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Abstract: As failures of rolling bearings lead to major failures in rotating machines, recent vibration-
based rolling bearing fault diagnosis techniques are focused on obtaining useful fault features from
the huge collection of raw data. However, too many features reduce the classification accuracy and
increase the computation time. This paper proposes an effective feature selection technique based
on intrinsic dimension estimation of compressively sampled vibration signals. First, compressive
sampling (CS) is used to get compressed measurements from the collected raw vibration signals.
Then, a global dimension estimator, the geodesic minimal spanning tree (GMST), is employed to
compute the minimal number of features needed to represent efficiently the compressively sampled
signals. Finally, a feature selection process, combining the stochastic proximity embedding (SPE)
and the neighbourhood component analysis (NCA), is used to select fewer features for bearing
fault diagnosis. With regression analysis-based predictive modelling technique and the multinomial
logistic regression (MLR) classifier, the selected features are assessed in two case studies of rolling
bearings vibration signals under different working loads. The experimental results demonstrate
that the proposed method can successfully select fewer features, with which the MLR-based trained
model achieves high classification accuracy and significantly reduced computation times compared
to published research.

Keywords: vibration-based condition monitoring; rolling bearing fault diagnosis; compressive
sampling (CS); feature selection; multinomial logistic regression (MLR)

1. Introduction

Rolling bearings are critical components of the entire system of rotating machines
and play a crucial role in retaining motion between motionless and moving parts. Fail-
ure of rolling bearing is one of the key problems in rotating machines that may lead to
major catastrophes in machines [1]. It has previously been observed that approximately
40–90% of rotating machines failures are related to bearing faults [2]. Therefore, in most
manufacturing procedures, rolling bearings need to be monitored to avoid machine failures.
Numerous techniques can be used for machine condition monitoring such as vibration
monitoring, electric motor current monitoring, acoustic emission monitoring, etc. Of these,
vibration-based condition monitoring has been extensively utilized and has become a
widely approved method [3]. As presented in Figure 1, a roller bearing is comprised of
some components containing the inner race, the outer race, the rolling elements, and the
cage [4]. Bearings faults can happen for several reasons such as fatigue, incorrect lubri-
cation, contamination, corrosion, etc. [5]. In practice, faults in rolling bearings produce a
series of impulses that repeat periodically at a rate named the bearing fundamental defect
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frequency (BFDF), which usually depends on the site of the faults, the geometry of the
bearing, and the shaft speed, as displayed in Figure 2 [6].

Figure 1. A typical roller bearing [4].

Figure 2. Rolling element bearing geometry [6].

Based on the damaged component, the BFDFs are categorized into four groups: (i) bear-
ing pass frequency of the inner race (BPFI), (ii) bearing pass frequency of the outer race
(BPFO), (iii) ball spin frequency (BSF), and (iv) fundamental train frequency (FTF), which
are connected to the defect at the outer race, the inner race, the rolling element, and the
cage [7]. These frequencies could be described using the following equations:

BPFI =
NbSsh

2

(
1 +

db
Dp

cosϕ

)
(1)
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)
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)
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Here, Nb represents the number of rolling elements, Ssh represents the shaft speed,
db is the rolling element diameter, Dp is the pitch diameter, and ϕ represents the angle of
the load from the radial plane. It has previously been observed that the frequency of the
obtained vibration signal specifies the cause of the fault, and the amplitude shows the fault
severity.

In vibration-based machine fault diagnosis practice, we handle a huge gathering of
vibration signals obtained from several sources in the machines and some background
noises. Consequently, it is challenging to use the raw vibration signals directly for fault
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diagnosis. Much of the current literature on vibration-based fault diagnosis pays particular
attention to introducing methods capable of obtaining useful information, usually called
features, from the raw vibration signals, which can be successfully used to classify the
health condition of the machine. Automatic vibration-based condition monitoring employs
machine learning classifiers to classify the vibration signal with its correct health condition
type using the obtained features as inputs. Various techniques have been introduced
for vibration signal analysis that can be utilized to obtain useful features from the raw
vibration data. These include time-domain methods, frequency-domain methods, and
time-frequency domain methods.

Numerous studies have examined many statistical techniques and some other cutting-
edge methods to extract features from vibration signals in the time domain. For instance,
McCormick and Nandi conducted several investigations to classify the condition of a small
rotating machine using many statistical parameters such as mean and variance estimated
from the time series of vibration signals, which are then applied as inputs to multi-layer
perceptron and radial basis function neural networks [8]. Jack and Nandi introduced a
genetic algorithm (GA) to select the most significant input features to artificial neural
networks (ANN) from a large group of statistical estimates in machine condition moni-
toring situations [9]. In the same vein, Jack and Nandi attempted to improve the overall
generalisation performance of support vector machines (SVMs) and ANNs techniques in
two-class fault/no-fault recognition by applying a GA-based feature selection process [10].
In [11] a neural network technique for automated fault diagnosis of rolling element bearing
using vibration data was proposed. First, the authors examined ten time-domain features
including peak value (Pv), root mean square (RMS), standard deviation (SD), Kurtosis
value (Kv), Crest Factor (CrF), Clearance Factor (ClF), Impulse Factor (IF), Shape Factor
(ShF), Weibull negative log-likelihood (Wnl), and normal negative likelihood as inputs to
ANN. Then only Kurtosis and normal negative likelihood are used as input features to
ANN. The results showed that the ANN with Kurtosis and negative normal likelihood
performed fault diagnosis with the same accuracy as the ANN with the ten-time domain
features that were examined first. Furthermore, Prieto et al. presented a technique for
bearing fault detection using statistical time-domain features and ANN. In this technique,
several time-domain-based features including, mean, maximum value, RMS, SD, variance,
ShF, CrF, latitude Factor, IF, Kv, and normalized fifth and sixth moments were computed
from the acquired vibration signals [12].

Previous research has established that frequency domain methods can divulge infor-
mation based on frequency characteristics that are not certain to be observed in the time
domain. Various frequency domain methods have been extensively used for vibration
signals analysis in the context of bearing fault classification. For example, McCormick
and Nandi examined the application of ANN for rotating shaft’s fault diagnosis using
moments of vibration time series as input features. These features were compared with
features computed using the fast Fourier transform (FFT) as a suitable choice for real-time
implementation [13]. Li et al. introduced a method for motor-bearing fault detection using
frequency domain vibration signals and ANN [14]. In this method, the acquired vibra-
tion signals in the time domain were converted into the frequency domain using the FFT
method. Then, the converted vibration signals in the frequency domain are used as inputs
to train the ANN. Zeng and Wang proposed a framework for machine fault classification
that comprises data acquisition, data processing, feature extraction, fault clustering, and
fault assignment [15]. In this framework, the acquired vibration was transformed into the
frequency domain using the FFT. Dhamande and Chaudhari proposed a method for bearing
fault diagnosis based on statistical feature extraction in the time and frequency domain
and ANN [16]. In this method, many statistical parameters of the vibration data were
computed in the time domain including mean, SD, variance, RMS, the absolute maximum
of the vibration signal, skewness, kurtosis, CrF, and a combination of them. Additionally,
in the frequency domain, several statistical parameters were estimated including the mean,
the variance, the third moment, the fourth moment, the grand mean, SD concerning the
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grand moment, as well as the third and fourth moments concerning the grand mean [16].
Similarly, Helmi and Forouzantabar proposed a technique for rolling bearing fault detection
of electric motor applying time domain and frequency domain features with the adaptive
neuro-fuzzy interface system (ANFIS) network [17]. In this technique, 15 time-domain
features such as mean SD, IF, and skewness were computed. Then, the frequency spectrums
were obtained using FFT, and 13 frequency-domain features such as mean, frequency centre,
and kurtosis were computed [17].

