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Abstract: View planning (VP) is a technique that guides the adjustment of the sensor’s postures
in multi-view perception tasks. It converts the perception process into active perception, which
improves the intelligence and reduces the resource consumption of the robot. We propose a generic
VP system for multiple kinds of visual perception. The VP system is built on the basis of the formal
description of the visual task, and the next best view is calculated by the system. When dealing with
a given visual task, we can simply update its description as the input of the VP system, and obtain
the defined best view in real time. Formal description of the perception task includes the task’s status,
the objects’ prior information library, the visual representation status and the optimization goal.
The task’s status and the visual representation status are updated when data are received at a new
view. If the task’s status has not reached its goal, candidate views are sorted based on the updated
visual representation status, and the next best view that can minimize the entropy of the model space
is chosen as the output of the VP system. Experiments of view planning for 3D recognition and
reconstruction tasks are conducted, and the result shows that our algorithm has good performance
on different tasks.

Keywords: active perception; view planning; information expression; next best view; entropy
reduction

1. Introduction

Perception is a crucial operation for robots to understand and express the surrounding
environment. It is defined as a task of collecting and processing data obtained by various
hardware sensors and generating real-time perception results, which can be divided into
two stages, sensing and comprehension. Generally, intelligent perception means perception
that employs a smart algorithm in the comprehension stage. However, we can also improve
the intelligence level of the perception task in its sensing stage. This can be achieved
in two ways. (a) Enhancing the sensor’s ability to feel the environment. For example,
Wan et al. [1] develop a bimodal artificial sensory neuron (BASE) based on ionic/electronic
hybrid neuromorphic electronics to implement visual–haptic fusion, which helps to build a
highly integrated perceptual system to access massive sensory data for improving current
cyborg technologies and artificial intelligence. (b) Automatically adjusting the parameters
of the sensing system during the sense process based on the current perception result.
This links the sensing and comprehension stages into a closed-loop system, which can
improve the system’s ability to interact with uncertain environments. This concept was
first proposed by Connolly in 1985 [2].
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Visual perception is the perception task where vision sensors such as a visible light
camera or radar are used to collect the images or point clouds of the objects. It generates
a visual representation of the environment, and finally reaches the goal of the perception
task. For example, the reconstruction task aims to create a full digital model of an object,
and the recognition task is to identify the candidate class to which the object belongs.
Since data obtained at one view are not always enough to receive the target, we need to
adjust the sensors’ postures to sense the environment at multiple views. Visual sensors
installed on the robotic platforms explore the circumstances, following the movement of
their backbones. Traditionally, the movement of the sensors is set before perception, so it is
a passive way to obtain information. We focus on improving the self-adjustment ability of
the perception system, as (b) in the previous paragraph. View planning (VP) is employed
for the multi-view tasks. It automatically adjusts the postures of sensors, to improve the
efficiency of perception based on the prior information and the observed data [3]. We call
the perception task with VP active perception.

For an active perception task, the next best view (NBV) is determined according to
several factors of the VP system, including the goal of the perception task, the capabilities
of the sensor system, the perceived objects, the optimization goal of view planning and
the status of the perception result. The existing literature is designed for a particular task.
For example, Chen et al. [4] proposed a VP algorithm for 3D reconstruction. They used
the ductility of the smooth surface of the object to predict the curve of an unknown area,
and then calculated the NBV by the predicted curve. Wu et al. [5] provided 3D ShapeNets to
generate the NBV for recognition. In these studies, the factors are fixed in the VP algorithm,
which prevents the algorithm from being extended to other perception tasks.

With the existing algorithms, when we deal with a new perception task, the VP system
needs to be redesigned, and there is a big price to pay for doing this. To deal with this
problem, we are committed to building a framework of a VP system that can handle
different active visual perception tasks. The structure of the generic VP system is shown in
Figure 1. When faced with a specific perception task, it only needs to formally describe the
task as input to the view planning module according to the system requirements. Part of the
status of the system will be set before a perception task, and others will be autonomously
updated with the received data during the iterate perception. The NBV is planned by the
view planning module based on the formal description of the task. The proposed system
can improve the efficiency and reduce the energy consumption of robots during the visual
perception process. Our contributions are listed as follows:

1. A generic view planning system is proposed. It is suitable for multiple visual tasks
with a single object in the scene.

