations of state transitions
which are used to build the TPM (which we expand on in the Discussion). Blue lines in
Figure 2A,B show the trend of Φ with increasing τ during anaesthesia respectively when
using the skipping and downsampling methods. While the magnitude of Φ tended to be
overall reduced across all τwhen compared to wakefulness, consistent with our previous
results [3], the trends of Φ with respect to τ, for both the skipping and downsampling
methods, appeared to be the same as for wakefulness.

Given that the trends of Φ with respect to τ during anaesthesia was similar to during
wakefulness, we considered that the trends during wakefulness could also be reflecting
issues of empirical observation of TPMs. Meanwhile, any trend of Φ related to the timescale
of interactions underlying the complex could be masked by these trends. To address
this, we considered using Φ values during anaesthesia as a baseline. Specifically, we
investigated how the difference (wake minus anaesthesia) in log transformed Φ values
(∆log(Φ); corresponding to taking the ratio of wakeful to anaesthetised values in the natural
scale) varied with τ.

Figure 2C,E shows the trend of ∆log(Φ) across τ when using the skipping method.
Unlike raw Φ values, visual inspection indicated a peak of ∆log(Φ) in the range of τ = 8
to τ = 16 ms. While this peak was most prominent for the most centrally located channel
pairs, it appeared to extend across the fly brain. To confirm that there was indeed a peak
within this range of τ, we utilised mixed effects analysis (to account for intra-fly channel
pair correlations, see Section 5), regressing ∆log(Φ) onto a quadratic term τ2. The turning
point of the fitted quadratic would indicate a peak of ∆log(Φ) at some timescale other
than the smallest or largest ones if: (1) it is a local maximum (corresponding to the fitted
coefficient for τ2, β2, being negative) and (2) it occurs at some intermediate timescale. We
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first statistically confirmed previous visual inspection that no such peak occurred in the
raw Φ values during wakefulness or anaesthesia (Table A1). Meanwhile, the observed peak
in ∆log(Φ) when using the skipping method was indeed statistically significant, with fitted
coefficients indicating a local maximum at roughly 5 ms (χ2(1) = 663.99, β2 = −9.18 × 10−3,
β1 = 4.441 × 10−2, β0 = 0.433).
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Figure 2. Relationship between integrated information Φ and timescale τ in fly recordings. (A) Log
transformed Φ values, averaged across channel pairs and flies, as a function of timescale when using
the skipping method. Red and blue are values during wakefulness and anaesthesia, respectively.
Error bars indicate within-subject standard error [17,18]. (B) Log transformed Φ values, as in (A), but
for when using the downsampling method. (C,D) Difference between wakeful and anaesthetised
log transformed Φ, ∆log(Φ), as a function of timescale when using the skipping and downsampling
methods respectively. (E,F) ∆log(Φ) as a function of timescale for each channel pairing when using the
skipping and downsampling methods respectively. Channel pairs are sorted by the average position
of the channels in the pair (y-axis, larger values indicate pairs which on average are located more in
the periphery). Pairs with the same average position are sorted by the distance between the channels,
with larger distances being lower in the y-axis. τ (x-axis) increases in an exponential manner.

We next checked if this result could also be found using the downsampling method
(Figure 2D,F). Given the previous simulation results, we expected to find a similar peak to
when using the skipping method. However, visual inspection indicated that the greatest
∆log(Φ) occurred at the smallest τ. The lack of a peak at some intermediate timescale was
statistically confirmed by a positive regression coefficient for regressing ∆log(Φ) onto τ2

(Table A1).
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2.3. Integrated Information Identifies the Timescale of Interactions under Non-Markovianity

Though we found some indication of a temporal peak, for ∆log(Φ) when using the
skipping method, we were unable to identify such a peak in the raw Φ values themselves,
or for ∆log(Φ) when using the downsampling method. So, we next considered whether
particular limitations regarding the application of IIT to neural data could have directly
prevented any such finding. Specifically, we considered the limitations which we previously
identified in [3] regarding the validity of Φ when there is potential of spurious correlations
among system elements, which can occur in non-Markovian systems and when multivariate
systems are only partially observed.