Moreover, data from several studies suggest that the time-frequency domain methods
have been introduced to deal with nonstationary waveform signals, which are very common
when machine failures happen. The literature on machines fault diagnosis has highlighted
several time frequency methods that are employed to transform the vibration signals in the
time domain into the time-frequency domain. For instance, Wang and Chen investigated
the sensitivity of three time-frequency domain methods, namely, short-time Fourier trans-
form (STFT), wavelet analysis (WA), and pseudo Wigner–Ville distribution (PWVD) for a
rotating machine’s fault diagnosis [18]. In [19], the authors presented a feature extraction
methodology that is based on empirical mode decomposition (EMD) energy entropy for
rolling element bearings fault diagnosis. In this methodology, a mathematical analysis
process to select the most significant intrinsic mode functions (IMFs) was introduced. Then,
the selected features were applied as inputs to train an ANN-based model, which is used to
classify bearings faults. Furthermore, Djebala et al. presented a denoising technique based
on discrete wavelet analysis of the acquired vibration signals for bearing fault detection [20].
In [21], a deep learning-based approach for bearing fault diagnosis is proposed. In this
approach, the acquired signals were preprocessed using STFT to generate a spectrum
matrix. Then sub-patterns were generated from the spectrum matrix and used to obtain the
optimized deep learning structure, the large memory storage retrieval (LAMSTAR) neural
network for bearing fault diagnosis. Furthermore, Immovilli et al. introduced a technique
for the detection of generalized-roughness bearing fault using the spectral-kurtosis energy
of vibration or current signals [22]. Lei and colleagues presented an improved kurtogram
method for fault diagnosis of rolling element bearings. In this method, the wavelet packet
transform (WPT) was used as the filter of the kurtogram method to overcome the limita-
tions of the original kurtogram [23]. Recently, Hongwei et al. proposed a method for rolling
element bearing fault diagnosis based on Fuzzy C-means (FCM) clustering of vibration
images that were obtained using EMD-PWVD [24]. In this method, first, the acquired
vibration signals with different fault degrees were converted into contour time-frequency
images by using the EMD-PWVD technique. Then, the obtained vibration images were
divided into sections and their energy distributions values were used as image features.
Furthermore, in [25], the authors presented a method for rotating machinery fault diagnosis
using time frequency domain features and CNN knowledge transfer.

On the other hand, despite the various techniques described above, which are used to
process and examine vibration signals in the time domain, the frequency domain, and the
time frequency domain, various studies have proposed other methods that can reduce the
computational complexity and enhance fault classification accuracy. Of these, numerous
methods have been introduced for learning subspace features from the raw vibration signals
in rotating machine fault diagnosis. For instance, in [26], a method is proposed for incipient
failures in large-size low-speed rolling bearings using the multiscale principal component
analysis (MSPCA) and the ensemble empirical mode decomposition (EEMD). Guo et al.
introduced a feature extraction approach for rolling element bearing fault diagnosis using
the envelope extraction and the independent component analysis (ICA) technique [27].
In [28], the authors evaluated the use of the principal component analysis (PCA) technique
and NN performance for bearing fault diagnosis. In their experiments, the vibration signals
were preprocessed using detrended-fluctuation analysis (DFA) and rescaled-range analysis
(RSA) techniques. Additionally, Dong et al. introduced a technique for bearing fault
diagnosis using kernel PCA (KPCA) and an optimized k-nearest neighbour model [29].
In this technique, first, the original vibration signals were decomposed using local mean
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decomposition (LMD). Then, the entropy values of product functions that represent the
input features were computed utilizing the Shannon method. The KPCA was used to
reduce the dimension of the original features needed to train the k-nearest neighbour
model [29].

Additionally, data from several studies demonstrate that the use of feature selection
techniques will reduce the computational cost and might remove irrelevant and redundant
features and accordingly may improve learning performance [1]. Feature selection tech-
niques can be grouped into filter models (e.g., Fisher score, Relief and Relief-F algorithms),
wrapped models (e.g., Genetic algorithm), and embedded models (e.g., LASSO and elastic
net). Numerous studies have investigated the application of feature selection methods
in the context of vibration-based bearings fault diagnosis. For example, Haroun et al.
introduced a feature selection method for bearing fault detection and diagnosis using a
self-organizing map (SOM) [30]. In this method, the authors, employed multiple methods
from the time domain, frequency domain, and time-frequency domains to extract features.
Then, Relief-F and minimum redundancy maximum relevance (mRMR) were used to select
the optimal features from the extracted features. With these selected features, the SOM
was applied to classify the bearing’s health condition [30]. Furthermore, a method for
machinery fault diagnosis using redefined dimensionless indicators (RDIs) and mRMR was
introduced [31]. In this method, first, the original vibration signals were preprocessed using
variation mode decomposition to construct multiple RDIs. Then, the mRMR technique was
employed to select several important RDIs. Finally, with these selected RDIs, a grid support
vector machine (SVM) was used to carry out the identification of machinery faults. In [32],
the authors proposed a methodology for bearing fault diagnosis of induction motors using
a genetic algorithm (GA) and machine learning classifiers. In this methodology, first, some
statistical features were obtained from the raw signals. Then, the GA was employed to
select the most important features. Finally, with the selected features, three different classi-
fication algorithms namely, k-nearest neighbour (KNN), decision tree (DT), and random
forest (RF) were trained to accomplish the classification task.

Furthermore, recent advances in dimensionality reduction methods have aided the
investigation of the compressive sampling (CS) technique [33]. Several researchers have
used CS to reduce the dimensionality of the original vibration signals for rolling bearing
fault classification. For instance, Wong et al. examined the effects of CS on bearing fault
classification [34]. In this investigation, the authors resampled the originally collected
vibration signals using a random Bernoulli matrix to match the compressive sampling
process. Then, sample entropy-based features were obtained from both the normalized
raw vibration signals and the reconstructed signals. Finally, the SVM was trained using
the obtained features to accomplish the fault classification task [34]. Tang et al. proposed
a CS framework of characteristics harmonics to detect bearing faults [34]. In this method,
the characteristics harmonics were obtained from sparse measurements via a compressive
matching pursuit technique during the procedure of incomplete reconstruction [35]. More-
over, Xinpeng et al. introduced a bearing fault detection technique using CS and matching
pursuit (MP) reconstruction algorithm [36]. In [4], a method for bearing fault classifica-
tion from highly compressed measurements is proposed. In this method, CS was used to
produce highly compressed measurements of the original bearing vibration signals. Then,
a deep neural network (DNN) based on sparse autoencoder (SAE) was utilized to learn
overcomplete sparse representations of the compressed measurements, which were used
for the classification of bearing fault using the Softmax layer. Moreover, Ahmed and Nandi
proposed a three-stage method for rolling bearings fault diagnosis using CS and subspace
learning techniques [37]. In this method, the CS technique was employed to obtain com-
pressively sampled vibration signals from the original vibration signals. Then, a multistep
feature learning algorithm using PCA, linear discriminant analysis (LDA), and canonical
correlation analysis (CCA) was used to obtain fewer features from the compressively sam-
pled signals [37]. In [38], a framework for bearing fault classification using CS and feature
ranking is proposed. Then, the authors used the CS process to produce compressively
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sampled signals from the raw vibration signals using two compressible representations
of vibration signals, namely, Fourier transform-based coefficients and threshold Wavelet
transform-based coefficients. Then, various feature ranking procedures were used to select
fewer features from the compressively sampled signals. Finally, three classifiers were
evaluated for the classification of bearing faults using these selected features.

The issue of collecting a large amount of vibration data for machine fault diagnosis
has attracted considerable attention as it requires large storage to be stored and time to
be processed. Existing research has highlighted various techniques for vibration signal
analysis that can be applied to obtain useful features from the originally collected vibration
data. However, the number of obtained features could be a contributing factor to the
performance of these techniques in terms of classification accuracy and computational time,
which are particularly important in the real implementation of fault diagnosis techniques.
This study aims to contribute to this growing area of research by investigating the following:
1. A method that can reduce the high dimensionality of the raw vibration data to a fewer
number of features capable of achieving high fault classification accuracy and highly
reduced computational time; 2. The CS is an appropriate mechanism to compress the
original high dimensional vibration data and then further reduce the dimension of the
compressed vibration data to a far fewer number of features that satisfactorily represent
the health condition of rolling bearings, and 3. The multinomial logistic regression (MLR)
algorithm is a possible classifier to deal with the bearing’s fault classification task using the
fewer selected features.