2. We define a series of statuses that can express the key elements of different perception
tasks, and describe these statuses in a formal way.

3. Statuses are initialized before a given perception task, and they are updated to rep-
resent the real-time state of the VP system. The NBV is chosen based on the current
state of the system.

Experiments on reconstruction tasks and recognition tasks were executed, which
proved the effectiveness of our algorithm for different tasks. The rest of this paper is
organized as follows: the second section reviews the literature. The third section introduces
our generic VP algorithm. It explains the formal description of tasks, the update method of
each status and the NBV calculation method. Experiments are represented in the fourth
section with the discussion. Conclusions are given in the last section.
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Figure 1. Structure of the generic view planning system. Ability of sensors, objects’ prior knowledge,
optimization goal of view planning and the expected status of a perception task are set before the
perception process. With data receiving at the calculated views, real-time task status and the status of
perception result are updated. View planning is based on these formal descriptions and the NBV is
determined for the next iteration of data collection.

2. Related Work

To our knowledge, there is no framework that is specifically designed for view plan-
ning in different kinds of visual perception tasks. Active reconstruction and active recogni-
tion are the two scenarios that have received the most attention with the view planning
process. Kriegel et al. [6] proposed a VP method for active scene exploration. It improves the
speed of reconstruction and recognition. However, this VP method actually acts on active
reconstruction. When it is applied independently to 3D recognition tasks, the improvement
in the efficiency could not fulfil expectations.

The optimization goal of VP is to cover more surface with fewer views in reconstruc-
tion tasks. As the global optimization is an NP-hard problem, the greedy algorithm is
usually employed instead of the global optimization. The view that can minimize the
spatial uncertainty is selected as the NBV. When the objects’ models are known before
reconstruction, the NBV is calculated based on the known surface information. VP methods
that deal with the above reconstruction tasks are called model-based methods [7,8]. Scott
W R. [9] used the greedy method to obtain the NBV, which can be used to explore more
of the unknown surface of the object. Chen et al. [10] proposed a view map generation
method based on a genetic algorithm and the min–max criterion, which achieves the goal
of covering the target surface with a smaller view set, and they traversed the view set
with the shortest path by Christopher’s algorithm. Kaba et al. [11] solved the model-based
reconstruction problem by a non-greedy algorithm. The parameters in the evaluation func-
tion are modified at different perception statuses, and they are learned by a reinforcement
learning method.

Since the information is complete enough for model-based methods, which results in
a small research space, VP methods used for non-model reconstruction have received more
attention. Surface-based methods analyze the surface trend to make sure that the entropy
of the unknown model space will decrease the most after the detection at the next view.
Chen et al. [4] utilized a point cloud to represent the model of the object. The boundary
points are ranked by an evaluation function and the search direction of the top-ranked point
is calculated to find the NBV. However, since only the smooth surface has a continuation
trend, the surface-based methods are only suitable for the objects without rapid changes in
curvature. Search-based methods make use of ray casting to calculate the information gain
of each view [12–15]. They evaluate each candidate view by accumulating the gain of voxels
that were passed through by rays of the camera. In these papers, voxel gain is defined in
different ways. In general, the authors assign higher gains to unknown voxels that are
close to the measured surface, because they consider that there is a higher probability of the
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presence of the surface at these voxels’ locations, making it easier to reduce the uncertainty
of the unknown space. This assumption is based on general knowledge of all objects,
but for some objects, they have special prior knowledge. The rough shape of an object can
be predicted by the use of its partial prior information, which provides more reliability for
NBV determination. To make full use of the prior information, semi-model methods are
proposed by Wei et al. [16] and Kong et al. [17]. They describe the partial prior information
of the object, and plan the NBV by invoking the formal prior information.

