
����������
�������

Citation: Kato, K. Non-Orthogonality

Measure for a Collection of Pure

Quantum States. Entropy 2022, 24,

581. https://doi.org/

10.3390/e24050581

Academic Editor: Giuseppe Vallone

Received: 3 March 2022

Accepted: 15 April 2022

Published: 21 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Non-Orthogonality Measure for a Collection of Pure
Quantum States

Kentaro Kato

Quantum ICT Research Institute, Tamagawa University, 6-1-1 Tamagawagakuen,
Machida 194-8610, Tokyo, Japan; kkatop@lab.tamagawa.ac.jp

Abstract: Modern optical communication technology can realize a large-scale multilevel (or M-ary)
optical signal. Investigating the quantum mechanical nature of such a large-scale M-ary optical signal
is essential for a unified understanding of quantum information science and optical communication
technology. This article focuses on the quantum-mechanical non-orthogonality for a collection of pure
quantum states and proposes a non-orthogonality index based on the least squares error criterion
in quantum detection theory. First, we define the index for linearly independent signals, and the
proposed index is analyzed through numerical simulations. Next, the index is applied to a highly
large-scale M-ary phase-shift keying (PSK) coherent state signal. Furthermore, the index is compared
with the capacity of the pure state channel with the PSK signal. As a result, it is shown that a
highly large-scale M-ary PSK coherent state signal exhibits a quantum nature even when the signal
transmission power is very high. Thus, the theoretical characterization of a highly large-scale M-ary
coherent state signal based on the proposed index will be the first step toward a better understanding
of cutting-edge optical communication technologies such as the quantum stream cipher Y00.

Keywords: quantum communications; quantum cryptography; quantum states; non-orthogonality;
least squares error; M-ary optical signal

1. Introduction

In 1967–1968, Helstrom achieved a breakthrough in optical communication theory by
providing a new framework with a complete quantum mechanical description of optical
signals and receivers [1–3]. In addition, he successfully demonstrated the quantum limit of
detection error for binary optical signals based on the Bayes and Neyman–Pearson criteria
developed in the classical detection theory (e.g., [4,5]). After Helstrom’s work, Yuen et
al. investigated the conditions for the optimal quantum detection of general quantum
states based on a linear programming method [6,7]. Furthermore, Holevo investigated
the existence problem for optimal quantum detection and demonstrated the necessary
and sufficient conditions for the optimal quantum detection of general quantum states [8].
These pioneering scientists opened up the field of quantum detection theory. Quantum
detection theory has since been extensively developed and is a key theory for unifying
quantum information science and optical communication technology.

In quantum detection theory, optical signals are mathematically expressed as quantum
states of light. For pure states, error-free quantum detection is only allowed when the states
are orthogonal to each other. This is a significant result of quantum detection theory. A
similar result is observed from the no-cloning theorem [9–11]. The no-cloning theorem
claims that perfect cloning is possible within a collection of quantum states if and only if
the quantum states are orthogonal.

Recent development in experimental studies on the quantum stream cipher Y00
demonstrates that highly large-scale multilevel (or M-ary [12–14]) optical signals can be
realized using advanced technologies in optical communications [15,16]. Therefore, the the-
oretical characterization of a large-scale collection of coherent states is essential for a unified
understanding of quantum information science and optical communication technology.
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Coherent states are non-orthogonal, and a collection of coherent states forms a linearly
independent set. Hence, the case of linearly independent pure states is of particular interest.
A collection of pure states can be almost orthogonal, moderately non-orthogonal, or almost
identical states. Therefore, a quantitative measure of the degree of non-orthogonality of
each collection is needed for a detailed analysis. In the case of binary pure states, the
degree of non-orthogonality is usually measured through the modulus of the inner product
between the two states. However, no method to quantify the degree of non-orthogonality
of a collection of more than three quantum states has been developed. Therefore, this
study aims to develop a quantitative measure for the non-orthogonality of a collection of
many states.

For this aim, we propose an index to evaluate the non-orthogonality of a collection
of linearly independent pure states based on the least squares error (LSE) criterion in
quantum detection theory. We summarize the LSE criterion in Section 2 and define a
non-orthogonality index in Section 3. The proposed index is analyzed through numerical
simulations with randomly generated vectors in Section 4. Then, the index is applied to the
M-ary phase-shift keying (PSK) coherent state signal in Section 5. Further, the capacity of a
pure state channel with the PSK signal is analyzed to understand the operational meaning
of the index in the same section. Finally, we give conclusions in Section 6.