To accomplish high classification accuracy and highly reduced computation time,
this paper proposes a new methodology for bearing fault classification based on intrinsic
dimension estimation-based feature selection and multinomial logistic regression using
compressively sampled vibration signals. In the methodology, the input vibration signals
are resampled using CS to reduce the high-dimensional samples of the originally collected
vibration data. Then, to further reduce the number of features of the compressively sampled
vibration signals to far fewer features that can sufficiently represent the health condition
of rolling bearings consequently achieve high classification accuracy and highly reduced
computation time, a feature selection procedure based on intrinsic dimension estimation,
stochastic proximity embedding (SPE), and neighbourhood component analysis (NCA)
is applied. Finally, to perform the bearing’s fault classification task, the fewer selected
features are applied as inputs to a multinomial logistic regression (MLR) classification
algorithm. The contributions of this paper are as follows:

1. The proposed method produces far fewer features that can represent the health con-
dition of bearings. This study accomplishes high classification accuracies and highly
reduced computational time with regression analysis-based predictive modelling
technique, namely the multinomial logistic regression (MLR) classifier using the fewer
selected features as inputs.

2. A dimensionality reduction process has been proposed, which comprises (1) data
compression using CS and (2) intrinsic dimension estimation-based feature selection
process, which includes (a) SPE-based feature selection that utilizes a self-organizing
iterative scheme to embed the compressed data dimension into a further lower di-
mension, and (b) the non-parametric NCA-based feature selection that maximizes
the stochastic variant of the leave-one-out nearest neighbour score to achieve the
best classification accuracy on the training set. This ensures selecting fewer features
from the high dimensional data capable to achieve high classification accuracy and a
reduced computational time.

3. We studied the impact of values of two parameters within the data compression
and feature selection process used in the proposed method, namely the compressive
sampling rates and the NCA tolerance values on the number of the selected features
and the fault classification accuracy.

4. Two fault classification case studies of rolling element bearings vibration signals under
different working loads are used to evaluate the proposed method.
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5. Compared to recently published classification results from the literature on the same
vibration-bearing datasets used in this study, our proposed method achieves high
classification accuracy and highly reduced computation time, which suggests that
our proposed methodology could be used in actual applications of vibration-based
machine fault diagnosis.

The remainder of this paper is organized as follows. Section 2 describes the proposed
framework. Section 3 is devoted to descriptions of the experimental study used to validate
the proposed framework and presents comparison results. Finally, Section 4 offers some
conclusions.

2. The Proposed Method

The methodological approach taken in this study is a mixed methodology based on
vibration data compression, feature selection based on intrinsic dimension estimation, and
regression analysis-based predictive modelling techniques. The proposed method automat-
ically learns and selects far fewer features from compressively sampled vibration signals,
which can be used as inputs to a classifier for bearing fault detection and classification. The
key objective of the proposed method is to achieve high fault classification accuracy while
highly reducing the computation time. The flow chart of the proposed method is presented
in Figure 3. First, the compressive sampling (CS) mechanism was employed to compress the
acquired vibration data. Then, a feature selection procedure based on intrinsic dimension
estimation, stochastic proximity embedding (SPE), and neighbourhood component analysis
(NCA) was utilized to estimate and further reduce the dimensionality of the compressively
sampled data. Finally, with these reduced features, a classifier was used to classify the
bearing’s health condition, namely, the multinomial logistic regression (MLR) algorithm
was employed to perform the classification task. The following subsections discuss the
proposed method in more detail.

Figure 3. The proposed method.

2.1. Vibration Data Compression Using CS

To reduce the high dimensional of the collected vibration data, the proposed method
uses the CS mechanism to obtain compressively sampled vibration signals from the original
signals. The central principle of the CS is that a finite-dimensional signal having sparse or
compressible representations can be reconstructed from a small number of linear measure-
ments much lower than measurements based on the Nyquist sampling rate {xe “Nyquist
sampling rate”}. Machine vibration signal has compressible representations in several
domains such as in the frequency domain using FFT {xe “frequency domain”}. Therefore,
in recent times, there has been a growing interest in the application of CS in machine fault
diagnosis {xe “fault diagnosis”}. There are many benefits of CS in vibration-based bearing
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fault diagnosis, e.g., reducing the high dimension of the acquired vibration data, reducing
computation time required to analyze the collected data, reducing data transmission cost
in the cases where it is essential to send the collected data from remote places, e.g., fault
diagnosis of offshore wind turbines.

The successful implementation of the CS mechanism is based on two fundamental
concepts: (i) the sparsity of the targeted signal, and (ii) the measurements matrix that fulfils
the minimal data information loss, which is usually called the restricted isometry property
{xe “restricted isometry property”} (RIP) [39]. Briefly, we describe the CS mechanism as
follows.

Let x ∈ Rn x 1 be the originally collected time-indexed signal. With an identified
sparsifying transform {xe “sparsifying transform”} matrix ψ ε Rn x n where the columns
represent the basis elements {ψi}n

i=1, the signal x can be described as follows,

x =
n

∑
i=1

ψisi (5)

or,
x = ψs (6)

Here, s represents a n ∗ 1 column vector of coefficients. In case the basis ψ generates
q-sparse representations of the signal x then x of length n can be signified with q << n
nonzero coefficients. Consequently, Equation (5) can be rewritten as follows,

x =
q

∑
i=1

ψnisni (7)

Here, ni represents the index of the basic elements and the coefficients corresponding
to the q nonzero elements. Accordingly, s ε Rn x 1 represents a vector column with q
nonzero elements and characterizes the sparse representation {xe “sparse representation”}
vector of the signal x. Consistent with the CS mechanism, with m << n projections of the
vector x, measurement vectors

{
∅j
}m

j=1, and the sparse representations s, the compressed
measurements of the signal x can be obtained using the following equation,

y = ∅ψs = θs (8)

Here, y is a m ∗ 1 column vector of the compressed measurements and θ = ∅ψ repre-
sents the measurement matrix. Figure 4 shows an illustration of the CS framework that
can be used to produce the single measurement vector of the compressed measurements y.
According to the CS theory, the original signal x can be reconstructed from the compressed
measurements y by applying a recovery algorithm. This can be completed by first recover-
ing the sparse representation vector s and then employing the inverse of the sparsifying
transform {xe “sparsifying transform”} ψ to recover x. One of the solutions to be used to
recover the sparse representations s ∈ Rn from its compressed measurement vector y ∈ Rm

is the l0 minimization technique, which searches for a sparse vector consistent with the
measured data y = θs such that,

ŝ = arg min
z
‖s‖0 such that θs = y (9)

Figure 4. Single measurement vector compressive sampling framework [37].
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Moreover, the convex optimization ‖.‖1 can also be employed in place of ‖.‖0, such that,

ŝ = arg min
z

s1 such that θs = y (10)

In case the measurement matrix θ satisfies the {xe “Restricted Isometry Property”}
RIP, the sparse representation s can be reconstructed by solving the convex program in
Equation (10). The matrix θ satisfies the rth restricted isometry property {xe “Restricted
Isometry Property”} (RIP) if there exists a δr � 1, such that

(1− δr)‖s‖2
l2 ≤ ‖θs‖2

l2 ≤ (1 + δr) ‖s‖2
l2 (11)

In our case, the collected vibration data is a collection of signals, which can be repre-
sented as a matrix of sparse vectors Y, such that,

Y = ӨS (12)

where Y ∈ Rm x L, L is the number of observations and m is the number of compressed
measurements, Ө ∈ Rm x n represents a dictionary, and S ∈ Rn x L is a sparse representation
{xe “sparse representation”} matrix. Therefore, multiple measurement vector compressive
sampling {xe “Compressive Sampling”} is used in our proposed method.

