
����������
�������

Citation: Kang, S.; Chung, K.

Preference-Tree-Based Real-Time

Recommendation System. Entropy

2022, 24, 503. https://doi.org/

10.3390/e24040503

Academic Editor: Sotiris Kotsiantis

Received: 21 March 2022

Accepted: 31 March 2022

Published: 2 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Preference-Tree-Based Real-Time Recommendation System
Seongju Kang and Kwangsue Chung *

Department of Electronics and Communications Engineering, Kwangwoon University, Seoul 01897, Korea;
sjkang@cclab.kw.ac.kr
* Correspondence: kchung@kw.ac.kr

Abstract: In the current era of online information overload, recommendation systems are very useful
for helping users locate content that may be of interest to them. A personalized recommendation
system presents content based on information such as a user’s browsing history and the videos
watched. However, information filtering-based recommendation systems are vulnerable to data
sparsity and cold-start problems. Additionally, existing recommendation systems suffer from the
large overhead incurred in learning regression models used for preference prediction or in selecting
groups of similar users. In this study, we propose a preference-tree-based real-time recommendation
system that uses various tree models to predict user preferences with a fast runtime. The proposed
system predicts preferences based on two balance constants and one similarity threshold to rec-
ommend content with a high accuracy while balancing generalized and personalized preferences.
The results of comparative experiments and ablation studies confirm that the proposed system can
accurately recommend content to users. Specifically, we confirmed that the accuracy and novelty of
the recommended content were, respectively, improved by 12.1% and 27.2% compared to existing
systems. Furthermore, we verified that the proposed system satisfies real-time requirements and
mitigates both cold-start and overfitting problems.

Keywords: recommendation systems; information filtering; data sparsity; cold start; preference tree;
real-time requirements

1. Introduction

Current media content platforms provide large amounts of content to users, and users
can utilize keywords to search for preferred content or consume the content presented by
service providers. However, users typically use only narrow content categories with specific
keywords to avoid excessive content appearing in the search results. Thus, information
overload severely affects the utilization efficiency of online data [1]. Recommendation
systems seek to address this issue by selecting and presenting only content that may be of
interest to the user. A personalized recommendation system provides content based on
various types of information, such as the browsing history and the video watch history of
the user.

Early recommendation systems expressed the relationship between users and content
as a matrix and predicted similarity, relevance, and preferences [2–5]. The user-based
filtering recommendation system recommends contents to a target user by predicting the
preferences of other users with a high similarity to those of the target user. Content-based
filtering (CBF) predicts the similarities between contents and recommends contents with
high similarities to the user’s preferred contents. This filtering-based method predicts simi-
larity with a high accuracy using simple operations. However, it functions by performing
matrix operations with large time and space complexities and consequently has scalability
problems. Furthermore, it experiences data sparsity problems for new users and contents
for which there is insufficient related information [6–8].

The collaborative filtering (CF) approach avoids the problems faced by the matrix-
based approach by considering the preferences of both the target user and multiple users.

Entropy 2022, 24, 503. https://doi.org/10.3390/e24040503 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e24040503
https://doi.org/10.3390/e24040503
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0001-8306-2028
https://orcid.org/0000-0002-0283-0900
https://doi.org/10.3390/e24040503
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e24040503?type=check_update&version=1

Entropy 2022, 24, 503 2 of 14

In the CF approach, contents are recommended to a target user based on the historical data
of similar users [9]. The CF-based recommendation system clusters existing and new users
based on user profiles, such as gender, region, and age. Furthermore, it updates similar
groups based on the user’s history to mitigate the data sparsity problem. However, as the
initial preference group for the new user is determined only by the user’s interactions, the
cold-start problem may occur if the initial recommendation is incorrect.

Several researchers have focused on solving the cold-start problem in recommendation
systems. However, existing preference prediction schemes are limited in their consideration
of various factors. With the development of deep-learning (DL) algorithms, the deep
neural network (DNN) model was introduced into recommendation systems. For example,
Chi et al. [10] trained a regression model with a recommendation system based on matrix
factorization (MF) to predict unknown preferences between users and content. MF-based
systems can consider various characteristics by learning from the histories of all users.
Additionally, owing to the characteristics of the regression model, recommendations can be
made with a fast runtime. However, because the MF method is time-invariant, the DNN
model has to be retrained for it to consider new historical data. Furthermore, the data
sparsity problem occurs when the amount of data for model training is insufficient, which
degrades the accuracy of the model.

