
����������
�������

Citation: Mukhamedov, F.; Qaralleh,

I. Entropy Treatment of Evolution

Algebras. Entropy 2022, 24, 595.

https://doi.org/10.3390/e24050595

Academic Editor: Robert Niven

Received: 17 March 2022

Accepted: 21 April 2022

Published: 24 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Entropy Treatment of Evolution Algebras
Farrukh Mukhamedov 1,* and Izzat Qaralleh 2

1 Department of Mathematical Sciences, College of Science, United Arab Emirates University,
Al Ain P.O. Box 15551, United Arab Emirates

2 Department of Mathematical, Faculty of Science, Tafila Technical University, P.O. Box 179, Tafila 66110, Jordan;
izzat_math@ttu.edu.jo

* Correspondence: far75m@yandex.ru or farrukh.m@uaeu.ac.ae

Abstract: In this paper, by introducing an entropy of Markov evolution algebras, we treat the
isomorphism of S-evolution algebras. A family of Markov evolution algebras is defined through
the Hadamard product of structural matrices of non-negative real S-evolution algebras, and their
isomorphism is studied by means of their entropy. Furthermore, the isomorphism of S-evolution
algebras is treated using the concept of relative entropy.
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1. Introduction

The theory of non-associative algebras is an important branch of abstract algebra. Such
kinds of algebras include baric, evolution, Bernstein, train, and stochastic algebras. These
types of objects were tied up with the abstract description of biological systems [1–4].

Let E := (E , ·) be an algebra over a field K, where E is called an evolution algebra if it
admits a basis B := {e1, e2, . . . , en} such that

ei · ej =


n
∑

k=1
aikek, if i = j,

0, if i 6= j.
(1)

The matrix A = aik is called the structure matrix of E relative to B. A basis B satisfying
(2) is called the natural basis of E . We say that E is a non-negative evolution algebra ifK = R
and the structure matrix entries aik are non-negative.

These kinds of algebras were first considered in [5–7] and have been exhaustively
studied over the recent years (see [8–16] and references therein for a review of some of
the main results achieved on this topic [17]). These algebras are related to a wide variety
of mathematical subjects, including Markov chains and dynamical systems [18,19]. The
relationship between evolution algebras and homogeneous discrete-time Markov chains
was settled in [6]. We recall that Markov evolution algebra is a non-negative evolution
algebra whose structure matrix A has row sums equal to 1.

Tian [6] proposed one of the most fruitful further topics of research: the development
of the theory of continuous evolution algebras and their connection to continuous-time
Markov processes. He outlined continuous evolution algebras to be evolution algebras
using multiplication, with respect to a natural basis B = {e1, e2, . . . , en}, such that

ei · ej =


n
∑

k=1
aik(t)ek, if i = j,

0, if i 6= j.
(2)

for some functions aik(t).
Recently, Markov evolution algebras have been strongly connected with group theory,

Markov processes, the theory of knots, dynamic systems, and graph theory [11,20–24].
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In [25], Markov evolution algebras, whose stricture matrices obey semi-group property,
were investigated. This type of study is related to the chain of evolution algebras [26].

On the other hand, recently, in [27], we introduced a new class of evolution algebras
called S-evolution algebras. These algebras are not nilpotent and naturally extended Lotka–
Volterra evolution algebras [18]. It is stressed that directed weighted graphs associated
with S-evolution algebras have meaning, whereas those connected with Lotka—Volterra
algebras do not.

Due to [28], the intersection of information theory and algebraic topology is fertile
ground. For example, in [29], it was established that the Shannon entropy defines a
derivation of the operad of topological simplices. On the other hand, it is important to
construct invariants for evolution algebras which can detect their isomorphism. It turns
out that such an invariant can be defined via the Shannon entropy for S-evolution algebras.
In the present paper, we demonstrate how this entropy allows for the treatment of the
isomorphism of S-evolution algebras. To be precise, we demonstrate that, if S-evolution
algebras (symmetric) have different entropies, they are not isomorphic. This result enables
the construction of many examples of non-isomorphic evolution algebras. As a result of the
primary finding, we propose a non-isomorphic family of Markov evolution algebras. This
result sheds new light on the Markov evolution algebras and their isomorphism problems.

Let us briefly describe the structure of this paper. Section 2 contains preliminary
definitions of evolution algebra. In Section 3, we define the entropy of the structural matrix
of the Markov evolution algebra, and we demonstrate that any isomorphic S-evolution
algebra would produce the same Markov evolution algebra. Furthermore, we derive
Markov evolution algebra through the Hadamard product of the structural matrix A of
S-evolution algebra. We show that the entropy of such a matrix will be constant if n = 2,
whereas the entropy will be decreasing if n ≥ 3. This result allows us to construct a lot of
non-isomorphic chains of Markov evolution algebras (see [26]). Finally, in Section 4, the
relative entropy is defined, and we prove that such a function is a measure of the ‘distance’,
even though it is not a metric space, since the symmetric axiom, in general, is not satisfied.
In the case of symmetric evolution algebra, we show that this property is satisfied only in
the class of isomorphic algebras.