We first investigated the issue of non-Markovianity. Specifically, non-Markovianity
may be problematic for Φ as IIT 3.0 is entirely constructed for Markovian systems where the
state of a system depends only on its immediate previous state. To test if non-Markovianity
immediately invalidates the application of Φ with regards to identifying the timescale of
system interactions, we extended the previous nonlinear autoregressive model by modi-
fying the lag term l. Specifically, we set the lag term l to be jittered among 9, 10 and 11 in
a probabilistic manner. This way, the system cannot be described as a purely Markovian
system where its state at time t is completely determined by its state at time t − l for some
fixed l. For simulation, we initialised processes X and Y to uncorrelated Gaussian noise
with mean 0 and variance both set to 0.5:

X(t) = εX(t)

Y(t) = εY(t)

Then, for each timepoint t:

aX(t)→ X(t + la), bY(t)→ X(t + lb)

cY(t)→ Y(t + lc), dX(t)→ Y(t + ld)

where “→” denotes updating the right-hand value by adding the value on the left. We
added non-Markovianity here by probabilistically choosing la, lb, lc and ld to be 9, 10, or
11 timesteps, all independently of one another, with probability 0.25, 0.5 and 0.25 respec-
tively. Consequently, each time sample could have been determined by either 1, 2, or
3 individual timepoints from the past. This simulates variability in neural spike or burst
timings [19,20]. Note that, while the model is now non-Markovian, the system elements
still clearly interact at a timescale of roughly 10 timesteps. The cross-connection strengths
were, as for the first simulation, dependent on a threshold voltage:

b =

{
0.9, Y(t) > threshold

0, otherwise

d =

{
0.9, X(t) > threshold

0, otherwise

with threshold again being 0.9.
Figure 3 shows the trend of Φ when computed from the time-series generated by

this model, for both the skipping and downsampling methods. For both methods, Φ was
maximal at the scale of 10 timesteps, corresponding to the timescale of system interactions.
Hence, non-Markovianity per se does not prevent Φ from identifying the timescale of
system interactions. However, non-Markovianity did appear to affect the magnitude of Φ
values when using the skipping method. Specifically, Φ was an order of magnitude lower
than in the first simulation (maximum Φ being ~0.025 in Figure 3A, compared to ~0.13
in Figure 1F). This drastic reduction in Φ did not occur when using the downsampling
method (Figure 3B).
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but for Φ values computed using the downsampling method.

2.4. Integrated Information Identifies the Timescale of Interactions under Partial Observation

Given that we were able to identify the timescale of interactions even with a violation
of Markovianity, we next turned towards the issue of partial observations. As Φ computed
from partial observations (i.e., not across the full system, or complex) is not postulated to
correspond to consciousness per se, it could be the case that the timescale is smoothed out
through delayed effects from interactions from non-observed system elements. To test this,
we extended our non-Markovian system by introducing a third element, giving a total of
three system elements. Specifically:

X(t) = εX(t)

Y(t) = εY(t)

Z(t) = εZ(t)

Z(t) is the third system element, and εZ(t) represents Gaussian noise, with mean 0 and
variance both set to 0.5. Then, at each timepoint t, time samples affected future time points
through self- and cross-connections with some lag l:

aX(t)→ X(t + la), bY(t)→ X(t + lb), gZ(t)→ X
(
t + lg

)
cY(t)→ Y(t + lc), dX(t)→ Y(t + ld), hZ(t)→ Y(t + lh)

eZ(t)→ Z(t + le), f X(t)→ Z
(

t + l f

)
, iY(t)→ Z(t + li)

where e is the self-connection of Z, and f, g, h and i are the new cross-connections con-
necting all three system elements X, Y, and Z bidirectionally. In this model, we set all
self-connections a, c, and e to −0.1, and all cross-connections to 0.4. All the lag terms la–i
were independent and probabilistic, taking values again of 9, 10, or 11 with probabilities
0.25, 0.5 and 0.25. Again, cross-connection strengths were dependent on a threshold voltage