To predict preferences considering real-time user interactions, a time-variant recom-
mendation system is required. Such a recommendation system must be updated in real
time to predict user preferences, and a non-fixed scalable model is required to incorporate
various factors. In this study, we propose a recommendation system that can predict
real-time preferences based on a preference tree. Specifically, we introduce a tree model
that predicts user preferences and enables the recommendation system to update user
preferences in real time, thereby achieving a time-variant recommendation system. This
study’s main contributions are as follows:

• A time-variant recommendation system is proposed. The proposed system generates
preference trees based on a user’s history, which are then used to create a collaborative
similar graph (CSG). The CSG is then used to define similarity groups to solve the
data sparsity problem for users with insufficient historical data.

• Generalized preferences are considered by creating a federated tree for the entire user
history to solve the cold-start and data-sparsity problems.

The remainder of this paper is organized as follows. Section 2 presents related work
and discusses the limitations of existing recommendation systems. Section 3 describes the
proposed real-time recommendation system. Section 4 presents the performance evaluation
of the proposed recommendation system. Finally, Section 5 presents concluding remarks.

2. Related Work
2.1. Recommendation Systems

Recommendation systems help users select appropriate content from a wide range of
applications [11,12]. Several algorithms have been proposed on the basis of information
filtering schemes that recommend contents to users by considering relevant information. As
illustrated in Figure 1, recommendation systems can be classified into two main approaches:
equation-based and DL-based systems. Equation-based systems formulate a similarity
prediction problem based on a user’s history and implicit information. Examples include
the CBF, CF, and hybrid-filtering (HF) methods. DL-based systems leverage a DNN model
and train a regression model using supervised learning to predict the similarities and
relationships between users and contents, considering all user history data.

CBF has been leveraged to recommend contents on the basis of historical data, such as
rating scores, numbers of uses, and review data [13–15]. In CBF, content preferences are
predicted by inferring relationships among users or between users and contents. To infer
relationships among contents, systems should be aware of the contents’ categorical prop-
erties. Term frequency–inverse document frequency (TF-IDF) methods extract keywords
that estimate categorical weight based on the frequency of appearance [16]. As CBF uses

Entropy 2022, 24, 503 3 of 14

historical data for recommendations, sparsity and overfitting problems are commonplace.
If the amount of historical user data is sparse, the recommendation accuracy may degrade.
However, CBF generally recommends only contents that are similar to those purchased or
liked by the user in the past, as long as they are concentrated into a specific category [17].

Entropy 2022, 24, x FOR PEER REVIEW 3 of 15

Figure 1. Classification of recommendation systems.

CBF has been leveraged to recommend contents on the basis of historical data, such
as rating scores, numbers of uses, and review data [13–15]. In CBF, content preferences
are predicted by inferring relationships among users or between users and contents. To
infer relationships among contents, systems should be aware of the contents’ categorical
properties. Term frequency–inverse document frequency (TF-IDF) methods extract key-
words that estimate categorical weight based on the frequency of appearance [16]. As CBF
uses historical data for recommendations, sparsity and overfitting problems are common-
place. If the amount of historical user data is sparse, the recommendation accuracy may
degrade. However, CBF generally recommends only contents that are similar to those
purchased or liked by the user in the past, as long as they are concentrated into a specific
category [17].

To overcome the shortcomings of CBF, several additional factors should be consid-
ered. To resolve overfitting, both user history and the preferences of similar user groups
should be considered [18–20]. To identify similar groups, CF uses various techniques, such
as Pearson’s correlation coefficient (PCC), cosine similarity, and Euclidean distance. Koohi
et al. [21] proposed a user-based CF fuzzy C-means clustering method for this purpose
and calculated the similarity using cosine similarity. Further, Tan et al. [22] proposed res-
onance similarity based on three distance factors. Genetic algorithms [23] and other inno-
vative equations [24], such as mean-squared difference, have also been applied. HF rec-
ommendation systems combine CBF and CF schemes to overcome the drawbacks of both
[25,26]: CBF schemes overcome the cold-start problem, while CF ensures recommendation
accuracy.