For active recognition tasks, the VP method is used to find the view that can cover
the features that minimize the ambiguity of the object. As concluded in some reviews for
the active recognition methods [18,19], the information gain-based, aspect graph-based
and the machine learning methods are the mainstream methods to deal with the VP issues
in recognition tasks. The information gain-based methods generate a set of hypotheses
based on the current data, and choose the view that can maximally disambiguate the
initial set of hypotheses. For example, Potthast et al. [20] choose the candidate view that
may receive more features as the NBV. The relationship between candidate views and
their reachable features must be known for this kind of method. The aspect graph-based
methods build an aspect graph of the candidate geometries, and they use the reasoning
method to uniquely determine the object’s type. Roy et al. [21] established an aspect graph
as the knowledge system and inferred the NBV with a search tree. Dickinson et al. [22]
proposed an aspect hierarchy to express the candidate geometries, and they chose the NBV
based on the Bayesian network. In the situation where the scale of aspects or features is too
large to be built as a search tree, learning methods are proposed to calculate the NBV. Wu
et al. [5] represent a convolutional deep belief network to represent geometric 3D shapes
as probability distributions of binary variables on a 3D voxel grid. When the recovery
result is uncertain, they generate the observable images of the candidate views, and the
distinctive view is chosen as the NBV. Johns et al. [23] decompose an image sequence into a
set of image pairs, and select the view that achieves the maximum classification accuracy
associated with the current view as the NBV. Sun et al. [24] employed a reinforcement
learning method to obtain a globally optimal view.

As we focus on regular objects, whose prior information can be expressed formally,
the deep learning methods are too expensive for us on large datasets. For the purpose of
building a generic VP system for different kinds of tasks, the formal description method
in our approach draws inspiration from the semi-model methods for reconstruction [17],
which describe the structures of objects. It also draws on the active recognition method
based on an aspect graph [21], which describes the status of features used to distinguish
different categories of objects.

3. Method

The prior information of a task contains the ability of the sensor, which describes
the sensor’s capabilities to sense the environment. It also contains some deterministic
information about the object, which can be used to limit the category and shape of the
incomplete object. We describe the prior information of objects from the feature level. Each
feature contains several local surfaces with the same kinds of characteristics. The presence
of features is used to distinguish candidate classes, and the attributes of features determine
the rough shape of an instance. As is shown in Figure 2, f2 only exists in the prism and f3
only exists in the pyramid. When one of them is detected, we can determine whether the
object is a prism or pyramid. The attributes of f1 are vertices arranged counterclockwise.
The attributes of f2 are four vertices of a rectangle, and the edge of the rectangle begins with
a bottom edge. The attributes of f3 are three vertices of a triangle, and the first vertex is the
apex of the pyramid. If the object’s category has been determined as a pyramid, vertices of
f1 are obtained, a local surface of f3 is detected, and then the rough shape of the object can
be predicted.
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Figure 2. Features of different classes of objects. The prism has features f1 and f2, while the pyramid
has features f1 and f3. The rough shape of an instance can be defined by the parameters of its features.

The task’s completion status is defined, which reflects the progress of an ongoing
perception task. The expected completion status is given for a specific task, and the real-
time completion status is updated during the perception. When the real-time completion
status reaches the expected one, it means a termination of the VP procedure. With the
acquisition of data in the iterative perception process, the state of the perceived space will
change, which describes the data acquired during the entire perception process and is
used to calculate the NBV. We describe the perception result by the visual representation
status in two aspects. One is from the perspective of perceived space, which includes the
voxel status, feature status and the candidate class status (“candidate status” for short).
They describe the perceived space from concrete to abstract. The other one is from the
perspective of candidate views, which includes the view status. It describes the information
that can be observed from each candidate view. As a summary, the formal description
of a visual task includes the formal expression of the task’s completion status, the prior
information of the perceived object and the visual representation status.