π =

{
0.4, Π(t) > threshold

0, otherwise

where π is a cross-connection coefficient (b, d, f, g, h, or i), and Π(t) is the voltage for the
associated channel (X(t), Y(t), or Z(t); e.g., for cross-connection π = b, the associated channel
is Π(t) = Y(t)). threshold was again 0.9, for all connections.
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We first confirmed that our previous findings regarding Φ identifying the timescale of
system interactions in the two channel case extends to the three channel case (Figure 4A,B),
by computing Φ for two channels at a time. Ideally, background conditions (i.e., the
states of channels outside those being used to compute Φ) should be fixed. However,
in real neural data, doing so drastically limits the number of observations available to
build a TPM. Further, the number of possible background conditions to consider grows
exponentially with the number of channels. Consequently, fixing background conditions
to compute Φ is infeasible for real neural data, and so we also did not fix background
conditions in this simulation. As expected, Φ was maximal at the timescale corresponding
to 10 timesteps. Though the magnitude of Φ at this peak was lower than in the previous
2-channel simulations, this was expected from a fully connected system. Specifically,
system states in a fully connected system have low specificity about their causes and effects,
and this should result in low Φ [21,22]. Though our 2-channel simulations were also
fully connected, the only other way of connecting two channels is using a unidirectional
connection, which would result in minimal Φ (see [3] S7 Text).
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Figure 4. Relationship between integrated information Φ and timescale τ in a system with nonlin-
earity and non-Markovianity, under partial observation. (A) Log transformed Φ values computed
from all three channels (full observation; blue), and for values computed from two channels at a time
(partial observation; black), in relation to τwhen using the skipping method. Dotted lines indicate
individual pairs (partial observation) and runs, while solid lines indicate the mean across pairs and
runs, respectively. Error bars indicate standard deviation across pairs (partial observations) and
runs. (B) Same as (A), but for Φ values computed using the downsampling method. (C) Summary of
maximal Φ values computed using the skipping method (log transformed) for each simulation (NL
nonlinear; nM non-Markovian; FO full observation; PO partial observation). Triangles, circles and
squares indicate log(Φ) at τ = 10, 11 and 13 ms respectively. Error bars represent standard deviation
across pairs (partial observation) and runs. (D) Summary of maximal Φ values as in (C), but when
computed using the downsampling method.
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To test whether partial observation prevents Φ from identifying the timescale of
system interactions, we then computed Φ on two channels, out of the three, at a time. This
simulates the case of not being able to observe the states of all neurons in the brain. Or,
as previously in the fly LFPs, the case of not being able to compute Φ using all available
observations. Figure 4A,B also show the trend of Φ when computed from two channels at
a time, in relation to timescale. Similar to non-Markovianity, the magnitude of Φ was again
reduced by an order of magnitude, this time for both the skipping and downsampling
methods. However, Φ was still maximal at the timescale of 10 timesteps, suggesting that
partial observation per se also does not in principle prevent Φ from identifying the timescale
of system interactions.

3. Discussion

Here we applied the measure Φ to simple autoregressive models and real neural data,
both with continuous system elements. Φ has been proposed by integrated information
theory 3.0 (IIT) to be maximal at a temporal scale corresponding to that of conscious
experience. Here, we demonstrated that for a nonlinear system, Φ can be maximal to
the timescale corresponding to that at which system elements interact. We also applied
Φ to neural data, finding that the measure, when normalised, peaks at a timescale of
roughly 5 ms. Finally, in follow-up simulations we demonstrated that Φ still peaks at the
timescale at which system elements interact, even when certain assumptions of IIT, namely
Markovianity and full observation of the system, are not met.

The emergence of a temporal peak of Φ has previously been illustrated in simulation
studies utilising systems consisting of binary elements [6,23]. These studies focused on utilising
the framework provided by IIT to question the common view posed by reductionism—that
the causal structure of a system is fully captured at the most fine-grained level, with there
being no room for causal contribution from macro spatiotemporal scales. Rather, they posit
that Φ can capture and describe causal emergence, whereby interactions at a macro scale
contribute to the causal structure of a system beyond those at the most fine-grained level.
The simulation results presented here extend their illustration of causal emergence across
temporal scales, as captured by Φ, to systems with continuous elements.

