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Abstract: The Age of Information (AoI) measures the freshness of information and is a critic perfor-
mance metric for time-sensitive applications. In this paper, we consider a radio frequency energy-
harvesting cognitive radio network, where the secondary user harvests energy from the primary
users’ transmissions and opportunistically accesses the primary users’ licensed spectrum to deliver
the status-update data pack. We aim to minimize the AoI subject to the energy causality and spectrum
constraints by optimizing the sensing and update decisions. We formulate the AoI minimization
problem as a partially observable Markov decision process and solve it via dynamic programming.
Simulation results verify that our proposed policy is significantly superior to the myopic policy under
different parameter settings.

Keywords: Age of Information; RF energy-harvesting; cognitive radio network; dynamic programming

1. Introduction

To cope with both the spectrum scarcity and the energy shortage challenges in future
wireless networks, radio frequency (RF) energy-harvesting in cognitive radio networks
(CRN) has been increasingly attractive. Cognitive radio technology allows secondary users
(SUs) to opportunistically access the primary users’ (PUs) licensed spectrum, based on
the condition that the SUs transmission must not cause harmful interference to PUs [1–4].
Meanwhile, the RF energy-harvesting technique conquers the intermittency and uncon-
trollability of the conventional charging techniques absorbing energy from renewable
energy sources [5–7]. Hence, it can simultaneously improve energy efficiency and spectral
efficiency, where the SUs can both capture energy and spectrum [8].

While existing works mainly investigated throughput of the RF energy-harvesting
CRN, many emerging applications require timely status-update delivery [9–15], i.e., health
monitoring, environment monitoring, smart building, vehicle-to-vehicle networking, and so
on. For example, in health monitoring, the sensors continuously measure and update blood
pressure and heartbeat to the health monitoring platform, which implies the importance of
the freshness and timeliness of status-update. The Age of Information (AoI) as a recently
proposed performance metric can be used to quantify the freshness and timeliness of
status-update [16–23]. It is defined as the time elapsed since the generation time of the
latest successfully received status-update at the destination.

Some innovative efforts have been devoted to the AoI of CRN [24–28]. In [24], the
authors considered a cognitive wireless sensor network with a cluster of SUs, where
the authors proposed a joint and scheduling strategy that optimized energy efficiency
of a communication system subject to the expected AoI. The authors in [25] considered
an overlay CRN where the SU acted as a relay. The SU forwarded the PU’s packets or
transmitted its own packets. The optimal policy for status-update and packet relaying
was investigated to minimize the average AoI and energy efficiency. In [26], the authors

Entropy 2022, 24, 596. https://doi.org/10.3390/e24050596 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e24050596
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0001-6924-4466
https://doi.org/10.3390/e24050596
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e24050596?type=check_update&version=1


Entropy 2022, 24, 596 2 of 15

analyzed the average peak AoI of the PU and SU for both overlay and underlay schemes.
The asymptotic expressions of the average peak AoI were derived when the PU operated
at high signal-to-noise ratio. Considering that it is difficult for PU keeping time-slotted
synchronization with SU, the authors in [27] investigated AoI minimization in CRN with
an unslotted PU. The closed-form expression was derived by conducting a Markov chain
analysis. In [28], the authors considered AoI minimization for energy-harvesting CRN.
They assumed that the SU harvests energy from ambient energy sources and derived the
optimal sensing and update policies for both perfect and imperfect spectrum sensing.

Overall, the aforementioned research efforts rarely address AoI minimization for RF
energy-harvesting CRN. Motivated by this, this article attempts to minimize the average
AoI by adaptively making sensing and updating decisions subject to the energy causality
and spectrum constraints with imperfect spectrum sensing. The system consists of one PU
and one SU. Different from [28], the SU harvests RF energy from PU transmissions instead
of ambient energy sources, which is further used to generate and deliver the status-update
data pack when the PU is idle. The SU utilizes the harvested energy to perform spectrum
sensing and updating. The main contributions of this paper are summarized as follows:

• We study the average AoI minimization for RF energy-harvesting CRN where the SU
harvests energy from PU transmissions. In each time slot, the SU adaptively makes
sensing and updating decisions based on the channel state information, the AoI value,
the available energy, and the belief of PU’s spectrum.