2. LSE Criterion in Quantum Detection Theory

Let S = {|ψm〉 : 1 ≤ m ≤ M} be a collection of M linearly independent pure quantum
states, where each state is normalized, ‖ψm‖ = 1. Then, the squared error E(S, β) for S by
adapting an orthonormal basis β = {|vm〉 : 1 ≤ m ≤ M} in vector space V spanned by S as
a measurement basis is defined as follows.

E(S, β) =
1
M

M

∑
m=1
〈em|em〉, (1)

where |em〉 = |ψm〉 − |vm〉. This expression can be arranged into the following form:

E(S, β) =
1
M

M

∑
m=1
‖em‖2 =

1
M

M

∑
m=1
‖ψm − vm‖2. (2)

Then, the least squares error (LSE) is defined as

E◦(S) = min
β

E(S, β) = E(S, β◦). (3)

A constructive manner can find the optimal basis β◦ from past studies as follows.

Theorem 1 ([17,18]). For S = {|ψm〉 : 1 ≤ m ≤ M} of linearly independent pure quantum
states, the optimal basis β◦ = {|v◦m〉 : 1 ≤ m ≤ M} for the LSE is given by

|v◦m〉 = Ĝ−1/2|ψm〉, with Ĝ =
M

∑
m=1
|ψm〉〈ψm|. (4)

This basis β◦ is known as the square-root measurement [19–22]. Then, the LSE can be written as

E◦(S) = E(S, β◦) =
1
M

M

∑
m=1

(
1−

√
λm

)2
, (5)
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where λm is the eigenvalue of the Gram matrix

G =


〈ψ1|ψ1〉 〈ψ1|ψ2〉 · · · 〈ψ1|ψM〉
〈ψ2|ψ1〉 〈ψ2|ψ2〉 · · · 〈ψ2|ψM〉

...
...

. . .
...

〈ψM|ψ1〉 〈ψM|ψ2〉 · · · 〈ψM|ψM〉

. (6)

3. Non-Orthogonality Measure Based on LSE
3.1. Maximum and Minimum of LSE

Suppose that S consists of orthonormal vectors. Hence, G of S is the identity matrix
of size M. Moreover, the optimal basis β◦ is identical to S. Therefore, E◦(S) = 0. From
definition (1), E(S, β) ≥ 0. Thus, the minimum value of E◦(S) is zero.

E◦(S) is the solution to the minimization problem of E(S, β) with respect to β for given
S. However, the maximum of E◦(S) for S has not been discussed. As mentioned above,
the minimum value is attained when S consists of orthogonal vectors. Hence, we suppose
that the other extreme case, where S consists of almost identical vectors, will provide the
maximum value. Therefore, we assume that each vector in S is close to the barycenter
|barycenter〉 for β◦. That is,

|ψm〉 ∼ |barycenter〉 = 1√
M

M

∑
`=1
|v◦` 〉,

and, hence, |em〉 ∼ |barycenter〉 − |v◦m〉. This implies

E◦(S) ∼ 2
(

1− 1√
M

)
.

To give a clear description, we use Equation (5). Applying a simple inequality on the
square root (∑

√
· ≥
√

∑ ·), we have

E◦(S) = 2

{
1− 1

M

M

∑
m=1

√
λm

}
≤ 2

1− 1
M

√√√√ M

∑
m=1

λm

 = 2
(

1− 1√
M

)
. (7)

Thus, 2(1− 1/
√

M) is an upper bound of E◦(S) for linearly independent S.
According to Eldar and Forney [18], the LSE for linearly dependent S is given by

E◦(S) = 2
[
1− (1/M)∑r

i=1
√

λi
]
, where r is the rank of G and λi is the nonzero eigenvalue

of G. From the convexity of the square root and the inequality used in Equation (7), we have
2(1−

√
r/M) ≤ E◦(S) ≤ 2(1− 1/

√
M) for linearly dependent S. If all the vectors in S are

identical, then r = 1 and λ1 = M. Therefore, the upper bound 2(1− 1/
√

M) can be attained
by the case that all the vectors in S are identical. Thus, the quantity 2(1− 1/