Several DL-based recommendation systems have also been investigated [27,28]. MF,
for example, learns the latent factors of users and contents by considering a historical user-
content matrix to predict interactions. Low-dimensional (low-rank) MF models are popu-
lar as they generate the most accurate predictions [29]. Yi et al. [30] proposed a deep MF
framework that creates a graph based on the user’s historical and implicit feedback data
to calculate similarity via a maximum-likelihood estimation between the user and content.
Chen et al. [31] designed a deep attention-based logistic-regression model for CF in which
a low-dimensional rating matrix between users and contents is learned to address model
limitations [32]. However, because DL-based schemes are time-invariant, they require ad-
ditional DNN training to learn new historical data. Notably, insufficient training data may
result in data-sparsity and cold-start problems.

2.2. Recommendation in Real-Time Systems
Existing recommendation systems manage user and content data in a matrix and ap-

ply matrix operations with large space and time complexities to make predictions. Such
systems are unsuitable for real-time predictions because complexity increases remarkably
with numbers of users and contents. Zhang et al. [33] mitigated quantization loss using a
discrete-factorization machine-learning model. He et al. [34] proposed fast MF schemes to
reduce training and prediction runtimes. Further, Li et al. [35] proposed an all-weighted

Figure 1. Classification of recommendation systems.

To overcome the shortcomings of CBF, several additional factors should be consid-
ered. To resolve overfitting, both user history and the preferences of similar user groups
should be considered [18–20]. To identify similar groups, CF uses various techniques,
such as Pearson’s correlation coefficient (PCC), cosine similarity, and Euclidean distance.
Koohi et al. [21] proposed a user-based CF fuzzy C-means clustering method for this pur-
pose and calculated the similarity using cosine similarity. Further, Tan et al. [22] proposed
resonance similarity based on three distance factors. Genetic algorithms [23] and other
innovative equations [24], such as mean-squared difference, have also been applied. HF
recommendation systems combine CBF and CF schemes to overcome the drawbacks of
both [25,26]: CBF schemes overcome the cold-start problem, while CF ensures recommen-
dation accuracy.

Several DL-based recommendation systems have also been investigated [27,28]. MF,
for example, learns the latent factors of users and contents by considering a historical
user-content matrix to predict interactions. Low-dimensional (low-rank) MF models are
popular as they generate the most accurate predictions [29]. Yi et al. [30] proposed a deep
MF framework that creates a graph based on the user’s historical and implicit feedback
data to calculate similarity via a maximum-likelihood estimation between the user and
content. Chen et al. [31] designed a deep attention-based logistic-regression model for
CF in which a low-dimensional rating matrix between users and contents is learned to
address model limitations [32]. However, because DL-based schemes are time-invariant,
they require additional DNN training to learn new historical data. Notably, insufficient
training data may result in data-sparsity and cold-start problems.

2.2. Recommendation in Real-Time Systems

Existing recommendation systems manage user and content data in a matrix and
apply matrix operations with large space and time complexities to make predictions. Such
systems are unsuitable for real-time predictions because complexity increases remarkably
with numbers of users and contents. Zhang et al. [33] mitigated quantization loss using a
discrete-factorization machine-learning model. He et al. [34] proposed fast MF schemes to
reduce training and prediction runtimes. Further, Li et al. [35] proposed an all-weighted
fast optimization scheme in which a learning algorithm based on element-wise alternating
least squares is applied to optimize the model using variably weighted missing data.
Chen et al. [36] designed a greedy posterior maximum-inference algorithm to mitigate the
NP-hard nondeterministic drawbacks of real-time prediction. However, no solutions yet
exist that can enable matrix operations to support real-time prediction.

Entropy 2022, 24, 503 4 of 14

Several existing systems recommend top-N content based on high ratings. However,
such methods are unsuitable for real-time prediction because they predict preferences
based on historical and implicit data when users are offline. Therefore, a novel data model
is required to replace the matrix construct. Recently, Zhu et al. [37] proposed a tree-based
deep model (TDM) that predicts preferences using iterative learning and a maxheap-like
tree probability formulation. However, it requires fixed-sized trees; hence, it often fails to
classify content properties in detail. In response, Mu et al. [38] and Rathore and Sandeep [39]
proposed decision-tree-based recommendation systems that recommend decisions based
on predefined rules. However, in this case, comprehensive user characteristics cannot
be considered.

In this study, we introduce a tree model to solve the high computational complexity
and low-scalability problems of previous recommendation systems. Additionally, a novel
preference-prediction algorithm is proposed to satisfy the real-time requirements of the
time-variant system.