• We formulate the decision-making problem as a framework of a partially observable
Markov decision process (POMDP) with finite state and action spaces. Then we use
dynamic programming to obtain the optimal policy.

• We demonstrate through extensive simulations that the proposed policy can essentially
improve the system performance compared to the myopic policy under different
system parameter settings.

The remaining part of the paper is organized as follows. In Section 2, we review the
works on RF energy-harvesting CRN in the literature. Section 3 describes the studied system
model for RF energy-harvesting CRN. Section 4 first formulates the AoI minimization
problem as a POMDP framework and then solves it through the dynamic programming.
Section 5 presents simulation results and discussions. Finally, Section 6 concludes this paper.

2. Related Works on RF Energy-Harvesting CRN

Recently, cognitive radio technology has drawn significant attention as a promising
solution to overcome the licensed spectrum severe scarcity. Cognitive radio allows SUs
to opportunistically access PUs’ licensed spectrum, based on the condition that the SUs
transmission must not cause harmful interference to PUs [1–3]. Spectrum sensing is an
important functionality in the cognitive radio system [29], by which the SUs decide whether
the spectrum is occupied by the PUs. It can be performed by a single SU or in cooperation
with multiple SUs. The SUs can only transmit data when the PUs are idle [30]. Various
spectrum-sensing approaches have been developed based on employing different features
of the PUs’ signal [31], such as coherent detection [32], energy detection [33], and feature
detection [34].

On the other hand, energy shortage is also a challenge in future wireless networks.
Over the last past years, the RF energy-harvesting technique has emerged as a candidate
method for charging low-power wireless devices, which can conquer the intermittency and
uncontrollability of the conventional charging techniques absorbing energy from renewable
energy sources [5–7]. In [35], the authors proposed the harvest-then-transmit (HTT) protocol
as one of the important transmission strategies of RF energy-harvesting technology, where
the users first harvest energy from the hybrid access point (HAP) and then use the captured
energy to transmit information to the HAP. There have been some related works before.
In [36], the authors investigated the wireless-powered network (WPCN) where one HAP
coordinated the wireless information and energy transmissions to a set of nodes, where
the transmission completion time minimization subject to the throughput requirement per
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node was considered. Furthermore, the authors studied a similar WPCN scenario in [37],
where they focused on energy provision minimization for two physical-layer protocols, non-
orthogonal multiple access (NOMA) and time-division multiple access (TDMA). Different
from the common WPCN with a fixed HAP, the transmission completion time minimization
was investigated in aerial vehicle-enabled WPCN in [38].

To jointly solve the aforementioned two challenges including spectrum scarcity and
energy shortage, introducing RF energy-harvesting in CRN has been increasingly attractive
due to the fact that it can simultaneously improve energy efficiency and spectral efficiency,
where the SUs can both capture energy and spectrum [8]. The timely-delivery probability
of data packs for the RF energy-harvesting SU was derived in [39], where the SU oppor-
tunistically accesses the spectrum vacated by the PU to deliver real-time data packs and
harvests RF energy when the PU is active. Unlike the traditional RF energy-harvesting CRN
system where the SU keeps synchronization with the PU, the authors in [40] considered
unslotted PU. The sensing intervals were derived to balance between energy harvesting
and spectrum access. However, both [39,40] focused on a simple CRN consisting of one
PU and one SU. The authors in [41–43] considered a more general scenario where there
were multiple SUs or multiple PUs. In [41], the multiple selection strategy was proposed
for RF energy-harvesting CRN to maximize the SUs’ average throughput. In [42], the au-
thors studied a hybrid energy-harvesting SU that can capture energy from both renewable
sources and ambient radio frequency signals. The asymptotic activity behavior of a single
SU was analyzed by deriving the theoretical upper bound on sensing and transmission
opportunities. In [43], the authors investigated the end-to-end throughput maximization
by jointly optimizing the transmit power and time allocation for multiple SUs.