√
M) can be

regarded as the maximum of E◦(S) if the identical vector case is allowed. Furthermore, a
simple calculation derives the inequality Xr(λ1, λ2, λ3, . . . , λr) ≥ Xr−1(λ1 + λ2, λ3, . . . , λr),
where Xr(λ1, λ2, λ3, . . . , λr) = ∑r

i=1
√

λi for 2 ≤ r ≤ M. Therefore, we have

2
(

1− 1
M

Xr(λ1, λ2, λ3, . . . , λr)

)
≤ 2

(
1− 1

M
Xr−1(λ1 + λ2, λ3, . . . , λr)

)
. (8)

The orthonormal states and the identical state case attain the minimum and maximum
values of LSE, respectively. That is, the smallest rank r = 1 case gives the maximum, and
the full rank r = M case provides the minimum. The inequality above supports this fact. A
lower rank has a higher non-orthogonality and vice versa.
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3.2. A Non-Orthogonality Index of a Collection of Pure State Signals

The range of E◦(S) is given by

0 ≤ E◦(S) ≤ 2
(

1− 1√
M

)
≤ 2. (9)

Hence, we define the non-orthogonality index (NOI), which is a new measure of the
non-orthogonality of a collection of linearly independent pure states, as follows:

NOI(S) ≡ 1

2
(

1− 1/
√

M
)E◦(S), (10)

where 0 ≤ NOI(S) ≤ 1. The vectors in S are almost orthogonal to each other when NOI(S)
is approximately equal to 0. Conversely, all vectors in S are almost identical when NOI(S)
is approximately equal to 1.

4. Numerical Simulations
4.1. Binary Case

For S = {|ψ1〉, |ψ2〉},

NOI(S) =
2−

√
1− |κ| −

√
1 + |κ|

2−
√

2
, (11)

where the inner product κ = 〈ψ1|ψ2〉. NOI(S) = 0 when |ψ1〉 and |ψ2〉 are orthogonal
(κ = 0), and NOI(S) = 1 when |ψ1〉 = |ψ2〉 (κ = 1). From Equation (11), we have

|κ| = 1
2
(2− t)

√
t(4− t), t = (2−

√
2)NOI(S). (12)

The minimum average probability of the quantum detection error is given by Pe =
(1−

√
1− |κ|2)/2 [23], where we assume that the states are equiprobable. Moreover, the

capacity for a binary pure state channel, b→ |ψb〉 (b = 1, 2), is given by C = −µ+ log2 µ+−
µ− log2 µ−, where µ± = (1± |κ|)/2 [24]. Figure 1 illustrates the plot of these quantities
versus NOI(S) instead of the modulus of the inner product |κ|. The error probability Pe is
nearly proportional to NOI(S), and the capacity C monotonically decreases with respect to
NOI(S).
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Figure 1. Binary case. (left) Minimum error probability Pe vs. NOI(S). (right) Capacity C vs.
NOI(S).

4.2. Numerical Simulation I: (Condition-Free)

A simple computer simulation was performed to verify the property 0 ≤ NOI(0) ≤ 1.
In this simulation, M normalized complex vectors, |ψm〉 = |rm〉 ∈ CM, are randomly
generated, and NOI(S) is computed if S = {|ψm〉 : 1 ≤ m ≤ M} is linearly independent.
This procedure was repeated 1000 times for each M, where M = 4, 8, 16, 32, 64, 128, 256. No
exceptional values of NOI(S) were observed in this simulation.
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4.3. Numerical Simulation II: (Almost Orthogonal Case)

A simulation for the case of almost orthogonal quantum states was performed to see
how NOI(S) approaches zero.

Let β• = {|v•1〉, . . . , |v•M〉} be the standard basis for CM. For each m, a normalized
vector |rm〉 ∈ CM is randomly generated and the state vector is set to |ψ′m〉 = N (|v•m〉+
δ̃|rm〉), where N is a normalization factor and δ̃ is a small positive number. When S′ =
{|ψ′1〉, . . . , |ψ′M〉} is linearly independent, NOI(S′) and δ = max{δ1, . . . , δM} are evaluated,
where δm = ‖ψ′m − v•m‖. This procedure was repeated 200 times for each δ̃, where δ̃ was
chosen from 0.001 to 0.3 with step 0.001. Hence, the total number of trials was 60000 for
each M, where M = 8, 16, 32, 64, 128, 256.