2. Preliminaries

In this section, we recall the definitions of S-evolution algebra and some definitions
which are needed throughout the paper. Let E be a real non-negative evolution algebra
with structure matrix A = (aik) and natural basis B. If 0 ≤ aik ≤ 1 and

∞

∑
k=1

aik = 1,

for any i, k, then E is called Markov evolution algebra. The name is due to the fact that
there is an interesting one-to-one correspondence between E and a discrete time Markov
chain (Xn)n≥0 with the stated space {x1, x2, . . . , xn, . . .} and transition probabilities given
by (aik)i,k≥1, i.e., for i, k ∈ {1, 2, . . .}:

aik = P(Xn+1 = xk|Xn = xi),

for any n ≥ 0.
For the sake of completeness, we wish to state that a discrete-time Markov chain can

be thought of as a sequence of random variables X0, X1, X2, . . . , Xn, . . . defined in the same
probability space, taking values from the same set X , and such that the Markovian property
is satisfied, i.e., for any set of values {i0, . . . , in−1, xn, xk} ⊂ X , and any n ∈ N, it holds

P(Xn+1 = xk|X0 = i0, . . . , Xn−1 = in−1, Xn = xi) = P(Xn+1 = xk|Xn = xi).
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Notice that, in the correspondence between the evolution algebra E and the Markov
chain (Xn)n≥0, what we have is each state of X identified with a generator of B.

Definition 1 ([27]). A matrix A = (aij)
n
i,j=1 is called an S−matrix if

1. aii = 0 for all 1 ≤ i ≤ n;
2. aij 6= 0 if and only if aji 6= 0.

We notice that, if A = (aij)
n
i,j=1 is a S−matrix, then there is a family of injective

functions { fij : K→ K}1≤i<j≤n, with fij(0) = 0 such that aji = fij(aij) for all 1 ≤ i < j ≤ n.
Hence, each S-matrix is uniquely defined by off diagonal upper triangular matrix (aij)i<j
and a family of functions ( fij)i<j. This allows us to construct lots of examples of S-matrices.

Given an upper triangular matrix (aij)i<j, one can construct several examples of
S-matrices as follows:

• symmetric matrices, i.e., fij(x) = x;
• skew-symmetric matrices, i.e., fij(x) = −x;
• fij(x) = (−1)i+jx.

Definition 2. An evolution algebra E is called an S-evolution algebra if its structural matrix is
an S−matrix.

Remark 1. We note that evolution algebras corresponding to skew-symmetric matrices are called
Lotka–Volterra evolution algebras. Such kinds of algebras have been investigated in [18].

One can see that the conical form of the table of multiplication of S-evolution algebra
E with respect to natural basis {e1, e2, ..., en} is given by

ei · ej = 0, i 6= j; (3)

ei · ei =
i−1

∑
k=1

fki(aki)ek +
n

∑
m=i+1

aimem. (4)

We note that, if i = 1, then the first part of (4) is zero, if i = n, then the second part
is zero.

Remark 2. The motivation behind introducing S-evolution algebra is that such algebras have
certain applications in the study of electrical circuits, finding the shortest routes and constructing a
model for analysis and solution of other problems [8,30].

Definition 3. A linear map ψ : E1 → E2 is called the homomorphism of evolution algebras if
ψ(uv) = ψ(u)ψ(v) for any u, v ∈ E1. Moreover, if ψ is bijective, then it is called an isomorphism.
In this case, the last relationship is denoted by E1

∼= E2.

Definition 4. Let E be an evolution algebra with a natural basis B = {e1, . . . , en} and structural
matrix A =

(
αij
)
.

1. A graph Γ(E , B) = (V, E), with V = {1, . . . , n} and E = {(i, j) ∈ V × V : αij 6= 0}, is
called the graph attached to the evolution algebra E relative to the natural basis B.

2. The triple Γw(E , B) = (V, E, ω), with Γ(E , B) = (V, E) and where ω is the map E → F
given by ω

(
(i, j)

)
= αij, is called the weighted graph attached to the S− evolution

algebra E relative to the natural basis B.

Recall that if every two vertices of a graph are connected by an edge, then such a
graph is called complete.

Using the graph Γ(E , B), in [27], we have established the isomorphism of
S-evolution algebras.
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Theorem 1 ([27]). Let E1 and E2 be two S-evolution algebras with (aij)
n
i,j=1, (bij)

n
i,j=1 structural

matrices, respectively, whose attached graphs are complete. Then, E1
∼= E2 if and only if the

following conditions are satisfied( aij

bij

)2( fij(aij)

gij(bij)

)
=

(
aik
bik

)2( fik(aik)

gik(bik)

)
, 1 ≤ i < j < k ≤ n.( api

bpi

)( fpi(api)

gpi(bpi)

)2

=

(
aik
bik

)2( fik(aik)

gik(bik)

)
, 1 ≤ p < i < k ≤ n.( api

bpi

)( fpi(api)

gpi(bpi)

)2

=

( aqi

bqi

)( fqi(aqi)

gqi(bqi)

)2

, 1 ≤ p ≤ q < i ≤ n.