3.1. Why Is There a Peak in Normalised Φ but Not Directly in Φ?

Though we found Φ to clearly peak at the timescale of interactions among system
elements in the autoregressive models, we observed no such peak in fly LFPs during
wakefulness or anaesthesia. Instead, we found a temporal peak to manifest for normalised
Φ, the ratio of Φ during wakefulness to anaesthesia. Why this was the case is not yet clear,
but there are some considerations which may have prevented Φ from clearly peaking at
some intermediate timescale, as was the case for ∆log(Φ) when using the skipping method
to characterise timescale.

One potential explanation regards the effects of non-Markovianity and partial obser-
vation. While the peaks in Φ for the simulated systems reliably matched the timescale at
which their elements interacted with one another, the systems were designed to have clear
temporal dynamics. Specifically, elements interacted with a consistent delay of around
10 timesteps. However, the temporal dynamics of the brain are much less clear, where the
effects of non-Markovianity and partial observation are likely to be much greater than in the
models used here. For example, autoregressive models fit to LFPs from monkeys have been
fit to the 10th or 20th order with timesteps of 5 ms [24,25], with many historical timesteps
potentially influencing any one given time sample. Consequently, any one ideal temporal
scale may be greatly blurred. Indeed, in the simulations here, peak Φ values reduced as
non-Markovianity and partial observation were incrementally added to the models. As
these factors are present both during wakefulness and anaesthesia, it is conceivable that
normalising wakeful Φ by anaesthetised Φ cancels them out to some extent.

A second potential explanation regards the TPMs used for computing Φ, which were
constructed at each timescale. For a given TPM, the number of transitions used to construct
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it depended on its associated timescale. Specifically, for n time samples, the number of
transitions that can be used to construct the TPM is n − τwhen using the skipping method,
and n − τ − 1 when using the downsampling method. Consequently, each entry of the
TPM is determined using fewer samples as τ increases, with probabilities becoming less
reliable and more likely to take more deterministic values (i.e., probabilities closer to 0 or 1).
This in turn may cause Φ values to increase systematically with τ, as more deterministic
probabilities allow for greater information in each system state. While we observed this
trend for the downsampling method, the skipping method however revealed an opposite
trend. At this point, it is unclear how less reliable but more deterministic seeming TPMs
would result in both increasing and decreasing Φ values, depending on the method used
to characterise timescale. However, the systematic effect may further hide the temporal
scale of a system, while meanwhile being cancelled out by normalising wakeful Φ values
by anaesthetised Φ values.

3.2. Why Do Skipping and Downsampling Methods Give Different Peaks?

The autoregressive simulation results presented here indicated that Φ would be maxi-
mal at the timescale corresponding to that at which system elements interact, regardless of
whether the skipping or downsampling methods were used. Specifically, Φ computed from
both methods should identify the same timescale. However, this was not the case in fly
data for ∆log(Φ), where ∆log(Φ) peaked at roughly 5 ms when using the skipping method
but not the downsampling method. While it is not immediately clear as to why only one
method would identify a peak, here we provide a potential interpretation of this result.

While the simulations we used here had very clear dynamics at a particular, specific
timescale, it is conceivable that interactions in the brain take place at multiple timescales.
Multiple timescales may exist by virtue of the skipping and downsampling methods
capturing different types of timescales. Specifically, the skipping method captures the delay
between system elements being in some particular state affecting others. An example of
different timescales of this type might be short and long range connections having shorter
and longer delays respectively. Meanwhile, the downsampling method instead tries to
capture the temporal size of the states the system elements can take. Different timescales of
this type could manifest as, for example, both neuronal bursting and individual neuronal
spikes being states which influence other neurons. Further simulations incorporating the
above considerations may be required to understand how Φ or ∆log(Φ) behaves when
system elements interact across multiple such timescales.