Figure 3 illustrates the update flow chart of each state. The relevant descriptions need
to be initialized before a given perception task. During the iterative measurements, the voxel
status and feature status are renewed when fresh data are received. The candidate status
will be changed when some classes are excluded from the candidate library according
to the feature status, and the feature status is affected by the candidate status in turn.
Unknown features are predicted based on the prior information library. The voxel status is
renewed when the voxel is at the location of the predicted features. If a feature is detected
to be nonexistent based on the voxel status, the feature status and the candidate status
will be updated again. The view status is updated with the voxel status, based on the
given optimal function. The completion status is calculated with the view status and the
candidate status. The algorithm is terminated when the prospective task status is reached.
Otherwise, the NBV will be determined on the basis of the view status, and the robot will
move to the NBV for the next sense. Details of the formal description and status update of
perception tasks are introduced below.
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Figure 3. The update flow chart of each state. Boxes are basic description modules of our system and
arrows represent the data streams when a new measurement is received.

3.1. Formal Description of Tasks

The task’s completion status scmp is described in two aspects, the class confidence
status and the surface integrity status.

scmp : (sc f d, sail)

where sc f d is the class confidence state, which is utilized to indicate if the object belongs
to a certain class with an ideal probability. sail is a state that shows whether the available
surface information about the model is left.

The prior information library contains knowledge about the sensor and the object of a
task. For the description of sensors’ ability, we simply need to take the parameters of the
camera into the prior information library, such as the field of view, depth of field, etc. For the
prior information of the object, it includes the features’ existence in each candidate class,
description of these features and the positional relationship between features. The first
part is to determine which class the object belongs to; the second part is to detect the latent
features, and the last part is to infer the unknown surface of an object.

For a perception task, the candidate library is built by all geometry classes that the
object may belong to. The library Sclass is described as follows:

Sclass : (class1, . . . classm, . . . classM)

There are M classes in the library. We add all the features, which can distinguish the
candidate classes and define the rough shape of an object, into the feature set. The feature
set is noted as S f , which has I members. Each candidate class classm is defined by the
presence of features in S f .

classm : (extm
1 . . . extm

i . . . extm
I )

extm
i indicates the presence of the feature fi in classm. If the feature exists in this class,

extm
i is assigned a value of 1; otherwise, it is set to 0.

We simplify the local surfaces of features into polygons to express their rough shapes.
Prior information about features promotes the acquisition of an object’s surfaces. According
to the degree of the information’s certainty, we divide the information into three levels,
including definite information, strong information and weak information. The definite
information is actually the detection method of a feature. Strong and weak information are
prediction methods of unknown features by the positional relationships between features.
The positional relationship of two local surfaces can be defined by their common edges and
the angle between them. For two features, if only the positional relationship between them
is known, the relationship is called the weak information, while if the locations between
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the common edge and other edges in surfaces are known as well, the information is called
the strong prior information.

In order to facilitate the detection and inference of features, we unify the description
of all kinds of prior information into the same expression. Inspired by [17], we express the
prior information by rules. There are K rules in the rule set, each of which is represented as:

rulek : {Sant
k → f cons

k , proo fk(), calk(), predk()}

rulek is the information that helps us to obtain the surface points of feature f cons
k .

If it describes definite information, we set Sant
k as an empty one, and proo fk() stores the

detection function to check the existence of the feature f cons
k . Its input is the obtained RGBD

images, and the output is a Boolean value that indicates whether the feature is detected.
f cons
k ’s attributes are calculated by calk() and stored in the attributes set Sa. predk() is a void

function that has no operation.
When we describe the strong or weak information about position relationships be-

tween the consequence feature f cons
k and several antecedent features, Sant

k contains the
antecedent features, f ant

k1 ∼ f ant
kR . The rule can only be used when the consequence is un-

known and all antecedent features in Sant
k have been detected. proo fk() stores the detection

function to check if the feature that has the given relationship with the antecedent features
exists. calk() has the same function as that in rules with definite information. predk() stores
the function that generates the predicted points of f cons

k .
We give an example in Figure 4. In this situation, f1 and f3 are detected, and their

vertices and edges are calculated by the definite rules about them:

{φ→ f1, det_ f1(), cal_ f1(), pred_void()}

{φ→ f1, det_ f3(), cal_ f3(), pred_void()}

1v 6v

5v

4v3v

2v

12e
1f

2f

3f

l

l

4f


8v

7v

9v

10v

11v

13v

12v

By definite prior

By weak prior

By strong prior

Figure 4. Positional relationship of local features. The green surfaces are detected by definite prior
information, the pink one is predicted by strong prior information, and the yellow is predicted by
weak prior information.