3. S-Evolution Algebras and Corresponding Markov Evolution Algebras

In what follows, we always assume that E is a non-negative, symmetric S-evolution
algebra with structure matrix A = (aik) and natural basis B. Using the matrix A, one can
define a stochastic matrix P(A) = (tij) as follows:

tij =
aij

n
∑

m=1
aim

, (5)

where i, j ∈ {1, . . . , n}. Sometimes, tij is denoted by P(aij).
An evolution algebra with the natural basis B and structural matrix P(A) is a Markov

evolution algebra corresponding to E which is denoted by Ē .
Our task now is to examine the isomorphism between E and Ē .

Theorem 2. Let (E , A) be a non-negative symmetric S-evolution algebra whose attached graphs
are complete, and let (Ē , P(A)) be its corresponding Markov evolution algebra. Then, E ∼= Ē if the
following conditions are satisfied.

1.
n
∑

m=1
ajm =

n
∑

m=1
akm, 1 < j < k ≤ n,

2.
n
∑

m=1
apm =

n
∑

m=1
akm, 1 ≤ p < k− 1 ≤ n,

Proof. We notice that E and Ē are S-evolution algebras. So, the isomorphism between
these two algebras can be checked by Theorem 1. Hence, the proof is straightforward.

Consider a discrete random variable X with possible values {x1, x2, . . . , xn} and prob-
ability mass function P(X). The entropy can be explicitly written as:

H(X) = −
n

∑
i=1

p(xi) ln(p(xi)), (6)

where it is assumed that 0 ln(0) = lim
p→0+

p ln(p) = 0.

Now, given a non-negative symmetric S-evolution algebra E with structure matrix
(aij), we define its entropy as follows:

H(A) = −
n

∑
i,j=1

ti,j ln(ti,j), (7)

where (tij) is defined by (5).
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Remark 3. We notice that the considered entropy has a relationship with the Jamiolkowski entropy
of a stochastic matrix [31]. Indeed, given a stochastic matrix P =

(
Pij
)n

i,j=1, one associates a
probability distribution as follows:

DP =
1
n
(P11, . . . , P1n, P21, . . . , P2n, . . . , Pn1, . . . , Pnn).

The Jamiolkowski entropy of P is defined by h(P) := H(DP). One can see

h(P) = −∑
i,j

Pij

n
ln
(Pij

n

)
(8)

= − 1
n ∑

i,j
Pij ln(pij) +

1
n ∑

i,j
Pij ln(n) (9)

= − 1
n ∑

i,j
Pij ln(pij) + 1. (10)

Hence, the entropy given by (7) can be represented as follows:

H(A) = n(h(P(A))− 1). (11)

The obtained formula (11) allows us to investigate H(A) in terms of h(P(A)), which has
certain applications in information theory. Moreover, all properties of the Shannon entropy can be
applied to H(A).

On the other hand, if one defines the entropy of a stochastic matrix in the sense of [32], then,
via (11), one can introduce other types of entropy of evolution algebras. Moreover, given an evolution
algebra E with the structure matrix A with (A∗A = 1), we may define a mapping Φ : Cn → Cn

by Φ(x) = A∗xA, which defines a quantum channel. Using its Jamiolkowski entropy, we define
the entropy of E as follows:

H(E) = n(h(Φ)− 1).

This will allow us to further investigate the algebraic structure of E with relation to the quantum
channel Φ [33].

Theorem 3. Let E1
∼= E2 be the non-negative symmetric S-evolution algebras with structural

matrices A = (aij)1≤i,j≤n and B = (bij)1≤i,j≤n, respectively. Assume that their attached graphs
are complete. Then, the corresponding Markov evolution algebras are the same.

Proof. Let E1
∼= E2. Due to the isomorphism between theses two algebras, we have

aij

alm
=

bij

blm
, 1 ≤ i 6= j ≤ n, 1 ≤ l 6= m ≤ n. (12)

The corresponding Markov evolution algebras have the following matrices of struc-
tural constants:

P(A) =

 aij
n
∑

k=1
aik


1≤i,j≤n

, P(B) =

 bij
n
∑

k=1
aik


1≤i,j≤n

,

respectively. Let ai0 j0 be an arbitrary entry of the matrix A, then

P(ai0 j0) =
ai0 j0

n
∑

k=1
ai0k

.
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We may assume that i0 6= j0 (since the matrices are S-matrices). Hence,

P(ai0 j0) =
ai0 j0

n
∑

k=1
ai0k

=
ai0 j0

ai0 j0

n
∑

k=1

ai0k
ai0 j0

=
1

n
∑

k=1

ai0k
ai0 j0

.

From (12), one has

P(ai0 j0) =
1

n
∑

k=1

ai0k
ai0 j0

=
1

n
∑

k=1

bi0k
bi0 j0

=
bi0 j0

bi0 j0

n
∑

k=1

bi0k
bi0 j0

=
bi0 j0

n
∑

k=1
bi0k

= P(bi0 j0).

Hence,
P(ai0 j0) = P(bi0 j0).

Due to the arbitrariness of i0, j0, we obtain P(A) = P(B). This completes the proof.