3. System Model

As illustrated in Figure 1, we investigated AoI minimization for a RF energy-harvesting
CRN, where the system consists of one PU, one SU, and one CBS communicating with the
SU. The SU is a wireless sensor node that monitors the physical process and randomly
generates status updates to the CBS. It has no embedded power supply available and
harvests RF energy from PU transmissions. Additionally, it opportunistically accesses the
PU’s licensed spectrum. We considered a time-slotted system with a time interval of T time
slots. The duration of each time slot is sufficient for the SU to generate one status-update
data packet and receive it successfully at the CBS. Without loss of generality, we assume
that the time slot duration is 1 s. The important notations are summarized in Table 1.

Energy signal

Information signal

PU

CBS
SU

Figure 1. System model. In each time slot, the SU can harvest energy from the PU transmissions and
can deliver the status-update date pack to the CBS when the channel is idle.
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Table 1. List of notations used in this paper.

Notation Definition

pai The transition probability from the active state to the idle state
pii The transition probability from the idle state to the idle state
p f The false alarm probability
pd The detection probability
φt The sensing decision at time slot t
θt The update decision at time slot t
q̂t The sensing result
δ The energy consumption on sensing spectrum
τs The time consumption on sensing spectrum

ET,t The energy consumption on update
τt The time consumption on update
S The size of status-update data pack
at The AoI at time slot t
ρt The belief probability

bmax The maximum battery energy level
gmax The maximum channel power gain level from the SU to the CBS
hmax The maximum channel power gain level from the PU to the SU

Φ The belief space
η The energy-harvesting efficiency
σ2 The noise power

Bmax The battery capacity of the SU
Amax The upper of AoI

st The current state
xt The action at time slot t

3.1. Primary User Model

The occupancy of a channel by the PU is modeled as a two-state continuous-time
Markov chain [44], i.e., active (A) and idle (I) states. In each time slot, the PU either stays
in the idle state or occupies the spectrum in an active state. The two-state (active/idle)
Markov chain model for modeling PU activity has been verified to be an appropriate model
to characterize spectrum occupancy in the time domain [45]. Let qt ∈ {A, I} denote the
state of the PU for t = 0, 1, . . . , T − 1. The transition probabilities of the two-state Markov
chain are expressed as pai and pii, which represent transitioning from the active state to the
idle state, and still staying in the idle state, respectively. For t = 0, 1, . . . , T − 1, we have

pai , P(qt+1 = I|qt = A), (1)

pii , P(qt+1 = I|qt = I). (2)

The transition probabilities are known to SU, which can be obtained by long-term measure-
ments.

3.2. Secondary User Model

We considered the SU time-slotted synchronization with the PU. At the beginning of
each time slot, the SU needs to decide whether to sense the PU’s spectrum. If it decides
not to sense the spectrum, it takes the entire time slot to harvest energy from the PU
transmissions. That is, energy can be harvested when the PU is active; otherwise, no energy
is harvested. We assume the imperfect sensing outcome for the SU [46]. We denote the
probability of a false alarm by p f (i.e., the probability of deciding the spectrum is occupied
by the PU while it is not). The probability of detection is denoted by pd (i.e., the probability
of deciding PU is active when it is active). Then, we have

p f = P(q̂t = A|qt = I), (3)

pd = P(q̂t = I|qt = I). (4)



Entropy 2022, 24, 596 5 of 15

The SU will take two actions after obtaining the sensing result. When the PU is sensed
to be active, the SU will not deliver the status-update data pack. This means that it can
harvest energy when the PU is actually active. On the other hand, if the sensing result is
that the spectrum is vacated by the PU, the SU needs to further decide whether to update.
If an update package is delivered, the SU will receive a 1-bit feedback signal from the CBS
to determine whether the update is successful or not. When the sensing result q̂t = I is
correct, the update is successful. This happens with probability 1− p f . Update failure
occurs if the PU is active despite the SU declaring it idle. This happens with probability
1− pd. The SU aims to minimize the average AoI by making the optimal sensing and
update decisions over time slot t = 0, 1, . . . , T − 1. We denote the decision of time slot t
by xt = (φt, θt), where φt∈{0(not sense), 1(sense)} and θt ∈ {0(not update), 1(update)}
denote the sensing and update decisions, respectively. The optimal sensing and update
decisions are based on the SU’s states and its statistical knowledge of the PU activity.