The common edge of f1 and f2 is known as E(v4v5), the angle between them is θ,
and the relationships of the common edge and other edges in f2 are known before. Then
vertices of f2 can be calculated, and surface points of f2 are generated by uniform sampling
of the polygon in predk() of strong rules:

{ f1 → f2, det_ f1_ f2(), cal_ f2(), pred_ f1_ f2()}

The common edge of f1 and f4 is known as E(v2v3), and the common edge between f3
and f4 is known as E(v2v8). Then, unknown edges of f4 are predicted to make up a square
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S(v3v8v12v13) together with the line v3v8, which connects the start point and the end point
of the detected common edges. This prior information is stored in the weak rule:

{ f1, f3 → f4, det_ f1 f3_ f4(), cal_ f4(), pred_ f1 f3_ f4()}

The visual representation status includes the voxel status, the feature status, the candi-
date status and the view status.

We use octomap [25] to represent the model space. States of voxel nodes in the model
space are divided into four types, as Figure 5 shows. The state of voxel vn refers to psn,
which is initialized as “unknown”. With further observation, it turns to “occupied” or
“free”. fij is the jth local area of the feature fi. For the unknown voxels where predicted
areas are located, we give them a label of “preOccupied”, and the serial numbers of their
corresponding features are tagged on them. −1, 1, 0, 2 are used to represent the “unknown”,
“occupied”, “free” and “preOccupied” states, respectively.

unknown voxels

free voxels

occupied voxels

preOccupied voxels

Figure 5. Voxels’ status in the model space.

Based on the observed data, a feature’s existence state in the perceived object can be
calculated by the stored prior information. The existence state of fi is called es( fi), esi for
short. All features’ states form an array Ses, which is called the feature status. Members of
Ses are set to −1 before perception, and esi will turn to 0, 1, 2 or 3 with the acquisition of
perceived data. Moreover, 2 is an interim state of a feature, which means that the feature
exists but still needs to be observed to confirm its attributes. Meanwhile, 0, 1 and 3 are the
final states of a feature. If the feature is predicted, its will be added with a prediction state,
which is noted as 4. The attribute set SA contains the attributes of all sub-features.

• −1 unknown state, where we cannot determine whether the feature is existent or not;
• 0 nonexistent by detection, which means that the potential location of the feature has

been detected, but this feature is still not found;
• 1 existent by detection, which means that the feature has already been detected from

the obtained data;
• 2 existent by reasoning, which is the signal that the feature is existent by reasoning the

candidate library;
• 3 nonexistent by reasoning, which is a state that the feature is nonexistent by reasoning

the candidate library;
• 4 predicted, which means that the potential location of the feature is predicted.

Candidate status Scand is a vector that shows whether each candidate class in Sclass is
still a possible category of the object.

Scand : (cs1, . . . csm, . . . csM)

where the element csm is initialized to true before the perception task. When the feature
status is calculated iteratively, classm may be excluded from the candidate classes, and its
corresponding status csm changes to false.
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Candidate view set Sv is generated uniformly around the object space before per-
ception tasks. For each view vc in Sv, its state vsc reflects the information gain that can
be received when the sensor moves to it as the next view. The state is calculated by the
optimization function that is defined manually.

3.2. Status Update

The feature status is updated after each measurement. The transformation between
existence states of a feature is shown in Figure 6. The received data are put into the detection
functions in the prior information library to analyze the feature’s existence. esi is set to 1
when reqexd is met, which means that the feature has been detected. Then, local areas of fi
are extracted and their attributes are calculated and stored in the attribute set.

reqexd : ∃k, k ∈ [1, K], ( f cons
k = fi)&(proo fk() = 1) (1)

1

0

3

−1

𝑟𝑒𝑞௘௫ௗ

𝑟𝑒𝑞௘௫௥ 𝑟𝑒𝑞௘௫ௗ

𝑟𝑒𝑞௡௘ௗ

𝑟𝑒𝑞௡௘௥

4

𝑟𝑒𝑞௣௥௘ 𝑟𝑒𝑞௣௥௘

Fi
na

l s
ta

te
s2

4

existent

nonexistent

Figure 6. Transformation between the existence states of a feature.

