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Abstract: The Organic Rankine Cycle (ORC) is one kind of appropriate energy recovery techniques
for low grade heat sources. Since the mass flow rate and the inlet temperature of heat sources usually
experience non-Gaussian fluctuations, a conventional linear quadratic performance criterion cannot
characterize the system uncertainties adequately. This paper proposes a new model free control
strategy which applies the (h,ϕ)-entropy criterion to decrease the randomness of controlled ORC
systems. In order to calculate the (h,ϕ)-entropy, the kernel density estimation (KDE) algorithm is
used to estimate the probability density function (PDF) of the tracking error. By minimizing the
performance criterion mainly consisting of (h,ϕ)-entropy, a new control algorithm for ORC systems is
obtained. The stability of the proposed control system is analyzed. The simulation results show that
the ORC system under the proposed control method has smaller standard deviation (STD) and mean
squared error (MSE), and reveals less randomness than those of the traditional PID control algorithm.

Keywords: Organic Rankine Cycle; superheating; minimum (h,ϕ)-entropy control; non-Gaussian

1. Introduction

As a promising technique for low grade heat recovery particularly in small-scale
systems, Organic Rankine Cycle (ORC) technology has advantages in the aspects of wide
application for various heat sources, strong part-load performance and simplicity in struc-
ture. It is also suitable for transient heat sources, such as waste heat from engines, solar
energy, intermittent industrial waste heat, and so on [1–3]. These transient heat sources are
usually under non-Gaussian circumstances. The mass flow rate and inlet temperature of
heat sources in ORCs are not necessarily Gaussian. Moreover, the nonlinearities in ORCs
could lead to non-Gaussian randomness, even if heat sources follow Gaussian distribution.

Superheating control is of great significance for ORC systems on security and econ-
omy [4]. Superheating of the ORC systems should be kept positive in case of liquefaction
of the working fluid, which may cause turbine blade damage [5]. For most dry working
fluids, superheating should be kept low enough to ensure high system efficiency. However,
low superheating may disappear when heat sources experience large fluctuations during
practical operation. Thus, the random nature of heat sources brings severe challenges to
the ORC superheating control.

Tremendous research on superheating control of the ORC system has been conducted:
recent reviews on control strategies, working fluid selection and dynamic modeling of the
ORC system can be looked over in [6–8]. The PID control method has extensive application
in ORC systems. Three control methods based on PID controller were proposed in [9].
The pump speed and the expander speed were the two freedom degrees to control the
evaporating temperature and the superheating of the ORC system. Reference [10] proposed
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an adaptive PID control algorithm with feed-forward compensation and received satisfying
control performance. Reference [11] applied an integrated control algorithm based on
PID with a feed-forward control scheme for control performance enhancement of the
ORC system. The optimal control law of the ORC system was obtained by solving a
constrained optimization problem based on an established model. Nevertheless, these
control algorithms may not receive satisfying control performance for ORC systems with
fluctuating heat sources by virtue of the limitation of the disturbance rejection.

In order to enhance the disturbance rejection capability of the ORC control system
with transient heat sources, tremendous research on the advanced control strategies was
conducted recently. Reference [12] proposed a nonlinear model predictive control with
approximate NMPC solutions investigated for computation reduction for the ORC waste
heat recovery system. The proposed control algorithm outperformed the PI based controller
with a feedforward control scheme. A two-layer MPC based control method was proposed
in [13] and received satisfying control performance. Reference [14] applied a multiple
model predictive control method to ORC systems. The local dynamics of the ORC system
were presented by different model structures while keeping the same complexity of the
optimization problem.

Yao et al. [15] proposed a dual-mode fast dynamic matrix control (FDMC) algorithm
for the ORC system. Compared with MPC, the proposed control method could increase the
speed of calculating significantly with control performance guaranteed.