Corollary 1. Assume that all conditions of Theorem 3 are satisfied. Then H(A) = H(B).

Remark 4. We stress that the converse of Corollary 1 need not be true. Indeed, let E1 and E2 be
two non-negative S-evolution algebras with the following matrices of structural matrices:

A1 =

0 a b
a 0 c
b c 0

, A2 =

0 b a
b 0 c
a c 0


Using the condition from (12), we have E1 � E2 for any a 6= b. However, H(A1) = H(A2).

Remark 5. The advantage of Theorem 3 is that, for any two non-negative S-evolution algebras
whose matrix of structural constants is symmetric, if their entropies are different, then theses
algebras are not isomorphic.

The natural question that arises is: if we have arbitrary isomorphic evolution algebras,
are their entropies equal? The following example gives a negative answer.

Example 1. Let E1 and E2 be two dimensional evolution algebras with structural matrices

A1 =

(
0 1
1 1

)
, A2 =

(
0 16
2 4

)
.

Clearly, E1
∼= E2. Now,

P(A1) =

(
0 1
1
2

1
2

)
, P(A2) =

(
0 1
1
3

2
3

)
.

Now, we may calculate the entropies for both, which are H(A1) = ln(2), H(A2) = ln(3)−
2
3 ln(2). Thus H(A1) 6= H(A2).

Given the S-evolution algebra (E , A), the Hadamard product is defined as Mt : aij A→
A� A� . . .� A︸ ︷︷ ︸

t−times

Mt
(
aij
)
= at

ij, t > 0 (13)

Let us denote A� A� . . .� A︸ ︷︷ ︸
t−times

by A�
t
. By (E , A�

t
) we denote the evolution algebra

whose structural matrix is A�
t
.
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Lemma 1. Assume that all conditions of Theorem 3 are satisfied and dim(E1) ≥ 3. Then

1. If
aij
alm

=
bij
blm

= 1, for all 1 ≤ i 6= j ≤ n, 1 ≤ l 6= m ≤ n. Then (E1, A�
t1 ) ∼= (E2, B�

t2 )

for any t1, t2.

2.
aij
alm

=
bij
blm
6= 1, for some 1 ≤ i 6= j ≤ n, 1 ≤ l 6= m ≤ n. Then (E1, A�

t1 ) ∼= (E2, B�
t2 ),

if and only if t1 = t2.

Proof. Let A = (aij)
n
i,j=1 and B = (bij)

n
i,j=1 be the structure matrices of E1 and E2, respec-

tively, then (E1, A1) ∼= (E2, A2), if and only if

aij

alm
=

bij

blm
, 1 ≤ i < j ≤ n, 1 ≤ l < m ≤ n.

Assume that

aij

alm
=

bij

blm
= 1, for all 1 ≤ i < j ≤ n, 1 ≤ l < m ≤ n,

then ( aij

alm

)t1

=

( bij

blm

)t2

= 1.

for any t1, t2. Next, let
aij
alm

=
bij
blm
6= 1, for some 1 ≤ i 6= j ≤ n, 1 ≤ l 6= m ≤ n. Then

( aij

alm

)t1

=

( bij

blm

)t2

if and only if t1 = t2.

Remark 6. From above lemma, we emphasize the following points:

1. If dim(E1) = 2, then (E1, A�
t1 ) and (E2, B�

t2 ) are isomorphic for any t1, t2.

2. If dim(E1) ≥ 3 with
aij
alm

=
bij
blm
6= 1, for some 1 ≤ i 6= j ≤ n, 1 ≤ l 6= m ≤ n, and if

t1 6= t2, then(E1, A�
t1 ) and (E2, B�

t2 ) are not isomorphic.

Now, let us consider P(A�
t
), which is defined by

P(A�
t
) =

 at
ij

n
∑

k=1
at

ik

.

Let us denote

fi(t) = ln

 xt
i

n
∑

k=1
xt

k

.
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Then one has

f ′i (t) =

n
∑

k 6=i
xt

k ln
(

xi
xk

)
n
∑

k=1
xt

k

(14)

f ′′i (t) = −

n
∑

k 6=m
xt

kxt
m

(
ln
(

xk
xm

))2

(
n
∑

l=1
xt

l

)2 . (15)

Let

y :=
n

∑
j=1

f j(t) =
n

∑
j=1

ln

 at
1j

n
∑

j=1
at

1j

.

Theorem 4. The entropy of (13) is related to the following first-order differential linear equation:

ty′ − y = H(A�
t
).

Proof. Let us calculate the entropy of (13). Due to the symmetry of A�
t
, it is enough to

find the value H(A�
t
) for the first row, the rest will process in the same manner. Hence,

the value of H(A�
t
) at i will be denoted by H(A�

t,[i]
), where

H(A�
t
) =

n

∑
i=1

H(A�
t,[i]
)

−H(A�
t,[1]

) =
at

12
n
∑

j=1
at

1j

ln

 at
12

n
∑

j=1
at

1j

+
at

13
n
∑

j=1
at

1j

ln

 at
13

n
∑

j=1
at

1j



+ . . . +
at

1n
n
∑

j=1
at

1j

ln

 at
1n

n
∑

j=1
at

1j



=
at

12 + (at
13 + . . . + at

1n)− (at
13 + . . . + at

1n)
n
∑

j=1
at

1j

ln

 at
12

n
∑

j=1
at

1j



+
at

13
n
∑

j=1
at

1j

ln

 at
13

n
∑

j=1
at

1j

+ . . . +
at

1n
n
∑

j=1
at

1j

ln

 at
1n

n
∑

j=1
at

1j

.