If the acquired information is fully used, and fi is still in non-final state, then esi is
attached to a prediction state 4 when reqpre is met, which means that the feature’s location
can be inferred by its related features.

reqpre : !reqexd&(∃k, k ∈ [1, K], f cons
k = fi)

&(∀ f ant
kj , f ant

kj ∈ Sant
k , es( f ant

kj ) = 1)
(2)

esi is set to 0 when the detected proportion of fi’s predicted voxels has exceeded the
threshold and the feature still has not been detected. The requirement reqned is inferred
from the voxel status.

reqned :
1
|PVi| ∑

pvi∈PVi

U(ξ − min
p∈PCt

||p− pvi||2) ≥ ξned (3)

where U is the Heaviside step function, PVi is the predicted voxels of fi, PCt is the point
cloud observed until time t, ξ is a distance threshold and ξned is a percentage threshold.

The candidate library is employed to verify if esi should be renewed from −1 to 2.
The conversion condition reqexr is satisfied if fi exists in every class.

reqexr : ∀m, m ∈ [1, M], extm
i = 1 (4)

When fi is nonexistent in every candidate class, esi will be renewed from −1 to 3.
The condition reqner is described as:

reqner : ∀m, m ∈ [1, M], extm
i = 0 (5)

The voxel status is updated when a new observed point cloud is transformed and
inserted into the model space. If an unknown voxel is located on the detected surface, its
state converts to “occupied”. The voxel’s state will convert to “free” when it is passed
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through by rays. psn is set to “preOccupied” when vn is on the location of predicted local
surfaces.

psn =

2,
I

∑
i=1

U(ξ − min
pvi∈PVi

||vn − pvi||2) > 0

0, otherwise
(6)

After the feature fi obtains its final state through detection, the candidate status will
be updated with the feature status. csm will turn to false when classm conflicts with the
feature status St

es at time t. The exclusion requirement reqexc is:

reqexc : P(classm|St
es)

=
P(St

es|classm)P(classm)
M
∑

j=1
P(St

es|classj)P(classj)

= 0 (7)

P(classj) is the prior probability of classj. At time t, if there are some features whose
existence states are final states and are the opposite of the relevant presence states in classj,
then the probability P(St

es|classj) is 0; otherwise, it is 1.
The view status is updated when the voxel status update has been done. When views

have been reached, they have no contribution to the perception task any more, so their
states are set to 0. Other views’ states are calculated by the evaluation function:

vsc = Govlp(vc) · (G f d(vc) + W · Gso(vc)) (8)

The evaluation function takes three factors into account, consisting of the overlap
constraint, the feature detection and the unknown surface observation. The first component
Govlp(vc) is to guarantee an overlap between the new and the existing point cloud for
registration [13]. The feature detection factor G f d(vc) is the kernel of the function to detect
the features with higher importance, for the reason that the view with a high value at this
part can not only speed up the process of recognition, but also promote the acquisition of a
complete model.

G f d(vc) = max
i∈[i,I],j∈[1,J]

wi ·
nij(vc)

nij
t

(9)

where wi is a parameter that reflects the contribution of fi to identify the object. If the
existence state of fi is −1, its weight wi is defined as the conditional entropy. If esi is
2, which indicates that fi is of no use to the identification but contributes to the object
reconstruction, we give wi a value smaller than the minimum weight of all features that
have an existence state of −1. wi is set to 0 otherwise. All predicted voxels of fij form

a voxel set, nij
t is the number of voxels in the set, and nij(vc) is the number of reachable

voxels at view v in the set.
Gso(vc) provides assistance to G f d(vc), in the situation where no preoccupied voxel

exists and the model is not complete. It is assigned by counting up all reachable unknown
voxels behind the surface of the model. W is set to 1 when the result of G f d(vc) is 0 for all
candidate views.

sc f d is calculated and it will be set when the maximum confidence of all species exceeds
the set threshold; otherwise, it is false. ξc f d is the confidence threshold.

sc f d =

1,
M

max
m=1

P(classm|St
es) ≥ ξc f d

0, otherwise
(10)
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The state sail will turn to 1 from the default 0 when all candidate views could not
receive available information from the environment.

sail =

{
1, ∀v, G(v) = 0
0, otherwise

(11)

When scmp has obtained its expected values, the perception task will come to an end.
Otherwise, the view whose state has the maximum value is selected as the NBV to obtain
the next measurement.