However, the aforementioned research hardly coped with the stochastic disturbances
from heat sources in ORC systems, not to mention that the temperature and mass flow rate
of the heat sources are commonly non-Gaussian; it calls for a stochastic control framework.

Minimum error entropy (MEE) was employed for stochastic control in many research
works [16–20]. Shannon entropy is commonly used in MEE-based stochastic control, and
Renyi entropy is a generalization of Shannon entropy. When the order of Renyi entropy
approaches 1, Renyi entropy will reduce to Shannon entropy. (h, ϕ)-entropy is the most
generalized definition of entropy [21–23]. Numerical examples have indicated that the
(h, ϕ)-entropy criterion could achieve satisfactory error distribution [24]. Thus, (h, ϕ)-
entropy is employed as a performance index to attenuate the randomness of ORC systems
and achieve accurate tracking of superheating. Accordingly, in this paper, a performance
criterion that mainly consists of error (h, ϕ)-entropy is established, then a model-free control
algorithm for the ORC systems can be obtained by minimizing the performance criterion,
and the comparative simulation results testify its effectiveness. Furthermore, the stability
analysis of the superheating control system is carried out. The contributions of this work
are summarized as follows:

1. A model-free minimum (h,ϕ)-entropy method is proposed for superheating control
of ORC systems, and (h,ϕ)-entropy is applied to characterize the randomness of
the system;

2. The stability analysis of the proposed control is given;
3. A simulation example is used to testify the effectiveness of the proposed control strategy.

The remainder of the paper goes as follows. Section 2 gives an introduction of the
ORC system and its mathematical model. Section 3 provides a generalized (h, ϕ)-entropy
criterion and its estimation by the kernel density estimation method; the control algorithm
for superheating control systems is then obtained by minimizing the criterion. The ef-
fectiveness of the proposed control algorithm for the ORC system is demonstrated by a
simulation in Section 4. Finally, Section 5 concludes this paper.

2. System Description

In this section, the considered ORC system with a transient heat source is shown
in Figure 1a, and the corresponding T-s thermodynamic diagram is shown in Figure 1b.
Despite the superheating control method proposed in this work being model free, the
model of the ORC system is still established for the stability analysis.
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Figure 1. (a) Schematic diagram of an ORC system, and (b) T-s thermodynamic diagram for the
ORC system.

As shown in Figure 1a, the working fluid of the ORC system is heated to superheated
vapor by the evaporator and then sent to the turbine for power generation; the exhaust
vapor, after doing work, is condensed to liquid by the condenser and then conducted to a
reservoir. The working fluid in the reservoir is next pumped to the evaporator, and then
the whole cycle of the ORC system is completed. The working fluid of the investigated
ORC system is chosen to be R245fa considering its high efficiency and appropriate ther-
mophysical properties for the ORC systems with low grade heat sources [25,26]. Notice
that the superheating of the vapor heated by the evaporator should be kept within a proper
range for the safety and efficiency of the ORC system.

The model of the ORC system is established for the stability analysis hereafter.

2.1. Evaporator and Condenser

The mathematical model of the evaporator is established by the moving bound-
ary (MB) method in which the evaporator is divided into three regions as shown in
Figure 2 [27]. Then the energy and mass balance equations of each region can be rep-
resented as Equations (1)–(3) by the lumped parameter method.

∫ Li

0

∂Aρ

∂t
dl +

∫ Li

0

∂
.

me

∂l
dl = 0 (1)

where Li stands for length of divided region and i ∈ {1, 2, 3}, A denotes the cross sectional
area of the evaporator, ρ is the density, t is time, l denotes length coordinate and

.
me stands

for the mass flow rate.
The energy balance equation for each divided region can be represented as

∫ Li

0

∂(ρAh− AP)
∂t

dl +
∫ Li

0

∂
.

meh
∂l

dl =
∫ Li

0
πDrinηin(Tew − Tr)dl (2)

where h stands for the enthalpy of the working fluid, P is the pressure, Drin stands for
the diameter of the inner tube, ηin denotes the heat transfer coefficient, Tew stands for the
temperature of the wall and Tr denotes the temperature of the working fluid.
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Figure 2. MB model of an evaporator.