Our proposed method is intended to learn directly from the compressed vibration
signals. To obtain the compressively sampled signals from the collected vibration dataset
X = {x1, x2, . . . , xL} ∈ Rn , first, the {xe “Fast Fourier Transform”} FFT, which commonly
provides a sparse basis for vibration signals, is employed to produce the sparse represen-
tation (S ∈ Rn x L) that comprises only a small number q � n of nonzero coefficients.
The FFT algorithm calculates the n-point complex discrete Fourier transform (DFT) of the
signal X. In this study, we utilise the magnitude of the DFT to get S. Then, a random matrix
with i.i.d Gaussian entries matrix, which satisfies the RIP, is used as the measurement
matrix O ∈ Rm x n [40]. Finally, a compressed sampling rate (α) is used to produce the
compressively sampled signals Y ∈ Rm x L, where m represents the number of compressed
signal elements and given by m = α ∗ n. This compression process is summarized in
Algorithm 1 below:

Algorithm 1 Vibration data compression using CS

1. Input: vibration dataset X ∈ Rn x L; measurement matrix Ө ∈ Rm x n and compressive
sampling rate α

2. Output: compressively sampled vibration signals Y ∈ Rm x L

3. Produce the sparse representations S of X: abs (FFT(X)) → S ∈ Rn x L

4. Project S into Ө with compressed sampling rate α to obtain compressively sampled to obtain
compressively sampled signals Y ∈ Rm x L

2.2. Feature Selection Process

Based on CS theory, the compressively sampled signals (Y) have sufficient informa-
tion to reconstruct successfully the originally collected vibration signals. Nevertheless,
the dimensions of these compressively sampled vibration signals might be further reduced
to attain more reduction in the computational cost while achieving high classification
accuracy. Accordingly, our proposed method offers a feature selection process to learn
and select fewer features from the compressively sampled signals (Y) to achieve superior
classification accuracy and reduced computation costs. The feature selection process starts
by identifying the minimal number of features required to represent the compressively
sampled vibration signals Y, using a global dimension estimator, namely the geodesic
minimal spanning tree (GMST). The GMST calculates the geodesic graph G from which the
intrinsic dimension (d) is projected by calculating multiple minima spanning trees (MSTs)
in which each data sample xi is linked to its k nearest neighbours [41], such that,

d(Y) = min ∑
e∈T

DEucl (13)
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Here, T signifies the set of all the subtrees of G, e is an edge in T, and DEucl is the
Euclidean distance of e. Then, with the computed minimal number of features d, where
d < m, the SPE technique is employed to convert the compressively sampled data (Y) into
a reduced-dimensionality space of significant representation (Z ∈ Rd x L).

The SPE is a nonlinear approach that has many benefits such as being simple to
implement, very fast, scales linearly with the size of the data in both time and memory, and
is relatively insensitive to missing data [42]. Thus, it was decided that SPE is an appropriate
method to use for this investigation. The SPE utilizes a self-organizing iterative scheme
to embed m-dimensional data into d dimensions, such that the geodesic distances in the
original m dimensions are preserved in the embedded d dimension. Briefly, we describe the
simplified SPE procedure as follows [43]:

1. Initialize the coordinates yi. Select an initial learning rate β.
2. Select a pair of points, i, and j, at random, and calculate their distance: dij = ‖yi − yj‖.

If dij 6= rij (rij is the distance of the corresponding proximity), update the coordinates
yi and yj using the following equations,

yi ← yi + β
1
2

rij − dij

dij + υ

(
yi − yj

)
(14)

and
yj ← yj + β

1
2

rij − dij

dij + υ

(
yj − yi

)
(15)

Here, υ is a small number to avoid division by zero. For a given number of iterations,
this step will be repeated for several steps and β will be reduced by a recommended
decrement δβ. Finally, to obtain far fewer selected features in the feature selection process
step, our proposed method uses the NCA technique to automatically selects a subset from
the SPE-based learned features by converting Z ∈ Rd x L into Q ∈ R f x L where f < d.
Briefly, we describe the NCA feature selection as follows:

Let Z = {(z1, c1), . . . , (zi, ci), . . . , (zL, cL} be a training set samples with d-dimension
and ci ∈ {1, . . . , C} is the matching class label. The NCA searches for a weighting vector
w that uses to select a feature subset. In this method, first, the weighted distance between
two samples zi and zj can be computed using the following equation,

Dw
(
zi, zj

)
=

d

∑
r=1

w2
r |zil − zjl | (16)

Here, wr is a weight-related to the r-th feature. Then, the strategy is to maximize the
leave-one-out classification accuracy on the training set. The reference point is defined by a
probability distribution. In our case, the probability of zi chooses zj as its reference point
such that,

pij =


k(Dw(zi , zj))

∑k 6=i k(Dw(zi , zj))
, if i 6= j

0, if i = j
(17)

Here, k
(

Dw
(
zi, zj

))
= exp

(
−(Dw

(
zi, zj

))
/σ) is a kernel function and σ is an input

parameter that represents the kernel width. The probability of correct classification of yi
can be computed using the following equation,

pi = ∑
j

cij pij (18)

Here,
cij =

{
1 if ci = cj

0 otherwise
(19)

This process of NCA is summarized in Algorithm 2 below [44]:
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Algorithm 2 NCA Feature Selection

1. Input:
Z ∈ Rd x L; γ initial step length; σ: kernel width; :ג regularisation parameter; and η: small
positive constant.
2. Initialization: w[0] = (1, 1, . . . , 1), ε(0) = −∞, t = 0.
3. Repeat
4. f or i = 1, . . . , L do
5. Compute pij and pi using w(t) according to (2) and (3)
6. f or r = 1, . . . , d do
7. ∇_r = 2(1/σ(pi ∑j 6=i pij|zir − zjr| −∑j cij|zir − zjr|)− w(t)(ג

r
8. t = t + 1
9. w(t) = w(t−1) + γ∆
10. ε(t) = ξ(w(t−1))
11. if ε(t) > ε(t−1) = 1.01 γ

12. else
13. γ = 0.4γ
14. until

∣∣∣ε(t) − ε(t−1)
∣∣∣ < η

15. w = wt

16. Return

To select the most important features based on features weights, the criteria are based
on a threshold value (Thr), which can be computed as follows:

Thr = τ max(w) (20)

Here τ is the tolerance value.

2.3. Regression Analysis-Based Predictive Modelling Using MLR

Regression analysis can be used as a predictive modelling method as it defines the
relationship between a dependent variable and one or more independent descriptive
variables. There are many types of regression analysis methods such as linear regression,
polynomial regression, logistic regression, etc. Of these, logistic regression (LR) is one of
the most used methods in many machine learning applications. The LR is usually utilized
for binary classification, i.e., the class labels c has only two values, e.g., (Fault, Normal).
Briefly, we describe the LR as follows:

Let a training data Q = {q1, q2, . . . , qL} with f -dimension produced in the feature
selection step of our proposed method. The LR is a probabilistic discriminative model that
learns P(c|Q) directly from the training data where ci ∈ {0, 1}, such that,

P(c = 1 |q ) = h1(q) = g(−θTh) = 1/(1 + e−θTq) (21)

Here g
(
−θTh

)
is the logistic function, which is also called the sigmoid function. Since

∑ P(C) = 1, we can compute P(c = 0 |Q ) as follows:

P(c = 0 |q ) = h0(q) = 1− P(c = 1 |q ) = 1− (1/(1 + e−θTq)) (22)

The likelihood of the parameters of L training examples can be computed using the
following equation,

L(θ) =
L

∏
i=1

((g(θTqi))c(i)(1− g(θTqi))
1−c(i)

(23)

Here θ = [θ0, θ1, . . . , θi] represents the parameters of the model. Nevertheless,
the log-likelihood is widely utilised and, consequently, Equation (23) and can be updated
as Equation (24), such that
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log L(θ) =
L

∑
i=1

log(((g(θTqi))c(i)(1− g(θTqi))1−c(i)) (24)

To avoid overfitting a regularisation term, λ is added to the log-likelihood function,
such that

log L(θ) =
L

∑
i=1

log
(

P
(

ci = ck

∣∣∣qi; θ
))
− λ

2
‖θ‖2 (25)

The MLR classifier, which also goes with the name SoftMax regression in ANN,
generalizes the LR to a multi-class classification problem with multi-labels c(i) ∈ {1, . . . , K},
such that

hθ(q) =



P(c = 1|q; θ)
P(c = 2|q; θ)

.

.

.
P(c = K|q; θ)

 =
1

∑K
j=1 exp

(
θ(j)Tq

)


eθ(1)Tq

eθ(2)Tq

.

.

.
eθ(K)Tq


(26)

Here, θ(1), θ(2), . . . , θ(K) represent the parameters of the multinomial logistic regres-
sion model. In this study, we are dealing with a multiclassification problem, so MLR is
employed to perform the classification task in our proposed method.

3. Experimental Study

Two fault classification case studies of rolling element bearings using vibration signals
are presented to evaluate the proposed method.