Taking into account the above considerations, the peak in ∆log(Φ) computed using
the skipping method at 5 ms may reflect just one timescale at which neuronal interactions
occur. This timescale sits between two neurophysiologically reported timescales. The
first is that of axon conduction delays, the delay in firing between connected neurons,
which is known to be on the order of single-digit milliseconds [26]. The second is that
of critical flicker fusion frequency, the frequency at which a flickering visual stimulus is
indistinguishable from a constant stimulus. For flies, the critical flicker fusion frequency
has been reported, using electroretinograms, to be at 57 Hz [27], with each individual flicker
lasting ~18 ms. We note however that critical flicker fusion frequencies are known to vary,
at least in humans, depending on a variety of factors such as stimulus size and intensity
and perceptual load [28,29], and that flicker fusion frequencies have not to our knowledge
been validated in flies using a behavioural paradigm.

Meanwhile, ∆log(Φ) computed using the downsampling method peaking in the
shorter timescales (1–2 ms; Figure 3) may correspond more directly to the shorter timescale
of axon conduction delays. While regressing ∆log(Φ) computed using this method onto
timescale did not reveal a negative parabolic trend with a global maximum, this may
have been due to not having higher sampling rate data. Thus, it is unclear whether this
peak is a potential global maximum or just a general trend of ∆log(Φ) increasing with
shorter timescales.
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4. Conclusions and Future Directions

This work is to our knowledge the first direct application of IIT to search for a poten-
tial timescale of consciousness using neural data. While a previous study characterised a
proxy measure of Φ, ΦAR, across timescales in electroencephalographic recordings from in-
fants [30], the Φ values were negative for most of the timescales investigated, making their
interpretation unclear within the framework of the theory [14]. Meanwhile, here we identi-
fied a timescale which aligns with neural physiology and potentially flies’ behaviourally
and phenomenologically (if any) relevant flicker fusions. However, this comes with the
caveat that raw Φ values from the fly recordings either increased or decreased monotoni-
cally across timescales, depending on the pre-processing method used. Consequently, more
work, utilising both simulation and neural recordings with higher temporal and spatial
resolution, is required to confirm whether Φ peaks uniquely at this identified timescale or at
varying timescales depending on the method used for characterising timescale. Within this
line of work, other methods of characterising timescale should be explored in neural data,
such as grouping micro states with logical operations or through black-boxing [6,7]. There
is also the further question of whether the peak identified here persists across differing
spatial scales, such as at the single neuron level. Finally, behavioural paradigms which
capture the temporal scale of conscious experience in a system would be required to more
strongly link this potential peak in Φ to consciousness.

5. Methods

As the fly LFPs analysed here are the same data as described and analysed in [3],
we refer the reader there instead of repeating the details here. Details regarding the
algorithm for computing Φ from TPMs are also identical to those provided in [3] (albeit
for two channels at a time, instead of four channels, due to the extra computational cost
of repeatedly computing Φ at different timescales). So, here we provide only the details
regarding generating data from the autoregressive models described in the Results section,
and statistical analyses of the LFPs.

5.1. Autoregressive Simulation

Model simulation and data analyses were conducted using MATLAB 2019b. For
each of the three autoregressive models (each additionally including nonlinearity, non-
Markovianity and partial observations), we simulated 20,000 timepoints, for each of 10 runs.
The initial conditions for each run were determined by the uncorrelated noise terms εX, εY
and εY, as described in the Results.

5.2. Φ Computation

Data processing for computing Φ was conducted using Python 3.6.0 in MASSIVE (Multi-
modal Australian ScienceS Imaging and Visualisation Environment), a high-performance
computing facility. We calculated the measures using PyPhi (version 0.8.1; [31]), publicly
available at https://github.com/wmayner/pyphi (accessed on 7 March 2022). Detailed
description regarding the computation of Φ from the TPM, are provided in [2,3,31].