The energy balance equation of the tube wall can be described as

(
CpρA

)
w

∂Tew

∂t
= πDrinηin(Tr − Tew) + πDroηo(Ta − Tew) (3)

where Cp stands for heat capacity, w stands for the wall of evaporator, Dro is the diameter
of outer tube, ηo stands for heat transfer and Ta denotes the temperature of the heat source.

Then the model of evaporator can be obtained by integrating Equations (1)–(3) over
the three divided regions

.
xe = De

−1 fe(xe, ue) (4)

where xe = [Le1, Le2, Pe, heo, Tew1, Tew2, Tew3]
T stands for the state variable and

ue = [
.

mein, hein,
.

meo,
.

ma, Ta]
T denotes the input vector.

The model of the condenser can be obtained by the same way as evaporator [28,29]

.
xc = Dc

−1 fc(xc, uc) (5)

where xc = [Lc1, Lc2, Pc, hco, Tcw1, Tcw2, Tcw3]
T stands for the state variable, and

uc = [
.

mcin, hcin,
.

mco,
.

mc, Tc]
T stands for the input of the condenser.

2.2. Turbine

The model of the turbine can be expressed by a semi empirical form shown as

.
mexp =

f f ·Vss,exp·NNexp

60·υi,exp
(6)

where
.

mexp stands for the mass flow rate, f f is the filling factor, Vss,exp stands for the swept
volume, NNexp is the rotating speed and υi,exp denotes the specific volume.

2.3. Pump

The model of the pump can be achieved by the similarity principle expressed as

.
mpp =

NNpp

NNra,pp

.
mra,pp (7)

where
.

mpp stands for the mass flow rate, NNpp and NNra,pp stand for the rotating speed
and rated speed of pump, respectively, and

.
mra,pp denotes the rated mass flow rate.
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2.4. Overall Model

In this work, superheating of the ORC system is the controlled variable (CV), which is
mainly influenced by the speed of pump, then the overall model of the ORC system can be
obtained by integrating Equations (1)–(7) expressed as{ .

x = g(x, u, ω1, ω2)
y = f (x, u)

(8)

where u stands for the manipulated variable (MV), that is pump speed, y denotes the super-
heating, x = [Le1, Le2, Pe, heo, Tew1, Tew2, Tew3, Lc1, Lc2, Pc, hco, Tcw1, Tcw2, Tcw3]

T stands for
the state variable, ω1 stands for the mass flow rate

.
ma and ω2 denotes the inlet temperature

Ta of the heat source. ω1 and ω2, treated as disturbances of the ORC system, are mutual
independent and follow non-Gaussian distribution.

Based on the overall model of the ORC system (8), the discrete-time state-space
equation in nominal conditions can then be derived as{

xk+1 = G(xk, uk, ω1k, ω2k)
yk = F(xk, uk)

(9)

where k denotes the sampling time.

3. Minimum (h,ϕ)-Entropy Control Algorithm for the ORC System

This section may be divided by subheadings. It should provide a concise and precise
description of the experimental results, their interpretation, as well as the experimental
conclusions that can be drawn.

Since the ORC systems are disturbed by the fluctuations of the mass flow rate
.

ma
and inlet temperature Ta of the highly transient heat source, the superheating variable
y is commonly non-Gaussian. For the safety and efficiency of ORC systems, the control
objective is to minimize the randomness of tracking error e = ysp − y, where ysp is the
set-point of superheating. The schematic diagram of the proposed superheating control
system is illustrated in Figure 3.

Figure 3. Superheating control system.