3.1. First Case Study

The vibration dataset used in this case study is acquired from experiments on a test
rig that simulates running roller bearings’ environment. In these experiments, several
interchangeable faulty roller bearings are inserted in the test rig to symbolize the type
of faults that can normally happen in roller bearings. As shown in Figure 5, the test
rig to collect the vibration dataset of bearings contains a 12V DC electric motor driving
the shaft via a flexible coupling. The shaft was supported by two blocks of Plummer
bearing, where several damaged bearings were inserted. Two accelerometers were used
to measure the vibration signals in both the horizontal and vertical planes. The output
from the accelerometers was fed back over a charge amplifier to a Loughborough Sound
Images DSP32 ADC card with a low-pass filter using a cut-off of 18 kHz. The sampling
rate was 48 kHz. Six health conditions of roller bearings have been recorded with two
normal conditions {XE “normal conditions”}, i.e., brand new condition (NO) and worn
yet undamaged condition (NW), and four faulty conditions {XE “faulty condition”} with,
inner race fault {XE “inner race fault”} (IR), an outer race fault {XE “outer race fault”} (OR),
rolling element fault {XE “rolling element fault”} (RE), and cage fault (CA). Table 1 explains
the corresponding characteristics of these bearing health conditions [4].

The data was recorded using 16 different speeds within 25–75 rev/s. In each speed,
ten time series were recorded for each condition, i.e., 160 examples per condition. This
resulted in a total of 960 examples with 6000 data points each. Figure 6 illustrates some
typical time series plots for the six different conditions.
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Figure 5. The test rig used to collect the vibration data of bearings of the first case study [4].

Table 1. The characteristics of bearings’ health conditions in the obtained bearing dataset.

Condition Characteristic

NO The bearing was brand new and in perfect condition.

NW The bearing was in service for some time but in good condition.

IR Inner race fault. This fault was created by cutting a small groove in the raceway of
the inner race.

OR Outer race fault. This fault was created by cutting a small groove in the raceway of
the outer race.

RE Roller element fault. This fault was created by using an electrical etcher to mark the
surface of the balls, simulating corrosion.

CA
Cage fault. This fault was created by removing the plastic cage from one of the
bearings, cutting away a section of the cage so that two of the balls were not held in
a regular space and had freedom to move.

Figure 6. Typical time domain vibration signals for the six different conditions [4].
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To apply our proposed method in this case study, first, we randomly selected 50% of
the total observations for training, and the remaining 50% is employed for testing the
trained model. Then, we computed the compressively sampled vibration signal from the
high dimensional data X which has 6000 time samples for each of its 960 observations. As
described in Algorithm 1, the FFT basis was used as the sparse representation of each signal
in X. After, the CS framework with different sampling rates (α) (0.1, 0.2, and 0.3) using a
random Gaussian matrix was used to produce the compressed measurements.

To estimate and reduce further the dimensionality of the compressively sampled
signals, first, we computed the intrinsic dimension (d) using the GMST technique. Then,
the process combining the SPE and NCA techniques was performed to learn and select
far fewer features from the compressively sampled vibration signals. The compressively
sampled vibration signals were transformed into further reduced dimensions using the
defined intrinsic dimension and the SPE method. Then, a regularized NCA based on feature
weights and a relative threshold was employed to select far fewer features with f -dimension
from the SPE-based selected features with d-dimension where f < d. We computed the best
regularization parameter (λ) value that corresponds to the minimum average loss to be
used in fitting the NCA model on all the reduced dimension data. The final selected features
were computed using the feature weights of the NCA model and a relative threshold. The
stochastic gradient descent (SGD) solver was used for estimating feature weights. Two
tolerance values (0.01 and 0.02) were tested in this case study for computing the threshold
values used in the feature selection process. Figure 7 shows an example of the average loss
values versus λ values. Figure 8 presents an example of the selected features and their
corresponding weights. Moreover, Table 2 shows examples of the computed values of the
average intrinsic dimension, the dimension of the NCA-based selected features, least loss,
and best λ values taken from 10 trials.

Figure 7. Example of the average loss values versus λ values computed from the reduced dimension
of compressively sampled data with α = 0.2.
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Figure 8. Example of the selected features and their corresponding weights using α = 0.2 and NCA
tolerance value = 0.02.

Table 2. Examples of the computed values of the average intrinsic dimension, the dimension of the
NCA-based selected features, least loss, and best λ values taken from 10 trials.

NCA Tolerance
Value

CS Sampling
Rate (α)

Average
Intrinsic

Dimension (d)

The Average
Dimension of

NCA-Based Selected
Features (f )

Average Least
Loss

Average Best
Lambda for NCA

0.01
0.1 28 8 0.013 0.004
0.2 40 10 0.009 0.004
0.3 26 8 0.010 0.003

0.02
0.1 62 18 0.014 0.003
0.2 55 14 0.013 0.003
0.3 33 11 0.013 0.003

The first benefit of the proposed method is to obtain far fewer features from the
acquired vibration signals to be successfully used for rolling bearing fault diagnosis and
consequently reduce the computational cost. Therefore, the first set of analyses examined
the impact of the tolerance values and the compressive sampling rates on the number
of the selected features using our proposed method. As shown in Table 2, the average
least losses were slightly reduced from 0.014 to 0.013; 0.013 to 0.009; and from 0.013 to
0.010 using the tolerance value of 0.01 in place of 0.02. Furthermore, with a 0.02 tolerance
value, the computed average best lambda value for NCA remained the same for all the
compressive sampling rates (with λ = 0.003), while for the tolerance value of 0.01, the value
λ = 0.004 achieved for the sampling rate of α = 0.3, and λ = 0.004 was obtained for both
α = 0.1 and α = 0.2.

Moreover, as Table 2 shows, all the computed average least lost values are very
small—in the range of 0.009–0.014—although the feature dimension was reduced from
6000 (in the original raw vibration signals) to 600 (the dimension of the compressively
sampled signals with α = 0.1), which reduced to 28 (d-dimension) and then further reduced
to 8 (f-dimension wit 0.01 tolerance value). This suggests that the feature selection is a good
idea to be performed in our proposed method.
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Furthermore, the NCA tolerance values have a clear effect on the computed intrinsic
dimension (d) and the dimension of the NCA-based selected features. For example, with
a 0.02 tolerance value, we obtained intrinsic dimension (d) of 62, 55, 33, which reduced
to 28, 40, and 26 with 0.01 tolerance value for α = 0.1, α = 0.2, and α = 0.3, respectively.
Furthermore, with the tolerance value of 0.02, we obtained the final feature dimension (f)
of 18, 14, and 11, which reduced to 8, 10, 8 with 0.01 tolerance for α = 0.1, α = 0.2, and
α = 0.3 respectively. Taken together when the tolerance value decreases the dimension of
both selected features, i.e., d and f, decreases.

The final NCA-based selected features were used to train the classification algorithm,
i.e., the MLR, to classify among c classes of roller bearing health conditions. The overall
results are shown in Table 3, where the classification accuracy is the average of 10 trials for
each experiment and the time obtained by averaging the training time and testing time
of these 10 trials. It is apparent from this Table that our proposed method achieved high
classification accuracies (all above 99%) for all the compressive sampling rates and tolerance
values with less than 35% of the acquired vibration data samples. Classification accuracies
from our proposed method are 99.9%, 99.7%, and 99.5% for only 30%, 20%, and 10% of the
whole collected data with 8, 10, 8 selected features (with tolerance value = 0.01) respectively,
used to train the MLR classifier. Additionally, with tolerance value = 0.02, α = 0.3, and
11 selected features, the proposed method achieved 100% classification accuracy for every
single run in our experiments. Moreover, the trained classification model of our proposed
method requires less than 0.016 s to complete the classification task.

Table 3. Classification results with their corresponding RMSE and computational time for the
automatically selected features (d refers to the intrinsic dimension, and f is the dimension of the NCA-
based selected feature) using two values of NCA tolerance and three compressive sampling rates.