NBV = arg max
vc∈Sv

vsc (12)

4. Experiments

To prove the efficiency of our methods for different kinds of perception tasks, ex-
periments for reconstruction tasks and recognition tasks are performed in a simulated
environment. The robotic operating system [26] is used for data transmission and virtual
camera controlling. Deformed prisms and pyramids are employed as objects to be recon-
structed, and 12 tanks that can be identified by 7 features are used for recognition tasks [27].
In order to focus on the VP process, we choose noticeable colors and textures as the in-
formation to detect features. The positions of the candidate views are evenly distributed
on the sphere surrounding the model space, and the camera’s optical axis always points
to the center of the sphere. For each experiment, we select one of the candidate views as
the initial view randomly, and execute the VP method until the termination is reached.
The maximum iteration is set to 20. As we expect to complete a perception task with fewer
views, the number of views requested for complete visual tasks is an indicator to evaluate
the efficiency of the VP algorithm. Therefore, we record the number of views required to
complete each task and compare it with that for other methods to verify the effectiveness
of our algorithm.

4.1. Experiment for Reconstruction

Experiments on reconstruction tasks were executed with the simulated objects. The can-
didate library and the prior information about features are generated as in Figure 7. There
are 5 features in the feature set, f1 ∼ f5, including the bottom of the object, the side of the
prism, the side of the pyramid, the rough shape of the prism and the rough shape of the
pyramid. The vector representing the existence states of features for the prism is (1, 1, 0,
1, 0), while it is (1, 0, 1, 0, 1) for the pyramid. bottomi is the sub-feature of f1 defined by
the vertices circling the bottom counterclockwise and the normal of the bottom. side1

n is
one side of the prism, which is a sub-feature of f2. Its attributes are four vertices circling it
clockwise and the normal of the side. side2

n is a sub-feature of f3. It is a side of the pyramid.
f3 has three vertices, and it is the only difference between attributes of f2 and f3. rs1 is
the rough shape of the prism, defined by the attributes of the bottom and the height of
the prism. rs2 is the rough shape of the pyramid, which has the same parameters as rs1,
except for the substitution of the height to the apex of the pyramid. r1 ∼ r3 stockpile
descriptions of f1 ∼ f3 and r4 ∼ r9 store relationships between f1 ∼ f5.

(0, 1) is the target for completion status. ξ is set to 0.01; ξned and ξc f d are set to 0.99.
Eight other methods were used as control groups, including seven methods compared
by Delmerico et al. [28] and the two-step active reconstruction method (T-S) proposed by
Kong et al. [17]. The reference methods do not take the overlap constraint into consideration,
which will cause a decrease in the required views, so we executed the experiments with
(GNO) and without (GN) the overlap constraint separately to evaluate the efficiency of our
algorithm on reconstruction tasks.
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Figure 7. Prior knowledge library of the objects for reconstruction.

4.2. Experiment for Recognition

We conducted experiments to plan the NBV in tank recognition. The candidate library
is shown in Figure 8. There are 7 features in the feature set. Each feature has only one
sub-feature and they are distributed on the surface of the tank. The sub-feature QRcodei is
located in a box. Rules r2

1 ∼ r2
7 store description methods of each feature, while r2

8 ∼ r2
49 are

relationships between features.
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Figure 8. Prior knowledge library of the tanks for recognition.

(1,0) is the target for completion status. ξ is set to 0.03, ξned is set to 0.95, ξc f d is set
to 0.99. For each model, we tested our method against the random method and the Prior
Feature Distribution Table method (PFDT). The NBV is stochastically specified among the
candidate views by the random method. In the PFDT method, the features correspond to
the candidate views one-to-one, and the NBV is determined according to the relationship
between features.