3.1. (h,ϕ)-Entropy and Kernel Density Estimation

As a unification of entropy measures [24], (h, ϕ)-entropy is employed for the super-
heating control system of ORC processes.
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Since the superheating y is non-Gaussian, the tracking error is therefore non-Gaussian,
and the randomness of the tracking error can then be measured by (h, ϕ)-entropy expressed as

Hh
φ(e) = h

(∫ ∞

−∞
φ[pk(e)]de

)
(10)

where either φ : [0, ∞)→ R is concave and h : R→ R is increasing, or φ : [0, ∞)→ R is
convex and h : R→ R is decreasing. pk(·) stands for the probability density function (PDF)
at time k.

By using the kernel density estimation (KDE) method, the estimation of the PDF of
tracking error pk(e) can be obtained expressed as

p̂k(e) =
1
N

N

∑
j=1

Gσ

(
e− ej

)
(11)

where G stands for the kernel function, σ denotes the bandwidth of the kernel function,
and N is window width.

Afterwards, the estimation of tracking error (h, ϕ)-entropy can be calculated through
the multiple imputation method shown as

Ĥh
φ(e) = h

(
1
N

N

∑
i=1

φ

[
1
N

N

∑
j=1

Gσ

(
ei − ej

)])
(12)

Notice that the (h, ϕ)-entropy is equal to the Shannon entropy when h(x) = x
and ϕ(x) = −x log x, and it also equals to the α-order Renyi entropy when h(x) =

(1− α)−1 log x and ϕ(x) = xα.
Therefore, the following performance criterion is used to obtain the control law

Jk = QĤh
φ(ek) +

1
2

∆uk
T R∆uk (13)

where Q and R denote the weights, Ĥh
φ(ek) is the estimated (h, ϕ)-entropy of tracking error

e at time k, and ∆uk = uk − uk−1.

3.2. Control Algorithm

The superheating control law for the ORC system can be obtained by minimizing the
performance criterion (13) as

uk∗ = arg min
uk

Jk = argmin
uk

(
QĤh

φ(ek) +
1
2

uk
T Ruk

)
(14)

Define ψ̃(uk) = Ĥh
φ(ek), and the following approximate equation holds

ψ̃(uk) ≈ ψ̃k0 + ψ̃k1∆uk +
1
2

∆uk
Tψ̃k2∆uk (15)

where
ψ̃k0 = ψ̃(uk)

∣∣uk=uk−1 ,

ψ̃k1 =
∂ψ̃(uk)

∂uk

∣∣∣∣
uk=uk−1

,

ψ̃k2 =
∂ψ̃2(uk)

∂uk
2

∣∣∣∣
uk=uk−1

.
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The optimal ∆uk should be calculated from

∂Jk
∂∆uk

= 0 (16)

By substituting Equations (14) and (15) to Equation (16), the following equation can
be deduced

∂Jk
∂∆uk

=
∂

(
Q
(

ψ̃k0+ψ̃k1∆uk+
1
2 ∆uk

T ψ̃k2∆uk

)
+ 1

2 ∆uk
T R∆uk

)
∂∆uk

= Q
(
ψ̃k1 + ψ̃k2∆uk

)
+ R∆uk

= 0

(17)

Then the optimal ∆uk can be calculated as

∆uk∗ = −
(
Qψ̃k2 + R

)−1Qψ̃k1 (18)

satisfying
(
Qψ̃k2 + R

)
> 0.

Therefore, the optimal control strategy for the ORC superheating control system can
be obtained as

uk∗ = uk−1 + ∆uk∗ = uk−1 −
(
Qψ̃k2 + R

)−1Qψ̃k1 (19)

The procedure of the proposed minimum (h, φ)-entropy superheating control algo-
rithm of ORC systems can be summarized by the pseudo code in Algorithm 1.