NCA Tolerance
Value

CS Sampling
Rate (α) d f

MLR Classifier

Training Accuracy
(%)

Training
Time (s)

Testing Accuracy
(%)

Testing
Time (s)

0.01

0.1 28 8 99.8 ± 0.3 5.34 ± 1.7 99.5 ± 0.6 0.015 ± 0.002

0.2 40 10 99.9 ± 0.1 4.6 ± 2.3 99.7 ± 0.3 0.003 ± 0.00

0.3 26 8 100 ± 0.0 3.3 ± 0.5 99.9 ± 0.1 0.003 ± 0.001

0.02

0.1 62 18 99.9 ± 0.2 3.37 ± 0.8 99.7 ± 0.3 0.003 ± 0.001

0.2 55 14 99.9 ± 0.1 3.55 ± 0.9 99.8 ± 0.2 0.003 ± 0.001

0.3 33 11 100 ± 0.0 4.6 ± 2.0 100 ± 0.0 0.004 ± 0.003

Table 4 provides sample confusion matrices of the classification results of MLR classi-
fier using selected features with tolerance value = 0.01 and a sampling rate of (a) α = 0.1,
0.2, and α = 0.3. As can be seen from Table 4c, the recognition of the bearing health
conditions with α = 0.3 is 100%. In Table 4a, with 10% testing data (with α = 0.1), our
method misclassified one of the testing examples of condition 5, i.e., RE, as condition three,
i.e., IR. In Table 4b, with 20% testing data (with α = 0.2), our method misclassified only
two of the testing examples of condition 2 (NW) as condition 6 (CA).

Comparisons of Results

In this subsection, a comparison of various methods using the same vibration dataset
of rolling bearings used in the first case study (see Table 5). In [34], three methods were used
for bearing fault diagnosis using SVM. The first method used the whole collected vibration
data. The second method used compressively sampled datasets of α = 0.25 and α = 0.5,
while the third method used the corresponding reconstructed signals of these compressively
sampled data. In [45], a method using a genetic programming (GP) algorithm for feature
extraction was used, and then ANN and SVM were employed to classify bearing health
conditions. In [46], a hybrid model comprising the fuzzy min–max (FMM) neural network
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and random forest (RF) with sample entropy (SampEn) and power spectrum (PS) features
was utilized to classify bearing health conditions. In [37], a three-stage hybrid method
consisting of CS, PCA, LDA, and canonical correlation analysis (CCA) was used for bearing
fault classification from (1) the whole 6000 samples from the frequency domain, and
(2) compressively sampled data with α = 0.1 and α = 0.2. In [38], a framework combining
CS and feature ranking techniques including fisher score, Laplacian score, Relief-F, Pearson
correlation coefficients, and Chi-square (Chi-2) were used for bearing fault classification
from compressively sampled vibration data with 0.1, feature dimension of 120. Then, with
these features, the MLR classifier was used to classify bearing faults. In [47], a three-stage
method combining CS (with α = 0.1, 0.2, and 0.3), a feature selection procedure, and SVM
was used for bearing fault classification.

Table 4. Sample confusion matrices of the classification results of MLR classifier using selected
features with tolerance value = 0.01 and a sampling rate of (a) α = 0.1, (b) α = 0.2, and (c) α = 0.3.

NO NW IR OR RE CA
NO 80 0 0 0 0 0
NW 0 80 0 0 0 0
IR 0 0 80 0 0 0
OR 0 0 0 80 0 0
RE 0 0 1 0 79 0
CA 0 0 0 0 0 80

(a)
NO NW IR OR RE CA

NO 80 0 0 0 0 0
NW 0 78 0 0 0 2
IR 0 0 80 0 0 0
OR 0 0 0 80 0 0
RE 0 0 0 0 80 0
CA 0 0 0 0 0 80

(b)
NO NW IR OR RE CA

NO 80 0 0 0 0 0
NW 0 80 0 0 0 0
IR 0 0 80 0 0 0
OR 0 0 0 80 0 0
RE 0 0 0 0 80 0
CA 0 0 0 0 0 80

(c)

As Table 5 shows, the classification results of our proposed method are better than
those reported in [34,45]. Moreover, our results are the same as, if not better than the
classification results described in [37,38,46,47]. Our method is extremely fast and needs
only 0.015 s to complete the fault classification task compared to the method in [37], which
needs 6.7 s using a classification model trained with 10% of the whole data. Furthermore,
results from our proposed method remain as good as, if not well improved than the results
stated in [38], although we used limited features (only 8 features), which are not met by the
method in [38], which used 120 features.

For further verification of the efficacy of the proposed method, we conducted three
experiments using our proposed method using the same settings used to perform our
experiments with α = 0.1, 0.2, and 0.3. Then, we employed SVM in place of the MLR
classifier in our proposed method to classify bearing health conditions to examine the speed
and accuracy performance of our proposed method compared to the method used in [47].
The results are presented in the last row of Table 5. The classification results of our method
with MLR classifier are as good as, if not better than the results of our method with SVM.
Interestingly, the results demonstrate that our method with MLR classifier is faster and
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requires only 25%, 13.3%, and 10% of the time of our method with SVM to complete the
classification task using classification models trained with α = 0.1, 0.2, and 0.3, respectively.

Table 5. A comparison with the classification results from the literature on the vibration bearing
dataset of the first case study.

Ref Method Testing Accuracy Testing Time

[33]
Raw vibration with entropic features + SVM 98.9 ± 1.2

_Compressed sampled with α = 0.5 followed by signal reconstruction + SVM 92.4 ± 0.5
Compressed sampled with α = 0.25 followed by signal reconstruction + SVM 84.6 ± 0.41

[44]
GP generated feature sets (un-normalised data)

ANN 96.5
SVM 97.1

[45]
FMM-RF SamEn 99.7 ± 0.02

_PS 99.7 ± 0.50
SamEn + PS 99.8 ± 0.41

[36]
CPDC (with 6000 inputs from FFT) 99.4 ± 0.5 64.9
CS-CPDC α = 0.1 99.8 ± 0.2 6.7

α = 0.2 99.9 ± 0.1 7.8

[37]

With FFT, α = 0.1, feature dimension = 120, and LRC classifier)

_
CS-FS 99.7 ± 0.4
CS-LS 99.5 ± 0.3
CS-Relief-F 99.8 ± 0.2
CS-PCC 99.8 ± 0.3
CS-Chi-2 99.5 ± 0.5

[46]

Feature selection (with λ = 0.004, tolerance value = 0.02) from compressively
sampled data and SVM for fault classification:

_α = 0.1 and feature dimension = 14 98.8 ± 2.4
α = 0.2 and feature dimension = 13 99.9 ± 0.2
α = 0.3 and feature dimension = 26 99.9 ± 0.1

Our proposed method with λ = 0.003, NCA tolerance value = 0.01, α = 0.1, and
feature dimension = 8:

MLR classifier 99.5 ± 0.6 0.015
SVM classifier 99.5 ± 0.5 0.060

Our proposed method with λ = 0.003, NCA tolerance value = 0.01, α = 0.2, and
feature dimension = 10:

MLR classifier 99.7 ± 0.3 0.003
SVM classifier 99.8 ± 0.2 0.040

Our proposed method with λ = 0.003, NCA tolerance value = 0.01, α = 0.3,
feature dimension = 8:

MLR classifier 100 ± 0.0 0.003
SVM classifier 100 ± 0.0 0.030

3.2. Second Case Study

The bearing datasets used in this case are provided by Case Western Reserve University
(https://engineering.case.edu/bearingdatacenter/download-data-file, accessed on 2 April
2022). The bearing datasets were obtained from a motor driving mechanical system where
the faults were planted into the drive-end bearing of the motor under four different speeds
and several health conditions, namely, normal condition (NO), with an IR fault (IR), with
a roller element fault (RE), and with an OR fault (OR). Then, the datasets were further
categorized by the width of the fault (0.18–0.71 mm) and the load of the motor (0–3 hp).
The sampling rates {xe “sampling rates”} utilized were 12 kHz for some of the sampled
data and 48 kHz for the rest of the sampled data. At each speed, 100 time series were
recorded for each condition per load. For the IR, OR, and RE conditions, vibration signals
for four different fault widths (0.18, 0.36, 0.53, and 0.71 mm) were separately recorded. In

https://engineering.case.edu/bearingdatacenter/download-data-file
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this study, of these acquired vibration signals, two groups of datasets were prepared for
the evaluation of our proposed method.

The first group of datasets is selected from the data files of the vibration signals
sampled at 48 kHz with fault width (0.18, 0.36, and 0.53 mm) and fixed loads including 1, 2,
and 3 hp, and the number of examples chosen is 200 examples per condition. This offered
three different datasets A, B, and C with 2000 total examples and 2400 data points for each
signal. The second type of bearing dataset was chosen from the data files of vibration
signals sampled at 12 kHz with fault size (0.18, 0.36, 0.53, and 0.71 mm) and load 2 hp, and
the number of examples chosen was 60 examples per condition. This offered a dataset D
with 720 total examples and 2000 data points for each signal. The description of the used
bearing vibration dataset is presented in Table 6.