5.3. Statistical Analyses

We used linear mixed effects analysis (LME; [32,33]) to statistically test for a peak
in Φ at some intermediate timescale (i.e., not corresponding to the shortest or longest
timescales). This allowed us to account for within-fly correlations among channel pairs
without averaging across channel pairs or flies, by including random intercepts for fly and
the interaction between fly and pairs as random effects. As Φ was positively skewed, we
analysed log transformed values. To test for a potential peak in Φ at some intermediate
timescale, we first assessed the significance of a quadratic fit by comparing the quadratic
models (Table A2) to models with only a linear term (in Wilkinson notation [33]):

Φ ~ τ + (1|fly) + (1|fly:pair)

https://github.com/wmayner/pyphi
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where Φ is one of ΦSW, ΦSA, ΦS∆, ΦDW, ΦDA, ΦD∆, and τ is timescale (see Table A2).
Subscripts S and D indicate Φ computed using the skipping and downsampling methods,
respectively, while W and A indicate Φ computed during wakefulness or anaesthesia.
Subscript ∆ indicates ∆log(Φ). As we searched through exponentially increasing τ, we
fitted to log2(τ) values. To assess significance, we used likelihood ratio tests, comparing
the log-likelihood of the quadratic model to the log-likelihood of the linear model. As the
likelihood ratio is χ2 distributed when one model is nested within another with degrees of
freedom equal to the difference in number of coefficients between the models, we report
χ2(d.o.f ) and its corresponding p-value. We summarise the amount of variance explained
by each fitted quadratic model, and by each random effect, in Table A2.

Given that the quadratic term significantly increased the variance explained by the
model, we then calculated the turning points of each fitted model. We considered there to
be an intermediate peak in Φ if the turning point was a local maximum and occurred at
some τ other than the most extreme timescales.
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Appendix A

Table A1. Dependence of regressands on timescale τ.

β2
b β1

c β0
d χ2(1) e τTP

f

ΦSW 8.56 × 10−3 −0.260 −5.717 394.51 37,983

ΦSA 1.77 × 10−2 −0.305 −6.151 1795.09 384

ΦS∆ −9.18 × 10−3 4.441 × 10−2 0.433 308.79 5

ΦDW 1.16 × 10−2 0.237 −5.63 853.28 0

ΦDA 1.05 × 10−2 0.279 −6.026 663.99 0

ΦD∆ 1.10 × 10−3 −4.26 × 10−2 0.399 5.20 (p = 0.022) 655,125
ΦSW: integrated information calculated using the skipping method during wakefulness. ΦSA: integrated infor-
mation calculated using the skipping method during anaesthesia. ΦS∆: integrated information ratio (wakeful
to anaesthetised) calculated using the skipping method. ΦDW, ΦDA, and ΦD∆: same as ΦSW, ΦSA, and ΦS∆, but
for integrated information computed using the downsampling method. b β from regressing onto log2(τ)2 (see
Methods). c β from regressing onto log2(τ). d Intercept term from regression. e The degree of freedom for all
likelihood ratio tests was 1 (likelihood ratio tests comparing linear models to quadratic models; see Methods).
p << 0.001 for all comparisons, except for ΦD∆ where p = 0.022. f τ value (ms) at which turning points for fitted
models occur, as determined by each of the regressands β0, β1, and β2.

https://github.com/Prototype003/phi3_timescale_sim
https://github.com/Prototype003/phi3_timescale_sim
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Table A2. Linear mixed effect model fit (adjusted R2) and standard deviation (SD) of random effects.

R2 SD

Random Effect + (1|f ) # + (1|f :n) ˆ

ΦSW~τ + τ2 0.827 0.502 0.445

ΦSA~τ + τ2 0.756 0.278 0.415

ΦDW~τ + τ2 0.880 0.233 0.295

ΦDA~τ + τ2 0.891 0.209 0.329

ΦS∆~τ + τ2 0.601 0.415 0.367

ΦD∆~τ + τ2 0.327 0.164 0.247
Model specifications are described in detail in Methods. ΦSW: integrated information calculated using the
skipping method during wakefulness. ΦSA: integrated information calculated using the skipping method during
anaesthesia. ΦS∆: integrated information ratio (wakeful to anaesthetised) calculated using the skipping method
during wakefulness. ΦDW, ΦDA, and ΦD∆: same as ΦSW, ΦSA, and ΦS∆, but for integrated information computed
using the downsampling method. τ: delay between timesteps (log(ms)). # Random intercept for effect of fly.
ˆ Random intercept for interaction between fly and channel pair.
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