Algorithm 1: Minimum (h, φ)-entropy superheating control algorithm of ORC systems

Input:
Simulation time T, simulation period Ts, window width N, weights of performance criterion Q
and R.
Initialization:
Input u, state variable of ORC x, sampling data set of tracking error e.
Steps:

for k←1 to T/Ts do
Run the ORC system, collect the sampling data of y and e
Update the time sampling data set of tracking error
Estimate the PDF of tracking error by the KDE method
Calculate the (h, φ)-entropy of tracking error by Equation (12)
Obtain ψ̃k0, ψ̃k1 and ψ̃k2
Calculate the optimal control input u by Equation (19)

end for
Final

Return the PDF of tracking error

3.3. Stability Analysis

The stability analysis of the investigated ORC superheating control system is carried
out by the statistical linearization method [30] in this section. By substituting the optimal
control law (19) into the ORC system (9), the closed-loop control system can be expressed as

xk+1 = G
(

xk, uk−1 −
(
Qψ̃k2 + R

)−1Qψ̃k1, ωk

)
= ψ(xk, uk−1, Q, R, ωk)

(20)

where ψ(·) = [ψ1(·), · · · , ψn(·)]T is a vector function and ωk = [ω1k, ω2k]
T , then the

linearization of ψ(xk, uk−1, Q, R, ωk) can be obtained by statistical linearization method [31],
shown as follows:

ψ∗(xk, uk−1, Q, R, ωk) = ψ0(Emk, θk, uk−1, Q, R)
+Kψ(Emk, θk, uk−1, Q, R)Xk

0 (21)
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
ψ1
∗

ψ2
∗

...
ψn
∗

 =


ψ10
ψ20

...
ψn0

+


k11 · · · k1n k1(n+1) · · · k1(n+q1)

k21 · · · k2n k2(n+1) · · · k2(n+q1)
...

. . .
...

...
. . .

...
kn1 · · · knn kn(n+1) · · · kn(n+q1)

Xk
0 (22)

where Xk =
[
xk

T , ωk
T] and Xk

0 = Xk − Emk. Emk = E[Xk] and θk = E
[(

Xk
0)TXk

0
]

are the
mathematical expectation and covariance matrix of random variable Xk, respectively. ψ0
and Kφ(·) = kij(·) are the statistical feature vector and amplification coefficient matrix of
the nonlinear function ψ, respectively, which can be obtained by minimizing the following
mean square approximate error criterion:

ξ = E
[(

ψ− ψ0 − KψXk
0
)T(

ψ− ψ0 − KψXk
0
)]

(23)

ψ0(xk, uk−1, Q, R, ωk) = E[ψ(xk, uk−1, Q, R, ωk)]
=
∫

ΩXk
ψ(xk, uk−1, Q, R, ωk)pXk (τ)dτ (24)

where pXk (τ) is the joint PDF of Xk which can be achieved by probability theory [27]

kij(·) = ∑n+q1
l=1 (−1)j−1 Di

j

D
θil, i = 1, 2, · · · (n + q1)

D =

∣∣∣∣∣∣∣∣∣∣
θ11 θ12 · · · θ1(n+q1)

θ21 θ22 · · · θ2(n+q1)
...

...
. . .

...
θ(n+q1)1 θ(n+q1)2 · · · θ(n+q1)(n+q1)

∣∣∣∣∣∣∣∣∣∣
(25)

where Di
j is the complement minor of the element in the jth row and lth column of

matrix D and
θij =

[
X0

i , X0
j,k

]
=
∫

ΩXk

(
τi − EmXik

)(
τj − EmXjk

)
dτ (26)

θψi l = E
[
ψi(xk, uk−1, Q, R)X0

lk
]

=
∫

ΩXk
ψi(xk, uk−1, Q, R)

(
τl − EmXlk

)
γXk (τ)dτ

(27)

Substituting (22) into (21), the statistical linearization system can be expressed as

xk+1 = Kψx(Emk, θk, uk−1, Q, R) + ψ0(Emk, θk, uk−1, Q, R)
+Kψx(Emk, θk, uk−1, Q, R)Emxk
+Kψx(Emk, θk, uk−1, Q, R)