Table 6. Description of the bearing health conditions of the bearing vibration dataset used in the
second case study.

Health Condition Fault Width (mm) Classification Label

NO 0 1
RE1 0.18 2
RE2 0.36 3
RE3 0.53 4
RE4 0.71 5
IR1 0.18 6
IR2 0.36 7
IR3 0.53 8
IR4 0.71 9
OR1 0.18 10
OR2 0.36 11
OR3 0.53 12

To classify the bearing’s health conditions from datasets A, B, C, and D described
above, the same steps as in the first case study were followed to apply our proposed method.
First, 50% of the total observations of datasets A, B, C, and D were randomly chosen for
training and the other 50% is employed for testing the trained model. Then, we obtained
the compressively sampled vibration signal from the high dimensional datasets A, B, and
C, with 2400 time samples for each of the 2000 observations and dataset D with 2000 time
samples for each of the 720 observations. The FFT coefficients were employed as sparse
representations of all the datasets used in the second case study, i.e., A, B, C, and D. Then,
we adopted the CS mechanism with different sampling rates (α) of 0.1, 0.2, and 0.3, using a
random Gaussian matrix as described in the first case study to obtain the compressively
sampled signals for each dataset.

To estimate and reduce further the dimensionality of the compressively sampled
signals, we applied the same steps of the feature selection process step of our proposed
method as described in the first case study. Two tolerance values (0.01 and 0.02) were
investigated for the feature selection process. Table 7 presents examples of the computed
values of the average intrinsic dimension, the dimension of the NCA-based selected features,
least loss, and best λ values taken from 10 for each dataset. To test the impact of the tolerance
values and the compressive sampling rates on the number of the selected features using our
proposed method. Table 7 shows the computed values of the average intrinsic dimension
(d), the dimension of the NCA-based selected features (f ), the best least loss, and best λ
values taken from 10 trials for datasets A, B, C, and D. Moreover, it can be seen from the
data in Table 7 that all the computed average least lost values are exceedingly small in the
range of 0.000–0.003 although the feature dimension was reduced to a fewer number of
features, e.g., for dataset A the feature dimension were reduced from 2400 (in the original
raw vibration signals) to 240 (the dimension of the compressively sampled signals with
α = 0.1), which reduced to 13 (d-dimension) and then further reduced to 6 (f-dimension with
0.01 tolerance value).
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Table 7. Examples of the computed values of the average intrinsic dimension, the dimension of the
NCA-based selected features, least loss, and best λ values taken from 10 trials for datasets A, B, C,
and D.

Dataset NCA Tolerance
Value

CS Sampling
Rate (α) d f Average Least

Loss

Average Best
Lambda for

NCA

A

0.01
0.1 13 6 0.001 0.0011
0.2 15 7 0.000 0.0009
0.3 15 9 0.001 0.0006

0.02
0.1 18 10 0.000 0.0009
0.2 21 12 0.000 0.0004
0.3 25 14 0.000 0.0003

B

0.01
0.1 17 7 0.000 0.0007
0.2 19 9 0.001 0.0006
0.3 24 9 0.000 0.0002

0.02
0.1 28 11 0.000 0.0009
0.2 23 10 0.000 0.0005
0.3 26 12 0.000 0.0003

C

0.01
0.1 16 5 0.001 0.0010
0.2 17 7 0.000 0.0006
0.3 23 8 0.000 0.0006

0.02
0.1 21 11 0.000 0.0009
0.2 22 12 0.000 0.0004
0.3 27 14 0.000 0.0003

D

0.01
0.1 15 4 0.003 0.0041
0.2 18 5 0.001 0.0041
0.3 20 7 0.001 0.0015

0.02
0.1 17 9 0.001 0.003
0.2 21 10 0.001 0.003
0.3 23 9 0.001 0.003

Moreover, the computed average best lambda values for the NCA algorithm are in
the range of 0.0002–0.0041. The NCA tolerance values have a clear effect on the computed
intrinsic dimension (d) and the dimension of the NCA-based selected features. For example,
for dataset A with a 0.02 tolerance value, we obtained an intrinsic dimension (d) of 18, 21,
and 25, which reduced to 13, 15, and 15 with 0.01 tolerance values for α = 0.1, α = 0.2,
and α = 0.3, respectively. Furthermore, for dataset A with the tolerance value of 0.02, we
obtained the final feature dimension (f ) of 10, 12, and 14, which reduced to 6, 7, 9 with 0.01
tolerance for α = 0.1, α = 0.2, and α = 0.3, respectively. It can therefore be assumed that
when the tolerance value decreases the dimension of both selected features, i.e., d and f,
decreases. Figure 9 shows an example of the average loss values versus λ values. Figure 10
presents an example of the selected features and their corresponding weights.

The final NCA-based selected features from datasets A, B, C, and D were used to train
the MLR classifier to obtain a trained classification model for each dataset to classify among
c classes of roller bearing health conditions. Table 8 shows an overview of the testing
results for each bearing vibration dataset where the classification accuracy is the average of
10 trials for each experiment, and the time obtained by averaging the testing time of these
10 trials. One of the more significant findings to emerge from the results in Table 8 is that
the classification results with α = 0.2 and 0.3 and tolerance values = 0.01 and 0.02 for all
datasets A, B, C, and D are all over 99%. For datasets B and C with α = 0.3 and tolerance
values of 0.01 and 0.02, our proposed method attained 100% classification accuracy.
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Figure 9. Example of the average loss values versus λ values computed from the reduced dimension
of compressively sampled data with α = 0.2 and dataset A.

Figure 10. Example of the selected features from dataset A and their corresponding weights using
α = 0.2 and NCA tolerance value = 0.02.
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Table 8. Classification results with their corresponding RMSE and computational time for the
automatically selected features (d refers to the intrinsic dimension, and f is the dimension of the
NCA-based selected feature) using two values of the NCA tolerance and compressive sampling rates
for datasets A, B, C, and D (all classification accuracies of 100% are in bold).

Dataset NCA
Tolerance Value

CS Sampling
Rate (α) d f

MLR Classifier

Testing Accuracy
(%)

Testing Time
(s)

A

0.01

0.1 13 6 98.5 ± 0.7 0.002

0.2 15 7 99.9 ± 0.1 0.003

0.3 15 9 99.9 ± 0.1 0.002

0.02

0.1 18 10 99.6 ± 0.2 0.003

0.2 21 12 99.8 ± 0.2 0.006

0.3 25 14 100 ± 0.0 0.003

B

0.01

0.1 17 7 99.2 ± 0.7 0.002

0.2 19 9 99.5 ± 0.5 0.003

0.3 24 9 100 ± 0.0 0.009

0.02

0.1 28 11 99.9 ± 0.1 0.003

0.2 23 10 99.9 ± 0.1 0.006

0.3 26 12 100 ± 0.0 0.003

C

0.01

0.1 16 5 99.7 ± 0.2 0.002

0.2 17 7 99.9 ± 0.1 0.003

0.3 23 8 100 ± 0.0 0.002

0.02

0.1 22 11 99.9 ± 0.1 0.003

0.2 27 12 99.9 ± 0.1 0.006

0.3 15 14 100 ± 0.0 0.003

D

0.01

0.1 18 4 92.7 ± 2.9 0.002

0.2 20 5 99.1 ± 0.8 0.002

0.3 17 7 99.9 ± 0.1 0.002

0.02

0.1 21 9 99.9 ± 0.1 0.002

0.2 23 10 99.9 ± 0.1 0.002

0.3 13 9 99.9 ± 0.1 0.002

Similarly, for dataset A with α = 0.3 and tolerance value of 0.02, our proposed method
achieved 100% classification accuracy for every single run in our experiments. Furthermore,
the trained classification models of our proposed method for all bearing vibration datasets
A, B, C, D require less than 0.01 s to complete the classification task. These findings suggest
that our proposed method is fast and offers high classification accuracies for rolling bearings
from vibration datasets under different load levels as in A, B, and C.