The last equality can be rewritten as

−H(A�
t,[1]

) = ln

 at
12

n
∑

j=1
at

1j

+ t

 at
13

n
∑

j=1
at

1j

ln
(

a13

a12

)
+ . . . +

at
1n

n
∑

j=1
at

1j

ln
(

a1n
a12

). (16)
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Now, let

f1(t) = ln

 at
12

n
∑

j=1
at

1j

,

then, from (14) we have

f ′1(t) =
at

13
n
∑

j=1
at

1j

ln
(

a12

a13

)
+ . . . +

at
1n

n
∑

j=1
at

1j

ln
(

a12

a1n

)
.

Thus, Equation (16) can be rewritten as follows:

−H(A�
t,[1]

) = f1(t)− t f ′1(t). (17)

Therefore,

H(A�
t
) =

n

∑
i=1

H(A�
t,[i]
) = t( f ′1(t) + f ′2(t) + . . . + f ′n(t))− ( f1(t) + f2(t) + . . . + fn(t)).

The last expression leads to the required assertion. This completes the proof.

Let us denote with Ki the set of all maximum entries of the row Ri := (ai1, ai2, . . . , ain).
In what follows, we assume that |Ki| = mi, 1 ≤ mi ≤ n− 1.

Theorem 5. Let E be a non-negative symmetric S-evolution algebra with the structural matrix
A = (aij)1≤i,j≤n with attached graphs; it is complete. The following statements hold true:

(i) H(A�t) is non-increasing, when n ≥ 3;

(ii) lim
t→∞

H(A�t) =
n
∑

i=1
ln(mi);

(iii)
n
∑

i=1
ln(mi) ≤ H(A�t) ≤ n ln(n− 1).

Proof. (i). From Theorem 4, we infer that H(A�t) = ty′ − y where y = ∑n
i=1 fi(t) and

fi(t) = ln
(

xt
i

∑n
k=1 xt

k

)
. So, the first derivative of H(A�t) is given by H′(A�t) = ty′′ =

t ∑n
i=1 f ′′i (t). Next, computing the second derivative of fi(t) we have

f ′′i (t) = −

n
∑

k 6=m, k 6=i, m 6=i
(xkxm)

t
(

ln
(

xk
xm

))2

(
n
∑

l=1
xt

l

)2 .

Clearly, from the last equation, we find f ′′i (t) < 0, 1 ≤ i ≤ n, then y′′ < 0. As t > 0,
then H′(A�t) = ty′′ < 0. Hence, H(A�t) is decreasing. This completes the proof of (i).

Now consider (ii). For the sake of simplicity of calculations, we may assume that
P(A�t) =

⋃n
i=1 A[i], where A[i] represent the ith row of P(A�t).

lim
t→∞

H(A�t) = lim
t→∞

n

∑
i=1

H(A[i]).
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where

H(A[i]) =
n

∑
k 6=i

at
k

n
∑

j=1
at

j

ln


n
∑

j=1
at

j

at
k

.

lim
t→∞

H(A[i]) = lim
t→∞ ∑

m∈Ki

 at
m

n
∑

j=1
at

j

ln


n
∑

j=1
at

j

at
m


+ lim

t→∞ ∑
k/∈Ki

 at
k

n
∑

j=1
at

j

ln


n
∑

j=1
at

j

at
k


.

Simple calculations yields that

lim
t→∞ ∑

k/∈Ki

 at
k

n
∑

j=1
at

j

ln


n
∑

j=1
at

j

at
k


 = 0.

Since |Ki| = mi, then

lim
t→∞ ∑

m∈Ki

 at
m

n
∑

j=1
at

j

ln


n
∑

j=1
at

j

at
m


 = mi

1
mi

ln(mi) = ln(mi).

Therefore, lim
t→∞

H(A�t) =
n
∑

i=1
ln(mi). This completes proof (ii).

From the (ii), the maximum value of H(A�t) occurs at t = 0. Putting t = 0 in
the expression

H(A[i]) =
n

∑
k 6=i

at
k

n
∑

j=1
at

j

ln

 at
k

n
∑

j=1
at

j

,

we get H(A[i]) = (n− 1)
(

1
n−1 ln

(
1

n−1

))
= ln(n− 1). But H(A�t) =

⋃n
i=1 H(A[i]). This

implies that the maximum value of H(A�t) = n ln(n − 1). On the other hand, from (i)

and (ii), we obtain that the minimum value of H(A�t) =
n
∑

i=1
ln(mi). Hence,

n
∑

i=1
ln(mi) ≤

H(A�t) ≤ n ln(n− 1) which yields (iii).

Corollary 2. If |Ki| = 1, then the following statements hold true:

1. lim
t→∞

H(A�t) = 0.