(
ωk − Emωk

) (28)

where Emxk = E(xk) and Emωk = E(ωk).
Define

ςk = ψ0(Emk, θk, uk−1, Q, R)− Kψx(Emk, θk, uk−1, Q, R)Emxk
+Kψω(Emk, θk, uk−1, Q, R)

(
ωk − Emωk

) (29)

Then, the statistical linearization system (28) can be reformulated as

xk+1 = Kψx(Emk, θk, uk−1, Q, R)Xk + ςk (30)

ςk is bounded because ωk is bounded. Hence, the linearized closed loop control system
(28) is stable if xk is bounded. Therefore, the convergence condition of the investigated
superheating control system can be expressed as∥∥Kψx(Emk, θk, uk−1, Q, R)

∥∥ < 1 (31)
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4. Simulation Studies

The effectiveness of the proposed control algorithm for the ORC system is testified in
this section. Superheating is the controlled variable, and the pump speed is the manipulated
variable (MV) in the simulations. The variations of the mass flow rate and inlet temperature
of the heat source over time in the set-point tracking test are illustrated in Figure 4. As
shown in Figure 5, the sample data of mass flow rate and inlet temperature of the heat
source are illustrated as symbol ‘+’ in the normal probability plots, and they do not follow
a straight line, which means that they are characterized to be non-Gaussian.

Figure 4. Mass flow rate and inlet temperature of the heat source over time.

Figure 5. The normal probability plots of the inlet temperature and the mass flow rate.

Two simulation tests are carried out to testify the set-point tracking ability and distur-
bance rejection ability of the proposed control algorithm for the ORC system. As a contrast,
the performance of the PID control algorithm is also tested. In the simulations, as one of the
specific (h, ϕ)-entropy, φ(x) = xr/m, h(x) = (m(m− r))−1 log x are chosen, where m = 0.5
and r = 1. With the parameters tuned by Matlab software, the transfer function of the PID
controller is GPID(s) = 30× [1 + 4/(15s) + 3s/4].

4.1. Tracking Ability Test

In this test, to testify the set-point tracking ability of the proposed control algorithm, a
0.5 ◦C step descent on the set-point of superheating occurs at 100 s. The simulation results
of the PID controller are also demonstrated simultaneously.

The variations of the superheating under two control algorithms are presented in
Figure 6. It is evident that the overshoot under the proposed controller is smaller and
the fluctuation of the superheating is also smaller when the system enters steady states
compared with those under the PID control method, while the settling time is roughly
the same. Meanwhile, the pump speed, the manipulated variable of the control system, is
reasonable according to Figure 7.
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Figure 6. Responses of superheating.

Figure 7. Rotating speed of the pump.

The PDFs of the tracking error at certain points are illustrated in Figure 8. Furthermore,
the evolution of the PDF over time under the proposed control method is demonstrated by
the 3-dimensional graph in Figure 9. The increasingly narrow shape of the PDF indicates
the decreasing randomness of the superheating.
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Figure 8. PDFs of tracking error at instants.

Figure 9. 3D PDF of tracking error.

Figure 10 shows that the performance criterion can be regulated back around a small
value by the proposed control algorithm, and then fluctuates in a smaller range compared
with the PID control method. The peak at around 100 s corresponds to the step change of
the set point. The final PDFs shown in Figure 11 also illustrates this point with the cognition
that the narrower the PDF, the smaller the randomness.
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Figure 10. Value of the criterion.

Figure 11. Final PDFs of tracking error.

4.2. Disturbance Rejection

In this disturbance rejection test, the mass flow rate of heat source has a 0.4 step
decrease at 100 s and then the inlet temperature of heat source has a 25 ◦C step increase
at 1100 s. The variations of the mass flow rate and inlet temperature of heat source are
demonstrated in Figure 12.
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Figure 12. Mass flow rate and inlet temperature of the heat source over time.