(1) Belief model: The SU observes the availability of the PU spectrum by adaptively
detecting and accessing the spectrum. The belief state of the PU spectrum can be obtained
based on the SU’s action and observation history. That is, at the beginning of each time slot
t, the SU forms the belief ρt. The belief ρt is the conditional probability that the PU is in an
idle state given the SU’s action and observation history.

(2) Channel model: Denote the channel power gains from the PU to the SU and from
the SU to the CBS by ht and gt over time slot t. We consider a quasi-static channel model
based on one time slot by assuming that the channel state information is constant in a
single time slot and variable in different time slots. Especially, as is commonly assumed in
the works about the wireless communication system, the channel state information of the
current time slot can be perfectly obtained.

(3) RF energy-harvesting model: The batter-free SU harvests energy from the occupied
spectrum by the PU. For the SU, the HTT protocol is employed. That is, the SU first captures
energy from the PU transmissions and then utilizes the harvested energy to sense spectrum
and transmit data. Overall, there are two cases where energy can be harvested over time
slots: (1) The not sensing decision is made, and the PU is inactive, and (2) the sensing
decision is made, and the sensing result q̂t = A is correct. The energy captured by the SU is
expressed as

Em
H,t = ητPht, (5)

for t = 0, 1, . . . , T− 1 and m = 1, 2, where η, τ and P denote the energy-harvesting efficiency,
energy-harvesting time and transmit power at the PU, respectively. The superscript m
denotes the two cases of energy-harvesting mentioned above. The captured energy is used
to perform sensing spectrum and update. Denote the energy and time consumption on
sensing spectrum by δ and τs, respectively. Similarly, let ET,t and τt denote the energy
and time consumption on update, respectively. Energy consumption ET,t is time-varying,
which is related to the channel state information gt from the SU to the CBS. According to
Shannon’s formula [47], the transmission rate S

τt
can be expressed as S

τt
= W log2(1+

ET,tgt
τtσ2 ),

where σ2 is the noise power at the CBS, S is the size of status-update data pack, and W is
the bandwidth. Reorganizing the expression, we obtain the energy consumption, ET,t, as

ET,t =
σ2τt

gt

(
2

S
τtW − 1

)
. (6)

Since the size of the status-update data pack is fixed, ET,t is only related to the channel
state information from the SU to the CBS. Although the update decision can reduce the AoI
to one, when the channel quality is poor, it may be better not to deliver the status-update
data pack to conserve energy. Note that update failure occurs if the sensing result q̂t = I
is incorrect. In this case, the SU will consume all its available energy. Let Bmax denote the
battery capacity of the SU. In time slot t, the battery state is bt, which evolves as

bt+1 = min{bt + Em
H,t − φtδ− θtET,t, Bmax}, t = 0, 1, . . . , T − 1. (7)



Entropy 2022, 24, 596 6 of 15

Hence, for the SU, the energy causality constraint should satisfy

φtδ + θtET,t ≤ bt, t = 0, 1, . . . , T − 1. (8)

(4) AoI model: We consider a linear model for the AoI [16], where the AoI is defined as
the time elapsed from the moment when the most recently received update was generated
to the present. Let the AoI at time slot t denote by at ∈ A , {1, 2, . . ., Amax}. Here Amax is
the upper of the AoI and is defined as

Amax = a0 + T. (9)

In the considered system, the SU adopts the generate-at-will scheme. That is, the SU
generates and delivers a status-update data pack after making an update decision. At
each time slot t, the size of the data packet S is small enough to be generated and updated
immediately and received by the end of the current time slot when the update decision
is made and the sensing result q̂t = I is correct. If the update is received at the CBS, AoI
decreases to one; otherwise, it increases by one. We consider an error-free channel through
which the status-update data pack can be successfully received at the CBS when the update
decision is made and the sensing result q̂t = I is correct. The average AoI for an interval of
T time slots is expressed as

A =
1
T

T−1

∑
t=0

at, t = 0, 1, . . . , T − 1. (10)

4. POMDP for AoI Minimization

In this section, we formulate the AoI minimization as a finite-horizon POMDP problem
and solve for the optimal solutions via dynamic programming.

4.1. POMDP Formulation

We use a POMDP framework to model the optimal sensing and update decisions for
the SU’s AoI minimization. The components of POMDP are described as follows.