2. 0 ≤ H(A�t) ≤ n ln(n− 1).

Remark 7. From Theorem 5, we emphasize the following points:

1. In Theorem 5 (i), if n = 2, then H(A�t) is constant.
2. In Theorem 5 (i), if ak = am, for any k and m, then H(A�t) is constant. In this setting, the

entropy reaches its maximum value. Moreover, all the Markov evolution algebras are the same.
3. From Theorem 5 and Corollary 1, if the H(A�t) is decreasing, then we infer that {(E , P(A�t))}

is a non-isomorphic family of Markov evolution algebras. This kind of result allows us to
investigate further properties of the chain of evolution algebras associated with {(E , P(A�t))}.

4. All non-negative S-evolution algebras with the maximum entropy are isomorphic.
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Let us consider the following examples:

Example 2. Let E1, E2 and E3 be three dimensional S-evolution algebras with the following
structure matrices, respectively:

A =

0 2 3
2 0 5
3 5 0

, B =

0 5 6
5 0 7
6 7 0

, C =

0 4 6
4 0 10
6 10 0

.

Then, At�, Bt�, and Ct� are, respectively, given by:

At� =

 0 2t 3t

2t 0 5t

3t 5t 0

, Bt� =

 0 5t 6t

5t 0 7t

6t 7t 0

, Ct� =

 0 4t 6t

4t 0 10t

6t 10t 0

.

Then, the corresponding Markov evolution algebras have the following structure matrices:

P(At�) =

 0 2t

2t+3t
3t

2t+3t

2t

2t+5t 0 5t

2t+5t

3t

3t+5t
5t

3t+5t 0

, P(Bt�) =

 0 5t

6t+5t
6t

6t+5t

5t

5t+7t 0 7t

5t+7t

6t

6t+7t
7t

6t+7t 0


One can see that P(At�) = P(Ct�).
Then,

H(At�) = t

2t log
(

3
2

)
2t + 3t +

2t log
(

5
2

)
2t + 5t +

3t log
(

5
3

)
3t + 5t


+ log

(
2t + 3t

3t

)
+ log

(
2t + 5t

5t

)
+ log

(
3t + 5t

5t

)

H(Bt�) = t

5t log
(

6
5

)
6t + 5t +

5t log
(

7
5

)
5t + 7t +

6t log
(

7
6

)
6t + 7t


+ log

(
6t + 5t

6t

)
+ log

(
5t + 7t

7t

)
+ log

(
6t + 7t

7t

)
Figure 1 shows the graphs of H(At�), H(Bt�), and H(Ct�), and, since E1

∼= E3 and E2 � E1,
one can see that the graphs of H(At�) and H(Ct�) are identical, whereas the graph of H(Bt�)
is different.

The following example is related to (4) of remark (18).

Example 3. Let E1, E2 be three dimensional S-evolution algebras with the following structure
matrices, respectively:

A =

0 1 1
1 0 1
1 1 0

, B =

0 2 2
2 0 2
2 2 0

.

Then, At� and Bt� are, respectively, given by:

At� =

0 1 1
1 0 1
1 1 0

, Bt� =

 0 2t 2t

2t 0 2t

2t 2t 0

.
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Then, the corresponding Markov evolution algebras have the following structure matrices:

P(At�) =

0 1
2

1
2

1
2 0 1

2
1
2

1
2 0

, P(Bt�) =

0 1
2

1
2

1
2 0 1

2
1
2

1
2 0


One can see that P(At�) = P(Bt�).
Then,

H(At�) = H(Bt�) = 3 ln 2.

Since P(At�) and P(Bt�) reach the maximum entropy, E1 ∼= E2.

Figure 1. Graph of H(At�), H(Bt�).

4. Relative Entropy

Suppose that we have two sets of discrete events, xi and yj, with the corresponding
probability distributions, {p(xi)} and {p(yj)}. The relative entropy between these two
distributions is defined by

D(p(xi) || p(yi)) := ∑
i

p(xi) ln
(

p(xi)

p(yi)

)
.

This function is a measure of the ‘distance’ between {p(xi)} and {p(yj)}, even though
it is not metric space, since the symmetric axiom in general is not satisfied D(p(x) || p(y)) 6=
D(p(y) || p(x)).

Let E1, E2 be non-negative symmetric S-evolution algebras with matrix of structural
matrices A = (aij) and B = (bij). Let P(A) = (tij) and P(B) = (sij) be the corresponding
stochastic matrices (see (5)). We define the relative entropy of A and B as follows:

D(A || B) :=
n

∑
i,j=1

ti,j ln

(
tij

sij

)
. (18)
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Theorem 6. Let E1, E2 be non-negative symmetric S-evolution algebras with structural matrices
A = (aij)1≤i,j≤n and B = (bij)1≤i,j≤n, respectively. Assume that their attached graphs are
complete. If E1

∼= E2, then D(A1
t�||A2

t�) = D(A2
t�||A1

t�) = 0, for any t > 0.