3. Proposed System

In this section, we introduce the overall framework of the proposed recommendation
system and tree model used for real-time recommendations. Additionally, we describe the
methods and equations used to predict user preferences and propose a recommendation
algorithm based on the federated tree and CSG, which are introduced to solve the problems
of the existing recommendation systems.

3.1. Proposed Recommendation System

Existing recommendation systems represent all elements attributed to users and their
content in a matrix. In the case of CF, a new vector must be included for the corresponding
information when a new user or new content is added. Therefore, existing CF systems have
scalability limitations. Additionally, DL-based recommendation systems have limitations
in personalized recommendations because they predict preferences based on generalized
weights for all users. To address these drawbacks, we propose a lightweight and scalable
recommendation system based on a tree model that considers both personalized and
generalized preferences. Figure 2 illustrates the architecture of the proposed system.
As indicated in the figure, a personalized tree is generated based on the historical data
of each user, and a federated tree is created to predict the generalized preference. The
proposed system creates a CSG to mitigate the cold-start problem that may occur for new
users. Furthermore, it predicts user preferences for content based on three types of trees,
specifically federated, personalized, and similarity trees.

Entropy 2022, 24, x FOR PEER REVIEW 5 of 15

Figure 2. Proposed recommendation system architecture.

3.2. Preference Tree Model
To enable real-time recommendations, we propose a preference-tree model that man-

ages data adaptively, making it suitable for representing hierarchical, categorical content
structures and retrieving attributes within a logarithmic time complexity, making it more
suitable than a matrix. It further reduces computational costs by merging or discarding
redundant or unused data. Figure 3 depicts the proposed structure. The root node con-
tains profile data for identifying users, and all internal and leaf nodes comprise attribute-
based content information reflecting the user’s historical data. Each category is divided
into subcategories, and the longest common-category (LCC) node [40] is used to predict
similarity. As categories are defined based on content properties, the higher the similarity
between contents, the longer the LCC node.

Figure 3. Structure of the proposed preference-tree model.

To infer user preferences based on new content data, conventional systems require
additional processing (e.g., feature-map analyses, similarity comparisons, and model
training). In contrast, the proposed system predicts preferences for new content by deter-
mining the user’s LCC node in the preference tree. To achieve this with a low time com-
plexity, the tree applies an ordered HashMap data structure, which stores key–value
paired data wherein all pairs are sorted based on the key value. For example, Node A is
stored as the pair <Sub Category 2, Node A> in the HashMap of the root node. When the
data are sorted, the target data are retrieved using a binary-tree search, which implies a
logarithmic time complexity. Matrix-based searches require an 𝑂(𝑁) time complexity.
Figure 4 depicts the time complexity of the LC with respect to the number of contents, 𝑁,

Figure 2. Proposed recommendation system architecture.

Entropy 2022, 24, 503 5 of 14

3.2. Preference Tree Model

To enable real-time recommendations, we propose a preference-tree model that man-
ages data adaptively, making it suitable for representing hierarchical, categorical content
structures and retrieving attributes within a logarithmic time complexity, making it more
suitable than a matrix. It further reduces computational costs by merging or discarding
redundant or unused data. Figure 3 depicts the proposed structure. The root node contains
profile data for identifying users, and all internal and leaf nodes comprise attribute-based
content information reflecting the user’s historical data. Each category is divided into sub-
categories, and the longest common-category (LCC) node [40] is used to predict similarity.
As categories are defined based on content properties, the higher the similarity between
contents, the longer the LCC node.

Entropy 2022, 24, x FOR PEER REVIEW 5 of 15

Figure 2. Proposed recommendation system architecture.

3.2. Preference Tree Model
To enable real-time recommendations, we propose a preference-tree model that man-

ages data adaptively, making it suitable for representing hierarchical, categorical content
structures and retrieving attributes within a logarithmic time complexity, making it more
suitable than a matrix. It further reduces computational costs by merging or discarding
redundant or unused data. Figure 3 depicts the proposed structure. The root node con-
tains profile data for identifying users, and all internal and leaf nodes comprise attribute-
based content information reflecting the user’s historical data. Each category is divided
into subcategories, and the longest common-category (LCC) node [40] is used to predict
similarity. As categories are defined based on content properties, the higher the similarity
between contents, the longer the LCC node.

Figure 3. Structure of the proposed preference-tree model.