• Actions: At the beginning of each time slot t, the SU needs to decide whether to sense
the spectrum. If it decides not to sense the spectrum, then it captures energy from
the PU transmissions and does not update, i.e., xt = (0, 0). If it decides to sense the
spectrum and finds that the PU is idle, it further decides whether to update based on
the available energy, the AoI value, the channel state information from the SU to the
CBS and from the PU to the SU, i.e., xt = (1, 0) and xt = (1, 1). Thus, the action for
each time slot t is xt = (φt, θt) ∈ X , {(0, 0), (1, 0), (1, 1) : bt ≥ φtδ + θtET,t}, where
φt ∈ Γφ , {0, 1 : bt ≥ φtδ} and θt ∈ Γθ , {0, 1 : bt ≥ δ + θtET,t} .

• Observations and beliefs: Let q̂t ∈ {A, I} denote the observation of the PU’s state. The
belief ρt ∈ [0, 1] is a condition probability that the spectrum is vacated by the PU. The
belief is updated according to the following cases.
Case 1: The SU does not sense the spectrum; the new belief is given by

ρt+1 = Λ0(ρt) = ρt pii + (1− ρt)pai. (11)

Case 2: If the PU is sensed to be active, the SU harvests energy in the remaining time
of the current time slot, i.e., the battery energy increases. This implies the true state of
the PU is qt = A. The belief is updated as

ρt+1 = pai. (12)
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Case 3: If the PU is sensed to be active, the SU does not harvest energy; i.e., the battery
energy does not change and is lower than Bmax. This implies the true state of the PU
is qt = I. The new belief is expressed as

ρt+1 = pii. (13)

Case 4: If the PU is sensed to be active, the battery energy is Bmax at time slot t. The
new belief is given by

ρt+1 = Λ1A(ρt) = ζt pii + (1− ζt)pai, (14)

where

ζt,P(qt = I|q̂t = A) =
ρt(1− p f )

ρt p f +(1− ρt)(1− pd)
. (15)

Case 5: If the PU is sensed to be idle, the SU does not update. The belief is updated as

ρt+1 = Λ1I(ρt) = ζ̄t pii + (1− ζ̄t)pai, (16)

where

ζ̄t,P(qt = I|q̂t = I) =
ρt(1− p f )

ρt(1− p f )+(1− ρt)(1− pd)
. (17)

Case 6: If the PU is sensed to be idle, the SU updates successfully. This implies that
the true state of the PU is qt = I. Then, we have

ρt+1 = pii. (18)

Case 7: If the PU is sensed to be idle, the SU update fails. This implies that the true
state of the PU is qt = A. Then, we have

ρt+1 = pai. (19)

Although (11)–(19) cover seven cases from case one to case seven, the new beliefs in
both case two and case seven are denoted as pai, and the new beliefs in both case three
and case six are denoted as pii. Hence, the SU can only transit to five beliefs. That is,
the number of possible beliefs is finite over T time slots. Thus, for the length of T time
slots, the belief space Φ is a finite set.

• States: Denote the discrete battery energy level of the SU at the beginning of time
slot t by b

′
t ∈ B , {0, 1, 2, . . ., bmax}, where bmax is the maximum battery energy level

that can be stored inside the battery of the SU. Then, each energy quantum of the
SU’s battery contains Bmax

bmax
Joules. In this case, we use b

′
t =

⌊
btbmax
Bmax

⌋
to convert the

continuous battery energy of the SU to the discrete battery energy level, by which
a lower bound to the AoI of the original continuous system is obtained. Similarly,
divide continuous channel power gain into finite number of intervals according to
fading probability density function (PDF). Thus, the discrete channel power gain
levels from the SU to the CBS and from the PU to the SU are expressed as g

′
t ∈ G ,

(0, 1, 2, . . ., gmax) and h
′
t ∈ H , (0, 1, 2, . . ., hmax), respectively. Here, gmax and hmax

denote the corresponding maximum channel power gain levels. At each time slot t, the
completely observable states include channel state from the PU to the SU, channel state
from the SU to the CBS, the AoI state, and battery state, denoted by st , (h

′
t, g

′
t, at, b

′
t).