Figure 2 illustrates the graph of NOI(S′) versus δ for each M. The overall trend
of the figures is that NOI(S′) almost depends on δ2, which reflects the definition of δm.
We observed that the variance of NOI(S′), which means the dispersion of values at each
δ, decreases and the typical value of NOI(S′) approaches zero when δ approaches zero.
Conversely, the smallest value in each δ leaves from the floor line of NOI(S) = 0 and the
variance of NOI(S′) increases when δ increases.

Comparing the figures, the variance of NOI(S′) shrinks as M increases. The transition
from NOI(S) = 0 to NOI(S) = 1 in a figure is related to the change in the rank of G.
Each graph shows only the case of linearly independent S, namely the case of r = M.
Taken together with Equation (8), one may infer that the boundary of the plotted points
means a borderline of whether the randomly generated vector set is linearly independent
or not. Based on this thought, the variance in each δ shows the existing range of linearly
independent S. Hence, we conjecture that the range of possible values of the NOI for
linearly independent sets becomes relatively smaller when M increases.
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Figure 2. NOI(S′) vs. δ for almost orthogonal cases.

4.4. Numerical Simulation III: (Almost Identical Case)

A simulation for the case that the quantum states are almost identical was performed
to see how NOI(S) approaches one.

Let |c〉 = (1/
√

M, . . . , 1/
√

M) ∈ CM. For each m, a normalized vector |rm〉 ∈ CM

is randomly generated and the state vector is set to |ψ′m〉 = N (|c〉+ ε̃|rm〉), where N is



Entropy 2022, 24, 581 6 of 10

a normalization factor and ε̃ is a small positive number. When S′ = {|ψ′1〉, . . . , |ψ′M〉}
is linearly independent, NOI(S′) and ε = max{ε1, . . . , εM} are evaluated, where εm =
‖ψ′m − c‖. This procedure was repeated 200 times for each ε̃, where ε̃ was chosen from
0.001 to 0.3 with step 0.001. Hence, the total number of trials was 60,000 for each M, where
M = 8, 16, 32, 64, 128, 256.

Figure 3 illustrates the graph of NOI(S′) versus ε. The overall trend of the figures
is that NOI(S′) is linear for ε. In each figure, the variance of NOI(S′) decreases, and the
typical value of NOI(S′) approaches one as ε approaches zero. Conversely, the largest
value leaves from the ceiling line of NOI(S) = 1 and the variance of NOI(S′) increases
when ε increases. Comparing the figures, the variance of NOI(S′) shrinks as M increases,
as in the almost orthogonal case.
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Figure 3. NOI(S) vs. ε for almost identical cases.

5. An Application of the Proposed Technique

Let us consider the case of an M-ary PSK coherent state signal as a practical application
of the index. As for the M-ary PSK coherent state signal, many researchers have studied
it in various ways. The performance of the optimal quantum receiver for the PSK signals
has been well studied (e.g., [25–28]). The closed-form expression of the capacity of the
pure state channel with the PSK signal was derived in Ref. [29]. The reliability function
of the pure state channel with the PSK signal at a high information rate was analyzed in
Ref. [30]. Furthermore, an experiment utilizing the 217-ary (131072-ary) optical PSK signal
was reported in Ref. [15].

An optical signal emitted from a laser can be expressed as a coherent state of light.
The coherent state with complex amplitude α [31] is expressed as

|α〉 = exp[−|α|
2

2
]

∞

∑
n=0

αn
√

n!
|n〉, (13)

where |n〉 is the number state. The average number of signal photons in the state |α〉 is
given by 〈n〉 = |α|2. In a communication scenario, the complex amplitude of a coherent
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state signal is determined based on the signal modulation format. For an M-ary PSK
coherent state signal, S is given by

S =

{
|α0 exp[

2mπ

M
]〉 : 0 ≤ m ≤ M− 1

}
, (14)

where  =
√
−1, and the fundamental amplitude α0 is assumed to be a positive real number.