4.3. Results and Discussion

The number of views required for each active reconstruction is recorded and shown
in Table 1. We find that our algorithm can complete each reconstruction with a relatively
small and steady number of views. According to Figure 9, which represents the average
views among all models for each method, it is shown that the GN, GNO method and the
T-S method have distinct advantages over other algorithms. Among them, the proposed
GN method uses the lowest average number of views. When the overlap constraint is taken
into consideration, the efficiency of VP is slightly affected. This result is reflected in the
figure, where the average number of views needed by the GNO method is slightly higher
than that by the GN method, and levels with that by the T-S method. This is caused by
the overlap constraint that limits the size of unknown surface obtained from a new view.
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However, the overlap constraint is necessary in the real world, for the reason that the robot
movement will have errors that need to be eliminated by point cloud registration.
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Average views

Figure 9. Average number of views needed by each method in reconstruction experiments.

Table 1. Comparison of each model for reconstruction. T-S, GN and GNO achieve better performance.

Models
m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 m11 m12 m13

OA 8 20 20 8 8 8 5 9 9 20 10 8 17
UV 8 20 13 8 8 8 5 9 9 20 14 8 15
RSV 6 17 4 5 9 6 4 16 8 5 11 13 12
RSE 6 16 6 4 8 4 4 14 12 11 8 14 20
PC 5 9 5 5 5 5 3 6 7 8 5 16 13
AF 9 10 5 20 17 20 18 7 20 10 9 20 20
AE 4 8 7 6 6 8 5 6 8 10 7 14 15
T-S 5 7 4 5 5 4 5 6 7 5 4 8 10
GN 5 8 3 5 5 5 3 5 7 7 5 9 7

GNO 8 8 3 6 5 6 2 6 8 5 5 6 7

For the active recognition tasks, the number of views needed for each tank is shown
in Figure 10. The random method always needs more views for the recognition of each
object. It shows that the efficiency of recognition can be promoted by a reasonable view
planning method. Our method requires fewer views than the other two methods in most
cases, which proves that our method is suitable for recognition tasks as well. The average
number of views required by our method is less than that by the PFDT method. The reason
for this result may be that the PFDT method only focuses on the area of one feature at
a view, which makes the probability of other features being detected very low, and the
discriminative features can only be detected view-by-view.

Through these experimental results, we can find that the proposed method plans the
NBV effectively in different perception tasks, where the perception goals and measured
objects are different. Furthermore, the efficiency of the generic VP is relatively higher
than other methods. The results show that our method can be applied to increase the
intelligence of robots or unmanned platforms. When the robot equipped with our VP
system is assigned the task of multi-view visual perception, it can automatically choose
the next view with the greatest contribution to the overall task. These view sequences are
smaller than that selected randomly or by other methods, so that the control system of the
robot does not need to sense and process the data of the environment frequently, which
reduces the consumption of movement and calculation. In addition, for some exploration
tasks, the smaller the number of views that need to be detected, the less the disturbance to
the target in the environment.
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Figure 10. Number of views needed in recognition experiments.

5. Conclusions

We propose a generic view planning method that is suitable for multiple visual
tasks. A formal description of tasks, including the prior information library, the visual
representation status and the completion status, is raised to build the basis of VP for a
specific task. A task begins with the initialization of its descriptions. The states are updated
after each measurement. The NBV is chosen based on the current task status, until the task
is ended with a signal that the completion status has received its target. Experiments for
reconstruction and recognition were executed and the results show that our algorithm is
effective for NBV planning in multi-tasks. However, our method will be limited when the
feature’s local surfaces are too complex to be expressed with parameters, for the reason that
the information of a complex object’s features is too difficult to be described manually. A
deep neural net has the ability to autonomously learn the features of objects by adjusting
its weights through backpropagating the error of samples in the large dataset. In the
future, we will consider using deep learning methods to solve the prediction problem of
complex surfaces. Moreover, as the Hebbian synapse-based reinforcement learning [29] can
continuously adjust the weight between nodes in an unsupervised manner, it also provides
us with a novel mean of generating the NBV end-to-end.
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