Note that the state space, i.e., S , H× G ×A×B, is finite. Due to imperfect sensing,
an update may be unsuccessful when the sensing result is q̂t = I and the update
decision is θt = 1. Thus,

at+1=

{
1, when xt = (1, 1) and q̂t = qt,
at + 1, otherwise,

(20)
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for t = 1, 2, . . . ., T. Alternatively, we can express at+1 = (1 − θt)at + 1 when the
sensing result q̂t = I is correct. Additionally, the PU’s spectrum state is only partially
observable, which is described by the belief ρt. Thus, for each time slot t, the complete
system state is denoted by (st, ρt). Since S and Φ are finite, the SU experiences a finite
number of possible system states (st, $t) ∈ S ×Φ.

• Transition probabilities: For time slot t, given the current state st = (h
′
t, g

′
t, at, b

′
t) and

the action xt = (φt, θt), the transition probability to the next state st+1 = (h
′
t+1, g

′
t+1, at+1,

b
′
t+1) is denoted by pxt(st+1|st). Since the captured energy and the channel power

gains are independently and identically distributed (i.i.d), the transition probabilities
for taking actions other than xt = (1, 1) are given as follows.

pxt(st+1|st) = P(at+1|at, xt)P(b
′
t+1|b

′
t, g

′
t, h

′
t, xt)P(g

′
t+1)P(h

′
t+1), (21)

where

P(at+1|at, xt)=

{
1, when at+1 = (1− θt)at + 1,
0, otherwise,

(22)

P(b′t+1|b
′
t, g

′
t, h

′
t, xt) =



1, when φt = 0 and bt+1 = min{ bt + E1
H,t, Bmax},

1, when φt = 0 and bt+1 = bt,
1, when φt = 1, θt = 0, and bt+1 = min{bt − δ + E2

H,t, Bmax},
1, when φt = 1, θt = 0, and bt+1 = bt − δ,
0, otherwise.

(23)

For the action xt = (1, 1), the transition probability is expressed as follows.

pxt(st+1|st, q̂t, qt) = P(at+1|at, xt q̂t, qt)× P(b′t+1|b
′
t, g

′
t, h

′
t, xt)× P(g

′
t+1)P(h

′
t+1), (24)

where

P(at+1|at, xt)=


ζ̄, when at+1 = 1 and qt = q̂t,
1− ζ̄, when at+1 = at + 1 and qt ≤ q̂t,
0, otherwise,

(25)

and

P(b′t+1|b
′
t, g

′
t, h

′
t, xt) =


1, when φt = 1, θt = 1, bt+1 = bt − δ− ET,t, and q̂t = qt,
1, when φt = 1, θt = 1, bt+1 = 0, q̂t = I, and qt = A,
0, otherwise.

(26)

• Cost: Let the immediate cost at state st denoted by C(st), which is the accumulated
AoI at time slot t. Then, we have

C(st) = at, t = 0, 1, . . ., T − 1. (27)

• Policy: The policy is expressed as π = {ϑ0, ϑ1, . . ., ϑT−1}, where ϑt is the deterministic
decision rule that maps a system state (st, ρt) ∈ S × Φ into an action xt ∈ X , i.e.,
xt = ϑt(st, ρt). In this paper, let Π denote the set of all deterministic decision policies.

Given the SU’s initial state s0 and belief ρ0 of PU’s spectrum, the average AoI of T
time slots under the policy π is given by

Aπ
(s0, ρ0) =

1
T
E
[

T−1

∑
t=0

C(st)|s0, ρ0

]
, (28)

where the expectation is caused by policy π. Based on the above analysis, minimize the
average AoI by finding the optimal sensing and update policy corresponds to solving

min
π∈Π

Aπ
(s0, ρ0). (29)
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Given T, (29) is a finite-state MDP with total cost. Based on (28) and (29), to minimize the
average AoI, the SU should sense the spectrum and deliver the status-update data pack as
long as it has sufficient energy. However, considering the channel state information, the
belief of PU’s spectrum, and the battery energy available, preferring the spectrum sensing
and status-update may not be the best decision.As a result, there is an optimal decision
scheduling problem.