It can be seen from Figure 13 that the proposed control algorithm has better overall
performance when the mass flow rate and inlet temperature of heat source changes, and
it has smaller fluctuations of superheating in the steady state compared with the PID
control method. The variations of the pump speed over time are shown in Figure 14.
Figures 15 and 16 demonstrate that the tracking error of the superheating can be regulated
to zero and then fluctuates within an acceptable small range by the proposed control
algorithm after the sudden changes on the heat source. Curves of the performance criterion
obtained from Equation (13) are demonstrated in Figure 17, and the two peaks correspond
to the step changes of the mass flow rate and inlet temperature of heat sources which occur
at 100 s and 1100 s, respectively. It is obvious that the final PDF of tracking error under the
proposed control method is narrower than that of PID control as shown in Figure 18.

Figure 13. Responses of superheating.



Entropy 2022, 24, 513 14 of 18

Figure 14. Rotating speed of the pump.

Figure 15. PDFs of tracking error at instants.

The simulation results demonstrate that the proposed minimum (h, ϕ)-entropy control
algorithm is capable of achieving high performance for the ORC system subjected to non-
Gaussian transient heat sources. To compare the proposed control method with the PID
control more intuitively, two quantitative indicators, standard deviation (STD) and mean
squared error (MSE), are presented in Table 1. The indicators of the proposed control
method are smaller indicating better control performance.
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Figure 16. 3D PDF of tracking error.

Figure 17. Value of the criterion.

Table 1. Quantitative indicators for the two controllers in the tests.

Test Control Method STD MSE

Tracking
Stability test

Proposed control 0.0886 0.0078
PID control 0.0887 0.0079

Disturbance
Rejection test

Proposed control 0.1278 0.0163
PID control 0.1449 0.0210
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Figure 18. Final PDFs of tracking error.

5. Conclusions

In this work, a model-free superheating control algorithm is implemented to ORC
systems with heat sources under non-Gaussian circumstances. To attenuate the randomness
of the controlled ORC system and achieve accurate superheating tracking control, (h,ϕ)-
entropy is adopted as the performance criterion. The superheating control law can be
obtained directly by minimizing the performance criterion, and the stability analysis of the
proposed control method is given. Two simulations are carried out to verify the set-point
tracking and disturbance rejection ability of the proposed control algorithm compared with
PID control method, and some conclusions can be drawn as follows:

1. The proposed minimum (h,ϕ)-entropy control algorithm is effective for the ORC
system subjected transient heat sources under non-Gaussian circumstances and su-
perheating of the ORC system can be controlled within a proper range. Moreover,
the proposed control method could achieve better performance compared with PID
controller in most instances;

2. Kernel density estimation (KDE) method is introduced in the proposed control al-
gorithm for the estimating error PDF, which is used to calculate the (h,ϕ)-entropy of
tracking error;

3. The controller design does not depend on the mathematic model of the ORC system,
and the model established in this work is only for the stability analysis. The proposed
control algorithm is a model-free one.
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Nomenclature

A cross sectional area (m2) NN rotating speed (rpm)
ρ density (kg/m3) f f filling factor
.

m mass flow rate (kg/s) V volume (m3)
Dr diameter (m) v specific volume (m3/kg)
P pressure (kPa) η heat transfer coefficient
T temperature (◦C) t time
Cp heat capacity (J/(kg. ◦C)) l length coordinate (m)
L heat exchanger length (m) hs enthalpy (J/kg)
Hh

φ (h, ϕ)-entropy p probability density function
Gσ kernel function σ bandwidth
N window width J performance criterion
Q weight R weight
e tracking error T simulation time
Ts simulation period N window width
u control input x state variable
ω disturbance k sampling time
Subscripts
w wall c cooling water
sl saturated liquid pp pump
g saturated vapor ra rated
in inlet or inner e evaporator
o outlet or outer r working fluid
a heat source 1 sub-cooling region
exp expander 2 two-phase region
ss swept 3 superheat region
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