Proof. One can see that

P(A1
t�) =

(
at

ij

∑n
j=1 at

ij

)
1≤i,j≤n

, P(A2
t�) =

(
bt

ij

∑n
j=1 bt

ij

)
1≤i,j≤n

.

if we write P(A1
t�) as the row vectors P(A1

t�) =
[

a(i)
]

1≤i≤n
and P(A2

t�) =
[
b(i)
]

1≤i≤n
.

Now, we are going to compute D(a(i)||b(i)). For a fixed i, one has

D(a(i)||b(i)) =
n

∑
k=1

 at
ik

n
∑

j=1
at

ij

ln


(

aik
bik

)t


n
∑

j=1
bt

ij

n
∑

j=1
at

ij



. (19)

If k = n, then

at
in

n
∑

j=1
at

ij

= 1−
n−1

∑
m=1

 at
im

n
∑

j=1
at

ij

.

Substituting the last expression into (19), we obtain

D(a(i)||b(i)) =
n−1

∑
k=1

 at
ik

n
∑

j=1
at

ij

ln


(

aik
bik

)t


n
∑

j=1
bt

ij

n
∑

j=1
at

ij



+

1−
n−1

∑
m=1

 at
im

n
∑

j=1
at

ij



ln


(

ain
bin

)t


n
∑

j=1
bt

ij

n
∑

j=1
at

ij



. (20)

The last expression can be rewritten as follows:

D(a(i)||b(i)) =
n−1

∑
k=1

 at
ik

n
∑

j=1
at

ij

ln

((
aik
bik

)t( bin
ain

)t
)+

ln


(

ain
bin

)t( bin
ain

)t


n
∑

j=1

bt
ij

bt
in

n
∑

j=1

at
ij

at
in


. (21)

Since E1
∼= E2, we have

(
aik
bik

)t
=
(

bin
ain

)t
and

n
∑

j=1

bt
ij

bt
in

=
n
∑

j=1

at
ij

at
in

. Hence, from (21),

we obtain

D(a(i)||b(i)) =
n−1

∑
k=1

 at
ik

n
∑

j=1
at

ij

log(1)

+ log(1) = 0. (22)
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Due to the arbitrariness of i, we arrive at D(a(i)||b(i)) = 0 for any i. This completes
the proof.

5. Conclusions

In this paper, we introduced an entropy of Markov evolution algebras, and treated the
isomorphism of the corresponding S-evolution algebras. It turns out that the considered
entropy is a semi-invariant of non-negative symmetric evolution algebras. This work opens
new insight to the isomorphism problem through the entropy theory. Moreover, we have
pointed out that entropy can be investigated by means of quantum channels. Furthermore,
a family of Markov evolution algebras is defined through the Hadamard product of the
structural matrices of non-negative real S-evolution algebras, and their isomorphism is
studied through entropy. The isomorphism of any algebra is considered a crucial task. So,
it is necessary to find a shortcut way that is effective and accurate to study such a problem.
This paper treats this problem by using the entropy value in the class of evolution algebras.
However, this property is not valid for general evolution algebras, as we have shown in
Example 1. Therefore, for other types of algebras, it is better to find other kinds of entropies.
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7. Tian, J.P.; Vojtĕchovskỳ, P. Mathematical concepts of evolution algebras in non-mendelian genetics. Quasigroups Relat. Syst. 2006,

14, 111–122.
8. Becerra, J.; Beltrán, M.; Velasco, M.V. Pulse Processes in Networks and Evolution Algebras. Mathematics 2020, 8, 387. [CrossRef]
9. Bustamante, M.D.; Mellon, P.; Velasco, M.V. Determining when an algebra is an evolution algebra. Mathematics 2020, 8, 1349.

[CrossRef]
10. Cabrera Casado, Y.; Siles Molina, M.; Velasco, M.V. Evolution algebras of arbitrary dimension and their decompositions. Linear

Algebra Appl. 2016, 495, 122–162. [CrossRef]
11. Ceballos, M.; Nunez, J.; Tenorio, A.F. Finite dimensional evolution algebras and (pseudo)digraphs. Math. Methods Appl. Sci. 2022,

45, 2424–2442. [CrossRef]
12. Camacho, L.M.; Gomes, J.R.; Omirov, B.A.; Turdibaev, R.M. The derivations of some evolution algebras. Linear Multilinear Algebra

2013, 61, 309–322. [CrossRef]
13. Celorrio, M.E.; Velasco, M.V. Classifying evolution algebras of dimensions two and three. Mathematics 2019, 7, 1236. [CrossRef]
14. Casas, J.M.; Ladra, M.; Omirov, B.A.; Rozikov, U.A. On evolution algebras. Algebra Colloq. 2014, 21, 331–342. [CrossRef]
15. Mukhamedov, F.; Khakimov, O.; Omirov, B.; Qaralleh, I. Derivations and automorphisms of nilpotent evolution algebras with

maximal nilindex. J. Algebra Appl. 2019, 18, 1950233. [CrossRef]
16. Mukhamedov, F.; Khakimov, O.; Qaralleh, I. Classification of nilpotent evolution algebras and extensions of their derivations.