4.2. POMDP Solution

In this section, we use dynamic programming to solve total cost minimization of T
time slots in (29) [48]. At a time slot t, the successive actions {xk}T−1

k=t affect the states sk
along with the accumulated AoI C(sk) for all k = t, t + 1, . . . , T − 1. Let Vt(st, ρt) denote
the state-value function, which is given by

Vt(st, ρt) , min
{xk}T−1

k=t

E
[

T−1

∑
k=t

C(sk)|st, ρt

]
. (30)

It is the minimum expected cost accumulated from time slot t to T− 1 given state (st, ρt).
Thus, denote the minimum AoI in (29) by A∗ = V0(s0, ρ0)/T. Additionally, given (st, ρt)

and sensing action φt, let Qφt
t (st, ρt) represent the action-value function or Q-function,

which is the minimum expected cost for taking sensing action φt at state (st, ρt). The
Q-function includes two parts: the immediate cost of taking action at the current state and
the expected sum of the state-value functions from the next time slot.

Overall, the formulated MDP problem can be solved recursively by dynamic program-
ming as follows. For t = 0, 1, . . . , T − 1,

Vt(st, ρt) = min
φt∈Γφ

Qφt
t (st, ρt), (31)

When t = T − 1, we have

Q0
T−1(sT−1, ρT−1) = C(sT−1) + C(sT), (32)

Q1
T−1(sT−1, ρT−1) = (1− ∆T−1)C(sT−1) + ρT−1 × ∆T−1 min

φT−1∈Γφ

C(sT−1) + C(sT). (33)

When t = 0, 1, . . . , T − 2, we have

Q0
t (st, ρt) = C(st) + ∑

st+1

p00(st+1|st)Vt+1(st+1, Λ0($t)), (34)

Q1
t (st, ρt) = (1− ∆t)Q1A

t (st, ρt) + ∆t min
θt∈Γφ

Q1φt
t (st, ρt), (35)

Q1A
t (st, ρt) = C(st) + ∑

st+1

p10(st+1|st)Vt+1(st+1, Λ1A($t)), (36)

Q10
t (st, $t) = C(st) + ∑

st+1

p10(st+1|st)Vt+1(st+1, Λ1I($t)), (37)

Q11
t (st, ρt) =C(st)+∑

st+1

p11(st+1|st, q̂t =qt)Vt+1(st+1, ΛI($t))

+ ∑
st+1

p11(st+1|st, q̂t ≤ qt)Vt+1(st+1, ΛA($t)), (38)
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where ∆t represents the probability of observing PU idle. That is

∆t = P(q̂t = I) = ρt(1− p f ) + (1− ρt)(1− pd). (39)

Especially, Q1A
t (st, ρt) in (36) represents the minimum expected cost by adopting sensing

action φt = 1 and sensing result q̂t = A, i.e., xt = (1, 0). In (37) and (38), given the sensing
action φt = 1 and sensing result q̂t = I, Q10

t (st, $t) and Q11
t (st, $t) denote the minimum

expected costs by adopting update action θt = 0 and θt = 1, respectively. Then, by recursion
in (31)–(38), the optimal policies for sensing and update are given by

φ∗t (st, ρt) ∈ argmin
φt∈Γφ

Qφt
t (st, $t), (40)

θ∗t (st, ρt) ∈ argmin
φt∈Γθ

Q1θt
t (st, $t). (41)

5. Numerical Results

In this section, we evaluate the performance of our proposed optimal policy through
comparing it with the myopic policy and the random policy. At the beginning of time
slot t, for the myopic policy, the SU senses the spectrum if it has enough energy. When
the sensing result is q̂t = I, the SU generates and delivers a status-update data pack if the
energy available is sufficient. For the random policy, the SU randomly chooses to deliver
the status-update data pack or harvest energy with a probability. Taking into account the
protection of the PU’s transmission, the probability of harvesting energy is set to be 90%,
and the probability of delivering the status-update data pack is set to be 10%. If the SU
chooses to deliver the status-update data pack while the spectrum is occupied by the PU,
the status-update fails, and the AoI increases by one. The PU’s state transition probabilities
are pii = 0.8 and pai = 0.5. The probability of detecting an active PU is pd = 0.8. The
channel power gains from the PU to the SU and from the SU to the CBS are modeled
as h = ΥΨ2d−κ

1 and g = ΥΨ2d−κ
2 , where d1 and d2 denote the distances from the PU to

the SU, and the SU to the CBS, respectively. Υ represents a signal power gain at a 1 m’s
reference distance, Ψ ∼ exp(1) denotes the small-scale fading gain, and d−κ

1 and d−κ
2 are

standard power law path-loss with exponent κ. In the simulations, the system parameter
values are set as follows: η = 0.5, σ2 = −95 dBm, W = 1 MHz, Υ = 0.2, κ = 2, bmax = 5,
gmax = hmax = 10, ρ0 = pii, τs = 0.2 s, and Amax = 13.