To infer user preferences based on new content data, conventional systems require
additional processing (e.g., feature-map analyses, similarity comparisons, and model
training). In contrast, the proposed system predicts preferences for new content by deter-
mining the user’s LCC node in the preference tree. To achieve this with a low time com-
plexity, the tree applies an ordered HashMap data structure, which stores key–value
paired data wherein all pairs are sorted based on the key value. For example, Node A is
stored as the pair <Sub Category 2, Node A> in the HashMap of the root node. When the
data are sorted, the target data are retrieved using a binary-tree search, which implies a
logarithmic time complexity. Matrix-based searches require an 𝑂(𝑁) time complexity.
Figure 4 depicts the time complexity of the LC with respect to the number of contents, 𝑁,

Figure 3. Structure of the proposed preference-tree model.

To infer user preferences based on new content data, conventional systems require
additional processing (e.g., feature-map analyses, similarity comparisons, and model train-
ing). In contrast, the proposed system predicts preferences for new content by determining
the user’s LCC node in the preference tree. To achieve this with a low time complexity,
the tree applies an ordered HashMap data structure, which stores key–value paired data
wherein all pairs are sorted based on the key value. For example, Node A is stored as the
pair <Sub Category 2, Node A> in the HashMap of the root node. When the data are sorted,
the target data are retrieved using a binary-tree search, which implies a logarithmic time
complexity. Matrix-based searches require an O(N) time complexity. Figure 4 depicts
the time complexity of the LC with respect to the number of contents, N, resulting in a
O(log2 N) complexity. To depict the worst case, assume that the LCC performs similarity
comparisons at every node. Hence, a maximum O(log2 N × log2 N) operation is applied.
If N > 1000, a significant performance difference begins to appear when comparing
matrix performances.

Entropy 2022, 24, 503 6 of 14

Entropy 2022, 24, x FOR PEER REVIEW 6 of 15

resulting in a 𝑂(log 𝑁) complexity. To depict the worst case, assume that the LCC per-
forms similarity comparisons at every node. Hence, a maximum 𝑂(log 𝑁 × log 𝑁) op-
eration is applied. If 𝑁 > 1000, a significant performance difference begins to appear
when comparing matrix performances.

Figure 4. Time complexities of the data search with matrix and ordered HashMap.

3.3. Tree Model Formulation
The proposed recommendation system generates a personalized preference tree us-

ing historical data. The tree model contains nodes containing the attributes of hierarchical,
categorical contents. Table 1 describes the node components. We consider 𝑐 to be a cate-
gory name mapped into a short string to reduce the comparison complexity, and 𝑛 is
the number of 𝑐s in the user’s historical data. 𝑁 indicates the number of child nodes
of node 𝑐, and 𝑑 denotes depth. The value of 𝑑 begins from zero at the root node and is
incremented by one as it moves toward the child node. Therefore, 𝑑 reflects the level of
detailed granularity and 𝑐 represents content characteristics. 𝑑 denotes the largest 𝑑 of the descendant node and represents the maximum granularity of the category. We
consider 𝑃 to be the preference for node 𝑐.

Table 1. Components of the preference-tree node.

Component Description 𝑐 Mapped category code of the node 𝑛 Number of category 𝑐s in user’s historical data 𝑁 Child nodes of the category 𝑐 node 𝑑 Depth of the category 𝑐 node 𝑛 Total number of categories at depth 𝑑 𝑑 Maximum depth of the descendant node 𝑃 User preference for the category 𝑐 node 𝑤 Weight of historical data in the 𝑖𝑡ℎ section

We calculated 𝑃 using Equation (1), where and represent the normalized
terms for the depth and breadth, respectively. These two expressions were adopted to
improve the accuracy of the recommendations. 𝛼 denotes a constant value for the depth
or breadth depending on whether the preference tree considers personalized characteris-
tics or novelty. To consider the recent user preferences, historical data are divided into s
sections and assigned different weights; 𝑤 denotes the weight of the 𝑖th section.

Figure 4. Time complexities of the data search with matrix and ordered HashMap.

3.3. Tree Model Formulation

The proposed recommendation system generates a personalized preference tree using
historical data. The tree model contains nodes containing the attributes of hierarchical,
categorical contents. Table 1 describes the node components. We consider c to be a category
name mapped into a short string to reduce the comparison complexity, and nc is the number
of cs in the user’s historical data. Nchild indicates the number of child nodes of node c, and d
denotes depth. The value of d begins from zero at the root node and is incremented by one
as it moves toward the child node. Therefore, d reflects the level of detailed granularity and
c represents content characteristics. dmax denotes the largest dc of the descendant node and
represents the maximum granularity of the category. We consider Pc to be the preference
for node c.