Commun. Algebra. 2020, 48, 4155–4169. [CrossRef]

http://doi.org/10.1017/S0370164600012323
http://dx.doi.org/10.1090/S0273-0979-97-00712-X
http://dx.doi.org/10.3934/mbe.2004.1.243
http://www.ncbi.nlm.nih.gov/pubmed/20369970
http://dx.doi.org/10.3390/math8030387
http://dx.doi.org/10.3390/math8081349
http://dx.doi.org/10.1016/j.laa.2016.01.007
http://dx.doi.org/10.1002/mma.6632
http://dx.doi.org/10.1080/03081087.2012.678342
http://dx.doi.org/10.3390/math7121236
http://dx.doi.org/10.1142/S1005386714000285
http://dx.doi.org/10.1142/S0219498819502335
http://dx.doi.org/10.1080/00927872.2020.1757688


Entropy 2022, 24, 595 15 of 15

17. Ceballosa, M.; Falcon, R.M.; Nunez-Valdes, J.; Tenorio, A.F. A historical perspective of Tian’s evolution algebras. Expo. Math.
2021, in Press. [CrossRef]

18. Qaralleh, I.; Mukhamedov, F. Volterra evolution algebras and their graphs. Linear Multilinear Algebra 2021, 69, 2228–2244.
[CrossRef]

19. Rozikov, U.A.; Velasco, M.V. Discrete-time dynamical system and an evolution algebra of mosquito population. J. Math. Biol.
2019, 78, 1225–1244. [CrossRef] [PubMed]

20. Cadavid, P.; Rodino Montoya, M.L.; Rodriguez, P.M. The connection between evolution algebras, random walks and graphs.
J. Algebra Appl. 2020, 19, 2050023. [CrossRef]

21. Falcon, O.J.; Falcon, R.M.; Nunez, J. Classification of asexual diploid organisms by means of strongly isotopic evolution algebras
defined over any field. J. Algebra. 2017, 472, 573–593. [CrossRef]

22. Dzhumadil’daev, A.; Omirov, B.A.; Rozikov, U.A. Constrained evolution algebras and dynamical systems of a bisexual population.
Linear Algebra Appl. 2016, 496, 351–380. [CrossRef]

23. Elduque, A.; Labra, A. Evolution algebras and graphs. J. Algebra Appl. 2015, 14, 1550103. [CrossRef]
24. Omirov, B.; Rozikov, U.; Velasco, M.V. A class of nilpotent evolution algebras. Commun. Algebra 2019, 47, 1556–1567. [CrossRef]
25. Paniello, I. Markov evolution algebras. Linear Multilinear Algebra 2021, 1–21. doi: 10.1080/03081087.2021.1893636. [CrossRef]
26. Casas, J.M.; Ladra, M.; Rozikov, U.A. A chain of evolution algebras. Linear Algebra Its Appl. 2011, 435, 852–870. [CrossRef]
27. Mukhamedov, F.; Qaralleh, I. On S-Evolution Algebras and Their Enveloping Algebras. Mathematics 2021, 9, 1195. [CrossRef]
28. Leinster, T. Entropy and Diversity: The Axiomatic Approach; Cambridge University Press: Cambridge, UK, 2021.
29. Bradley, T.-D. Entropy as a topological operad derivation. Entropy 2021, 23, 1195. [CrossRef]
30. Reis, T.; Cadavid, P. Derivations of evolution algebras associated to graphs over a field of any characteristic. Linear Multilinear

Algebra 2020, 12, 1–14. [CrossRef]
31. Jamiolkowski, A. Linear transformations which preserve trace and positive semidefiniteness of operators. Rep. Math. Phys. 1972,

3, 275–278. [CrossRef]
32. Mukhamedov, F.; Watanabe, N. On S-mixing entropy of quantum channels. Quantum Inf. Process 2018, 17, 148–168. [CrossRef]
33. Bengstoon, I.; Zyczkowski, K. Geometry of Quantum States: An Introduction to Quantum Entanglment; Cambridge University Press:

Cambridge, UK, 2006.

http://dx.doi.org/10.1016/j.exmath.2021.11.004.
http://dx.doi.org/10.1080/03081087.2019.1664387
http://dx.doi.org/10.1007/s00285-018-1307-x
http://www.ncbi.nlm.nih.gov/pubmed/30426200
http://dx.doi.org/10.1142/S0219498820500231
http://dx.doi.org/10.1016/j.jalgebra.2016.11.018
http://dx.doi.org/10.1016/j.laa.2016.01.048
http://dx.doi.org/10.1142/S0219498815501030
http://dx.doi.org/10.1080/00927872.2018.1508584
http://dx.doi.org/10.1080/03081087.2021.1893636
http://dx.doi.org/10.1016/j.laa.2011.02.012
http://dx.doi.org/10.3390/math9111195
http://dx.doi.org/10.3390/e23091195
http://dx.doi.org/10.1080/03081087.2020.1818673
http://dx.doi.org/10.1016/0034-4877(72)90011-0
http://dx.doi.org/10.1007/s11128-018-1916-8

	Introduction
	Preliminaries
	S-Evolution Algebras and Corresponding Markov Evolution Algebras
	Relative Entropy
	Conclusions
	References

