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Abstract: In this work, we study the quantum information entropies for two different types of
hyperbolic single potential wells. We first study the behaviors of the moving particle subject to
two different hyperbolic potential wells through focusing on their wave functions. The shapes of
these hyperbolic potentials are similar, but we notice that their momentum entropy densities change
along with the width of each potential and the magnitude of position entropy density decreases
when the momentum entropy magnitude increases. On the other hand, we illustrate the behaviors
of their position and momentum entropy densities. Finally, we show the variation of position and
momentum entropies Sx and Sp with the change of the potential well depth u and verify that their
sum still satisfies the BBM inequality relation.

Keywords: hyperbolic potential well; quantum information entropy; position and momentum
Shannon entropies
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1. Introduction

Since quantum mechanics was founded, one of its fundamental tasks is to explore the
exact solutions of the nonrelativistic equation for different kinds of potential fields [1–3].
This is because the exact solutions include all quantum information of studied quantum
systems required for understanding the fundamental features. One of its important appli-
cations is related to the Shannon entropy when scientists such as Beckner, Bialynicki-Birula
and Mycielski (BBM) obtained an entropic uncertainty relation [4], which is given by

Sx + Sp ≥ D(1 + ln π) (1)

where D denotes the spatial dimension.
Up to now, Shannon theory has gained importance in different areas such as quantum

computing, quantum cryptography and others [5–8] due to its basis for data transmission,
signal processing, and data measurement [9–11]. On the other hand, the Shannon entropy
also reflects the localization information of the probability distribution. Until now, many
works have focused on calculating the information entropy for soluble quantum systems,
e.g., the Rosen-Morse Potential [12], the double-well potential [13], the Pöschl-Teller like
potential [14] or infinite circle well [15]. Particularly, they also include basic and interesting
systems such as the harmonic oscillator [16], quantum dots [17] and the finite single
well [18]. Moreover, the Shannon information entropy has also become an important
interdisciplinary subject representing a universal concept in statistical physics [19,20].
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However, we should recognize that it is not easy to calculate exactly Shannon entropy
except for a few soluble systems mentioned above [11–18]. Most of them have to be com-
puted numerically. Although the present study can be expressed explicitly by the confluent
Heun function [21], unfortunately, the calculation of the wave function in momentum space
becomes a challenging task since the Fourier transform involving the confluent Heun func-
tion cannot be performed easily. Therefore, we must deal with this problem in a numerical
way. This shall enrich and extend our recent study of the asymmetric multiple quantum
wells with a constant total length [22–24].

This paper is organized as follows. In Section 2, we present the formalism to this
system subject to hyperbolic single well potentials. In Section 3, we first present the position
and momentum entropy densities and then calculate the position Sx and momentum Sp for
lower-lying states. The key point is about the wave function in momentum space, which
is calculated via the Fast Fourier transform (FFT) approach. Finally, we give concluding
remarks in Section 4.

2. Formalism

Generally, the one-dimensional Schrödinger equation for a nonrelativistic particle of
mass M subject to a hyperbolic potential can be written as:

− }2

2M
d2ψ(x)

dx2 + Uq(x; u, L)ψ(x) = Eψ(x)

with

Uq(x; u, L) = − }2u
2M L2

1

cosh4(x/L)
, − }2u

2M L2

[
cosh(2x/L)
cosh4(x/L)

]
, q ∈ [1, 3], (2)

where the parameters u and L denote the depth and width of the potential wells Uq(x; u; L),
respectively. For simplicity and convenience, we take L = 1 and same notations U1,3 as
defined in [21]. Thus, Equation (1) can be transformed to the following form:

− d2ψ(x)
dx2 + Uq(x; u)ψ(x) = ε ψ(x), (3)

where

Uq(x; u) = − u
cosh4(x)

, − u cosh(2x)
cosh4(x)

,ε =
2ME
}2 < 0. (4)

As shown in Figure 1, the number of bound states is finite for all Uq for a given
potential parameter u and both U1,3 are a single well with even parity and maximum depth
u. In Figure 2, we show the wave functions of lower-lying states which satisfy relation
ψn(−x) = (−1)nψn(x), where n denotes the number of nodes in the wave function. In the
study, we take the potential parameter u = 1. It is shown that the amplitude of the wave
function in U1 is greater than that of the case U3 but the interval of the moving particle
in the case U1 is narrower than that of the case U3. This can be explained well by their
potential shapes as shown in Figure 1, in which the width for U3 (red dotted line) is larger
than that of the U1 (blue solid line).