Figure 2 shows one sample path of the AoI by the optimal policy. The transmit power
of the PU is 35 dBm, the energy consumption is one energy quantum, the distance from
the the SU to the CBS is 20 m, the distance from the PU to the SU is 25 m, the size of the
status-update data pack is 14 Mbits, and the battery capacity is 0.5 mJoules. The trend
of the AoI over time slots is clearly observed. In the simulations, we found the SU did
not perform sensing spectrum even the remaining energy was enough, which verifies the
foresight of the optimal policy compared with the myopic policy.

Figure 3 shows the size of the status-update data packet versus the AoI, where the
simulation setup is similar as in Figure 3. It is clear that our proposed policy is superior to
the other policies. For the random policy, the AoI is obviously high due to the low probabil-
ity of delivering the status-update data pack. For the random policy, the AoI is greater than
5.57, due to the low probability of delivering the status-update data pack. Considering
the poor AoI performance of the random policy, we only compare our algorithm with the
myopic algorithm in the following numerical evaluations. We can observe that the AoI
increases with the size of the status-update data packet. The reason is that the increase
in the size of the status-update data packet will result in increasing the energy needed to
deliver one status-update data pack. This decreases the possibility that the SU will have
enough energy to update, and hence the AoI is increased.
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Figure 2. One sample path of the AoI by the optimal policy.
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Figure 3. The size of status-update data packet versus the AoI when T = 10.

Figure 4 shows the transmit power of the PU versus the AoI, where the capacity of
battery is 0.2 mJoules, the distance from the PU to the SU is 5 m, the distance from SU to the
CBS is 25 m, the size of status-update data pack is 15 Mbits. We can observe from Figure 4
that the average AoI increases with the transmit power of PU. The reason is that the SU
will harvest more energy as the transmit power of PU increases, which allows the SU to
store more energy in the battery. This increases the possibility that the SU will have enough
energy to update, and hence the AoI is decreased.
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Figure 4. The transmit power of PU versus the AoI when T = 10.

Figure 5 shows the battery capacity versus the AoI, where the size of the status-update
data pack is 15 Mbits, the energy consumption on the sensing spectrum is one energy
quantum, the transmit power of the PU is 35 dBm, the distance from the SU to the CBS is
10 m, and the distance from the PU to the SU is 5 m. It is clearly observed that the proposed
policy essentially improves the AoI as compared to the myopic policy. We can also observe
the average AoI decreases with the battery capacity. The reason is that increasing the
battery capacity allows more harvested energy to be stored inside the battery. Thus, the SU
will have enough energy to perform an update, and hence the AoI is reduced.
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Figure 5. The battery capacity versus the AoI when T = 10.

Figure 6 shows the energy consumption on sensing spectrum versus the AoI. The
simulation setup is the similar as in the Figure 5. It is observed that the average AoI
increases with the energy consumption on sensing action. The reason is that increasing
the energy consumption on sensing spectrum can result in less energy remaining inside
the battery. This, in turn, decreases the possibility that the SU will have enough energy to
deliver status-update data packet, and hence the AoI is increased.
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Figure 6. The energy consumption on sensing spectrum versus the AoI when T = 10.

6. Conclusions

In this paper, we investigated RF energy-harvesting CRN with the aim of AoI mini-
mization subject to the energy causality and spectrum constraints. We first used POMDP to
formulate this average AoI minimization based on the AoI value, the channel state informa-
tion, the energy available, and the PU’s spectrum belief, and then dynamic programming
was adopted to find the optimal sensing and update decisions. Numerical results showed
the influence of system parameters on the AoI, and demonstrated that the proposed policy
significantly outperform the myopic policy.
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