Table 9 presents sample confusion matrices of the classification results of MLR classifier
using selected features with tolerance value = 0.01 and a sampling rate of (a) α = 0.1, 0.2,
and 0.3 with dataset A. As can be seen from Table 9a with 10% testing data our method
misclassified three of the testing examples of condition 6, i.e., IR2, as condition 1, i.e.,
NO, condition 3, i.e., RE2, and condition nine, i.e., OR2, respectively. In Table 9b, with
20% testing data, our method misclassified three of the testing examples of condition 6,
i.e., IR2, as condition 7, i.e., IR3. Moreover, in Table 9c the recognition of all bearing health
conditions is 100%.
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Table 9. Sample confusion matrices of the classification results of MLR classifier using selected
features with tolerance value = 0.01 and a sampling rate of (a) α = 0.1, (b) α = 0.2, and (c) α = 0.3
with the dataset A.

NO RE1 RE2 RE3 IR1 IR2 IR3 OR1 OR2 OR3
NO 100 0 0 0 0 0 0 0 0 0
RE1 0 100 0 0 0 0 0 0 0 0
RE2 0 0 100 0 0 0 0 0 0 0
RE3 0 0 0 100 0 0 0 0 0 0
IR1 0 0 0 0 100 0 0 0 0 0
IR2 1 0 1 0 0 97 0 0 1 0
IR3 0 0 0 0 0 0 100 0 0 0
OR1 0 0 0 0 0 0 0 100 0 0
OR2 0 0 0 0 0 0 0 0 100 0
OR3 0 0 0 0 0 0 1 0 0 99

(a)
NO RE1 RE2 RE3 IR1 IR2 IR3 OR1 OR2 OR3

NO 100 0 0 0 0 0 0 0 0 0
RE1 0 100 0 0 0 0 0 0 0 0
RE2 0 0 100 0 0 0 0 0 0 0
RE3 0 0 0 100 0 0 0 0 0 0
IR1 0 0 0 0 100 0 0 0 0 0
IR2 0 0 0 0 0 97 3 0 0 0
IR3 0 0 0 0 0 0 100 0 0 0
OR1 0 0 0 0 0 0 0 100 0 0
OR2 0 0 0 0 0 0 0 0 100 0
OR3 0 0 0 0 0 0 0 0 0 100

(b)
NO RE1 RE2 RE3 IR1 IR2 IR3 OR1 OR2 OR3

NO 100 0 0 0 0 0 0 0 0 0
RE1 0 100 0 0 0 0 0 0 0 0
RE2 0 0 100 0 0 0 0 0 0 0
RE3 0 0 0 100 0 0 0 0 0 0
IR1 0 0 0 0 100 0 0 0 0 0
IR2 0 0 0 0 0 100 0 0 0 0
IR3 0 0 0 0 0 0 100 0 0 0
OR1 0 0 0 0 0 0 0 100 0 0
OR2 0 0 0 0 0 0 0 0 100 0
OR3 0 0 0 0 0 0 0 0 0 100

(c)

Comparisons of Results

For additional assessment of the efficiency of the proposed method, Table 10 shows
comparisons with some recently published results using the same bearing vibration datasets
used in the second case study. In [4], a CS-DNN technique that involves a deep neural
network method (DNN) with two hidden layers method combined with the Haar Wavelet-
based CS technique was used to classify rolling bearing from the same rolling bearing
datasets A, B, and C with α = 0.1. In [38], a framework combining CS and feature ranking
techniques including Fisher score, Laplacian score, Relief-F, Pearson correlation coefficients,
and Chi-square (Chi-2) were used for bearing fault classification from the dataset D with
α = 0.1 and a feature dimension of 120. With these features, the MLR classifier was used to
classify bearing faults. In [48], several methods were used to classify bearing faults with
the same roller bearing the dataset D used in the second study. One of the methods used
feature selection by adjunct rand index and standard deviation ratio (FSAR) the original
feature set (OFS). Some of the other techniques utilized PCA, LDA, LFDA, and support
margin LFDA (SM-LFDA). The selected features of these methods were used to train SVM
to be used for bearing fault classification. Moreover, classification results for bearing fault
classification using two methods with datasets A, B, and C are reported in [49]. The first
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method is based on a deep neural network (DNN) and the second method is a method
based on a backpropagation neural network (BPNN). Additionally, classification results
using a generic multi-layer perceptron (MLP) method with datasets A, B, and C are reported
in [50].

Table 10. A comparison with the classification results from the literature on the vibration bearing
datasets A, B, C, and D of the second case study.

Ref Dataset Method Testing Accuracy
(%)

Testing Time
(s)

A 99.3 ± 0.6 5.7
[4] B CS-DNN with α = 0.1 99.7 ± 0.5 5.9

C 100 ± 0.0 5.7

[37] D

With FFT, α = 0.1, feature dimension = 120, and LRC

_
CS-FS 98.4 ± 1.6
CS-LS 99.1 ± 0.8
CS-Relief-F 99.3 ± 0.6
CS-PCC 99.2 ± 0.8
CS-Chi-2 97.5 ± 2.6

[47]

OFS-FSAR-SVM

_

Selected features = 25 91.46
Selected features = 50 69.58

OFS-FSAR-PCA-SVM
Selected features = 25 91.67
Selected features = 50 69.79

OFS-FSAR-LDA-SVM
Selected features = 25 86.25
Selected features = 50 92.70

OFS-FSAR-LFDA-SVM
Selected features = 25 93.75
Selected features = 50 94.38

OFS-FSAR-(SM-LFDA)-SVM
Selected features = 25 94.58

D Selected features = 50 95.63

[48]

A 99.95 ± 0.06

_
B 99.61 ± 0.21
C DNN 99.74 ± 0.16
A 62.20 ± 18.09
B 61.95 ± 22.09
C BPNN 69.82 ± 17.67

[49]
A
B
C

MLP _

Our proposed method with λ = 0.003, NCA tolerance
value = 0.02, and α = 0.1.

A feature dimension = 10 99.6 ± 0.2 0.003
The proposed B feature dimension = 11 99.9 ± 0.1 0.003

method C feature dimension = 11 99.9 ± 0.1 0.003
D feature dimension = 9 99.9 ± 0.1 0.002

As shown in Table 10, the results from our proposed method are better than those
reported in [38,48,50]. Additionally, our classification results are better than the results
produced using BPNN in [49]. Moreover, our results are the same as, if not better than the
results reported in [4] and the results obtained using DNN in [49]. Remarkably, the results
show that our method is faster than the CS-DNN technique that used in [4] as our method
requires less than 0.005 s while the CS-DNN requires at least 5.7 s to complete the classifica-
tion task.
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In summary, the high reduction in the computation time originates from two reasons—
(i) using CS that allow us to use a smaller sampling rate as in α = 0.1, 0.2, and 0.3, and
(ii) selecting far fewer features to be used for training the classification algorithm and for
classifying rolling bearing health conditions using the trained classification model. Finally,
our proposed method achieves classification results for all the rolling bearing vibration
datasets A, B, C, and D that are the same as, if not more improved than, fault classification
results from the literature on the same vibration bearing datasets.

4. Conclusions

The purpose of the present research was to examine the classification of bearing
health conditions with far fewer selected features of compressively sampled vibration
signals to achieve highly reduced computation time and yet to achieve high classification
accuracy. The proposed method comprises a CS-based technique, which was used to obtain
compressed vibration signals, followed by an intrinsic dimension estimation-based feature
selection process that includes SPE-based feature selection with a self-organizing iterative
scheme to embed the compressed data dimension into a further lower dimension, and a
non-parametric NCA-based feature selection that maximize the stochastic variant of the
leave-one-out nearest neighbour score to achieve the best classification accuracy on the
training set. This ensures selecting fewer features from the high dimensional data capable
of achieving high classification accuracy and a reduced computation time.

The multinomial logistic regression (MLR) algorithm was used to classify bearing
faults. Two fault classification cases of rolling bearings vibration signals under different
working loads were used to test the proposed method. The first set of analyses inspected
the impact of the compressive sampling rate and the tolerance values on the number of the
selected features The experimental results of bearing faults classification demonstrated that
the proposed method could obtain higher classification accuracy and higher reduction in
the computational time. The higher reduction in the computation time originates from two
causes, (i) using CS that allows us to use a smaller sampling rate as in α = 0.1, 0.2, and 0.3,
and (ii) selecting far fewer features to be used for training the classification algorithm
and for classifying rolling bearing health conditions using the trained classification model.
Finally, our proposed method achieves classification results for all the rolling bearing
vibration datasets A, B, C, and D that are as good as, if not better than, classification results
from the literature on the same vibration bearing datasets.
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