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The presented volume addresses some vital problems in contemporary statistical reaso-
ning. One of them is high dimensionality of the studied phenomenon and its consequences
for formal statistical inference. A huge number of studies have been devoted to proposing
new solutions and/or to modifying existing ones in order to account for the specificity
of high-dimensional data. However, frequently, these methods work well for precisely
defined parametric models and fail when misspecification occurs. Thus, there is a growing
need to develop non-parametric and robust procedures accounting for this problem and
to study existing methods when misspecification is suspected. This has been discussed in
several papers in this volume under various scenarios. Furthermore, information theoretic
methods due to their generality are of special interest in this context, e.g., when variable
selection is envisaged. Frequently, the approach to account for high-dimensionality is
based on the penalization of classic statistical procedures, and this line of reasoning is
discussed here. Moreover, in a multivariate scenario, there is a need to define and study
analogues of statistical measures designed for the univariate or bivariate case, and this
approach is represented by the study on tail dependence indices. The important area
of statistical research is devoted to time series analysis, especially in multivariate cases
and in non-standard observability scenarios; two papers in the volume address this issue.
Furthermore, information theoretic tools used to shed a new light on the generalization
risk in learnability theory are covered here.

In [1], the general class of non-stationary multivariate processes is considered based
on p-dimensional Bernoulli shifts, which, in particular, encompass multivariate linear
processes with time-varying coefficients. A locally stationary model is proposed, under
which its covariance matrix Σ(t) is piecewise Lipschitz continuous except at a certain
number of breaks (change points). The problem of the non-parametric estimation of change
points is addressed as well as that of graph support recovery, specifically the estimation of
the set {(j, k) : |Σ(t)−1(j, k)| > u} for a given threshold u and precision matrix Σ(t)−1. It
is shown that in both problems, one can obtain theoretical guarantees of the accuracy of
estimation procedures using the proposed kernel smoothed constrained `1 minimization
approach.

In [2], the problem of support recovery is considered for a semiparametric binary
model in which the posterior probability of the response is given by q(βTx), where q is
an unknown response function. The problem is dealt with by applying the penalized
empirical risk minimization approach for a convex loss φ. This has nice information
theoretic connotations when φ is a logistic loss, as, in this case, we aim at estimating the
averaged Kullback–Leibler projection of q(βTx) on the family of logistic models. For a high-
dimensional setting and random subgaussian regressors, the conditions are studied, under
which the minimizer of penalized empirical risk β̂ converges to vector β∗ corresponding
to the Kullback–Leibler projection. This is used to establish selection consistency of the

Entropy 2022, 24, 553. https://doi.org/10.3390/e24040553 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e24040553
https://doi.org/10.3390/e24040553
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://doi.org/10.3390/e24040553
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e24040553?type=check_update&version=1


Entropy 2022, 24, 553 2 of 3

Generalized Information Criterion GIC based on β̂ for Lipschitz and convex φ under Linear
Regressions Conditions. The resulting Screeing and Selection (SS) procedure is studied in
numerical experiments.

Ref. [3] addresses one of the main issues of the learnability theory, namely the proper-
ties of generalization risk for the given learning algorithm L. I. Alabdulmohsin introduces a
new concept of the uniform generalization of Lwith a rate ε that stipulates that the generali-
zation risk is less than ε for any bounded loss function l(·, ·) such that l(·, h) depends on the
underlying sample only through the hypothesis h chosen by L. The information-theoretic
characterization of this property is given in terms of variational information J(ẑ, h) between
a single observation ẑ and chosen hypothesis h (Theorem 2). In Theorem 4, the probabilistic
inequality for deviation of empirical risk from the true risk is given in terms of J(ẑ, h).
Moreover, the concept of the learning capacity of L, analogous to the concept of Shannon
channel capacity, is introduced and studied.

Ref. [4], similarly to [2], deals with the classification problem of a binary variable
under misspecification. It focuses on establishing a general upper bound of excess risk,
i.e., the difference between the risk of the linear classifier β̂Tx, obtained as a minimizer
of the penalized empirical risk pertaining to convex function φ, and the Bayes risk in
such a case (Theorem 1). The crucial part of the bound is the probability that |β̂− β∗|1
exceeds a certain threshold, where β∗ is the minimizer of the theoretical risk pertaining to
φ. Interestingly, the authors are able to bound this probability, provided the predictors are
multivariate subgaussian, for non-Lipschitz quadratic risk φ(t) = (1− t)2, which is rarely
studied in the classification context. The second part of the paper deals with consistency of
the thresholded Lasso selector under the Linear Regression Conditions mentioned above
and again for quadratic loss. The result complements the results on selection consistency
studied in [2].

The paper [5] is an insightful study of introduced tail dependence indices in the
multivariate case from a novel perspective, which sheds a new light on their similarities
and differences. Namely, a set of five natural properties are introduced, which should be
satisfied by such indices, and existing proposals (Frahm’s extremal dependence, Li’s tail
dependence and Schmid’s and Schmidt’s tail dependence measures) are investigated in
this context. Further properties of these indices are studied such as their behavior with
increasing dimensions of the vector. The delicate problem of estimating the tail indices is
addressed, and the consistency of the introduced estimators is studied. Their performance
is illustrated using the EURO STOXX 50 index.

Ref. [6] considers non-parametric variable selection based on information-theoretic
criteria. In such an approach, the maximization of conditional mutual information CMI =
I(X, Y|XS) is often considered in greedy selection, where Y is the response, XS is a vector
of already chosen predictors, and X is a candidate for a possible augmentation of XS.
Frequently, conditional mutual information is replaced by the approximations resulting
from Möbius expansion or some modifications of these approximations. In the paper, two
criteria obtained in such a way, namely Conditional Infomax Feature Extraction (CIFE) and
Joint Mutual Information (JMI), are analyzed, together with CMI, in a certain dependence
model called the Generative Tree Model. It is shown that the two considered criteria may
lead to a different order of chosen variables than the order induced by CMI, and CIFE
may disregard a significant part of active variables. The analysis is based on formulae for
the entropy of the multivariate Gaussian mixture and its mutual information with mixing
variables derived in the paper, which are interesting in their own right.

In [7], the authors consider a semiparametric stationary time series model of the
form Zt = xT

t β + f (st) + εt, where xt is a vector of random explanatory variables, st is a
temporal covariate, and εt is an autoregressive process. Moreover, Zt is subject to random
censoring from the right, and f is a linear combination of B-spline basis functions of order
q with a corresponding vector of coefficients α. The penalized adaptive spline approach is
developed in the paper to tackle the data irregularity and is then applied to an unbiased
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synthetic transformation of Zt. The bias and covariance structure of the obtained estimators
of α and β are derived, and their consistency is studied.

Ref. [8] addresses practically important and intensively researched problem of acco-
unting for outliers in the estimation process when fitting the multiple linear regression
model. The approach is based on the L2E parametric method proposed by the first author,
which consists of finding the minimizer of the estimated Integrated Squared Error (ISE) in a
parametric family of densities { f (x|θ)}. The proposed extension introduces an additional
parameter w, which loosely corresponds to the mixture proportion of the main (outlier-free)
component of the density, and the minimization is now performed in family {w f (θ|x)}
with respect to both θ and x. The authors then convincingly show by analyzing several
examples that the proposed method yields a much more adequate fit of residuals than the
least squares, and additional insight into data interpretation is sometimes possible.
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