The M-ary PSK coherent state signal is designed to be symmetric on the constellation
diagram. Hence, the average number of signal photons does not depend on the probability
distribution p = (p0, . . . , pM−1) of the signal. That is,

NS =
M−1

∑
m=0

pm

∣∣∣∣α0 exp[
2mπ

M
]

∣∣∣∣2 = α2
0. (15)

In order to compute NOI(S) of the M-ary PSK coherent state signal, we use the
eigenvalues of G constructed from S of Equation (14). In this case, the eigenvalues are
given as follows.

λm =
M

∑
`=1

A(1,`) cos
[
Θ(1,`) −

2π

M
m(`− 1)

]
, (16)

where

A(1,`) = exp

[
−2|α0|2 sin2

[ π

M
(`− 1)

]]
, (17)

Θ(1,`) = |α|2 sin
[2π

M
(`− 1)

]
. (18)

Figure 4 illustrates the graph of NOI(S) of the M-ary PSK coherent state signal versus
log2 M (the size of M in bits). Typical values of M are 24 = 16, 26 = 64, 28 = 256, 210 = 1024,
212 = 4096, 214 = 16,384, 216 = 65,536, and 217 = 131,072. In this computation, the average
number Ns of signal photons was between 10 and 1,000,000 photons. From Figure 4,
we observe that NOI(S) increases monotonically for M. This mutual relationship was
observed for all values of NS. The non-orthogonality of the states is one of the fundamental
properties of a quantum system. Therefore, Figure 4 shows that the M-ary PSK coherent
state signal exhibits a quantum nature for a significantly large number of signal photons
when the total number M of the signals is large enough.
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The capacity of the pure state channel m → |ψm〉 for the M-ary PSK coherent state
signal is analyzed to understand the operational meaning of NOI(S). From Ref. [29], the
capacity of this channel is given by

C = −
M

∑
m=1

µm log2 µm, µm =
λm

M
, (19)

where λm is given by Equation (16), because the optimal signal distribution to achieve the
capacity is a uniform distribution p = (1/M, . . . , 1/M). Normalized quantity C′, which
represents the number of Shannon bits per one binary digit of a signal, is obtained by
dividing the capacity C by log2 M. Figure 5 illustrates the graph of the normalized capacity
versus log2 M. From Figures 4 and 5, we observe that the normalized capacity is maximum
(or 1) in the region where NOI(S) is almost zero, and the capacity decreases when NOI(S)
increases. Thus, NOI(S) effectively detects the trend of the capacity.
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Figure 5. Normalized capacity C′ vs. log2 M for M-ary PSK coherent state signal.

6. Conclusions

We have proposed a novel index to measure the non-orthogonality of a collection
of linearly independent pure states based on the least squares error criterion in quantum
detection theory. We call this index the non-orthogonality index (NOI). First, the non-
orthogonality index was analyzed using numerical simulations for binary, condition-free,
almost orthogonal, and almost identical cases. The index effectively measured the non-
orthogonality of a collection of linearly independent signals from the computer simulations.
Next, the non-orthogonality index was applied to the M-ary phase-shift keying (PSK)
coherent state signal. It was shown that a highly large-scale M-ary PSK coherent state
signal exhibits high non-orthogonality when the total number of signals is sufficiently large.
Furthermore, the index was compared with the capacity of the pure state channel with the
PSK signal. Then, we observed that the proposed index effectively detects the trend of
the capacity.

In general, a quantum cryptographic system must use a quantum signal set that is
unable to distinguish the signals with small detection error or extract much information for
an eavesdropper. A simple method is to use single-photon or very weak coherent states.
However, this approach has inherent limitations in transmission speed and distance. On
the other hand, the coherent state signal having very high power can behave as an almost
non-orthogonal signal if the number of signals is sufficiently large. Thus, using a highly
large-scale multilevel coherent state signal can create an advantage for legitimate users
against the eavesdropper from quantum signal detection. Quantum stream cipher Y00 is a
protocol that uses a sufficient number of high-power coherent state signals. Therefore, we
conclude that the characterization of a highly large-scale M-ary coherent state signal based
on the non-orthogonality index provides a basis for understanding cutting-edge optical
communication technologies such as quantum stream cipher Y00.

This article discussed the non-orthogonality index in the case of linearly independent
pure state signals. Therefore, the generalization of the index remains for future work,
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which will involve a more precise analysis of linearly dependent cases and the cases of
mixed states. In addition, the application to other multilevel coherent state signals such as
quadrature amplitude modulation signals will be considered in future work.
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