Let us study the Shannon entropy, which includes two parts, i.e., the position and
momentum entropies defined by Sx and Sp, respectively. The Shannon information entropy
densities ρs(x) and ρs(p) are defined as [12–15],

ρs(x) = |ψ(x)|2 ln(|ψ(x)|2), ρs(p) = |ϕ(p)|2 ln(|ϕ(p)|2) (5)



Entropy 2022, 24, 604 3 of 8

where the notations |ψn(x)|2 and |ϕn(p)|2 represent their probability densities in po-
sition and momentum space. The wave function ϕ(p) can be calculated by using the
Fourier transform

ϕ(p) =
1√
2π

∫
ψ(x)e−i p xdx (6)

Based on Equation (5), the position and momentum space information Shannon
entropies Sx and Sp are defined, respectively, as

Sx = −
+∞∫
−∞

ρs(x)dx, Sp = −
+∞∫
−∞

ρs(p)dp (7)

Among the existing reference books, there is no book that explains how to obtain
such a transformation containing the confluent Heun function. This leads to the fact that
the Fourier transform involving the confluent Heun function cannot be performed easily.
Therefore, we computed the position and momentum entropies using the numerical method.
To this end, we applied FFT to compute the normalized wave function in momentum space,
except for the wave function in position space.
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3. Results and Discussions

Now, let us present the results obtained in this work and remark on some particu-
larities. Since this work focused on a numerical solution of the Schrödinger equation, we
created a program in Python to compute the normalized wave functions as a function of the
variable x. Once we had the wave function, then it was possible to obtain the wave function
in momentum space via the FFT method. In Figures 3 and 4, we show the momentum and
position entropy densities for the ground, first, second and sixth states of each hyperbolic
potential. It is found that the width of the momentum entropy density for U1 is wider than
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that of U3, but their widths of the position entropy density are converse. This is also related
to their potential shapes.
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To illustrate the behavior of the wave function in higher excited states, we have to take
a large value of the potential parameter u. Otherwise, the system does not support enough
bound states if the potential parameter u is very small. To observe the position entropy
density of the 11th normalized excited state (u = 300) as shown in Figure 5, we found that
the position entropy density is mainly distributed in the interval (−0.25, 0.25) for U1 as
shown in Figure 5a, but in the interval (−0.5, 0.5) for U3. This can be explained well by
the shapes of the potential wells as shown in Figure 1, since the width of U3 is wider than
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that of U1. However, the momentum entropy density is contrary to that of the position
entropy density. As displayed in Figure 6, for U1 shown in Figure 6a, it is possible to see
that the effective range for the momentum entropy density on the 11th excited state is near
to (−1, 1), while for U3 in Figure 6b, it is near to (−0.5, 0.5).
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Finally, to study in detail the behavior of the position and momentum entropies in
hyperbolic potentials and examine that the BBM inequality relation is satisfied in these two
systems, we changed the depth u for potentials U1,3 and we plotted the results shown in
Figure 7 for the position entropy Sx. In the same way, we present in Figure 8 the variation
of the momentum entropy Sp with respect to the depth u of the potential wells. Here, we
only considered the normalized ground states for each type of potential. It is clearly shown
that the position and momentum entropies do not always increase and decrease for some
depths. It is also found that the BBM inequality relation is always satisfied, as shown in
Figure 9. That is, their sum always stays above the value 2.1447.
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4. Concluding Remarks

In this work, we investigated the position Sx and momentum Sp Shannon information
entropies for the quantum system subject to hyperbolic potential single wells. We solved
this system numerically and illustrated the position and momentum entropy densities as
well as the Shannon entropies. Furthermore, we found that the BBM inequality is satisfied
for the position Sx and momentum Sp even when the potential depth changes or when these
magnitudes increase or decrease. We consider that it is worthwhile to study hyperbolic
potential wells, possibly with different variations, e.g., a double potential well; we are
working on this research.
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