Table 1. Components of the preference-tree node.

Component Description

c Mapped category code of the node
nc Number of category cs in user’s historical data

Nchild Child nodes of the category c node
dc Depth of the category c node
nd Total number of categories at depth d

dmax Maximum depth of the descendant node
Pc User preference for the category c node
wi Weight of historical data in the ith section

We calculated Pc using Equation (1), where dc
dmax

and nc
nd

represent the normalized
terms for the depth and breadth, respectively. These two expressions were adopted to
improve the accuracy of the recommendations. α denotes a constant value for the depth or
breadth depending on whether the preference tree considers personalized characteristics or
novelty. To consider the recent user preferences, historical data are divided into s sections
and assigned different weights; wi denotes the weight of the ith section.

Pc =
N

∑
i=1

((1− α)× dc

dmax
+ α× nc

nd
)× wi (1)

3.4. Federated Tree

The personalized preference tree predicts the preference for content based on the
user history. However, cold-start and data-sparsity problems may occur for a new user
with an insufficient history or a user with a history of only a specific category. To address
these problems, we propose a federated tree based on categories to predict generalized

Entropy 2022, 24, 503 7 of 14

preferences. As the federation tree is generated based on the historical data of all users,
it includes preferences for all categories. The proposed system facilitates the inference of
the generalized preference score via the federated tree. When a federated tree is created
using all historical data, the size of the tree increases, thereby incurring a long runtime. In
this study, the historical data were sampled individually with a probability of ρ for all user
histories to create a federated tree. Figure 5 depicts the average runtime and error of the
preference score between the federated tree generated using all the data and that of the
federated tree sampled according to ρ. We verified that the error in preference prediction is
not significant despite generating a federated tree based on only sampled data rather than
all historical data.

Entropy 2022, 24, x FOR PEER REVIEW 7 of 15

𝑃 = ((1 − 𝛼) × 𝑑𝑑 + 𝛼 × 𝑛𝑛) × 𝑤 (1)

3.4. Federated Tree
The personalized preference tree predicts the preference for content based on the user

history. However, cold-start and data-sparsity problems may occur for a new user with
an insufficient history or a user with a history of only a specific category. To address these
problems, we propose a federated tree based on categories to predict generalized prefer-
ences. As the federation tree is generated based on the historical data of all users, it in-
cludes preferences for all categories. The proposed system facilitates the inference of the
generalized preference score via the federated tree. When a federated tree is created using
all historical data, the size of the tree increases, thereby incurring a long runtime. In this
study, the historical data were sampled individually with a probability of 𝜌 for all user
histories to create a federated tree. Figure 5 depicts the average runtime and error of the
preference score between the federated tree generated using all the data and that of the
federated tree sampled according to 𝜌. We verified that the error in preference prediction
is not significant despite generating a federated tree based on only sampled data rather
than all historical data.

Figure 5. Average runtime and error of preference scores according to probability 𝜌.

3.5. Similarity Tree
For similarity-based CF between user preference trees, we developed the similarity

relationship as a graph. A CSG used to define similarity groups is depicted in Figure 6.
The vertices of the graph correspond to the preference tree for each user, and the weight
of the edge connecting two vertices indicates the similarity between the preference trees.
The complete graph facilitates the prediction of the similarity for all users. However, it is
computation-intensive because the spatial complexity for 𝑛 vertices is 𝑂(𝑛2).

Figure 5. Average runtime and error of preference scores according to probability ρ.

3.5. Similarity Tree

For similarity-based CF between user preference trees, we developed the similarity
relationship as a graph. A CSG used to define similarity groups is depicted in Figure 6.
The vertices of the graph correspond to the preference tree for each user, and the weight
of the edge connecting two vertices indicates the similarity between the preference trees.
The complete graph facilitates the prediction of the similarity for all users. However, it is
computation-intensive because the spatial complexity for n vertices is O

(
n2).

Entropy 2022, 24, x FOR PEER REVIEW 8 of 15

Figure 6. Example of collaborative similarity graph.

In this study, we propose a CSG based on the maximum-spanning tree (MST) to con-
struct a graph of similarity between users, as illustrated in Figure 6. The similarity S be-
tween the preference trees is calculated as the sum of the products of the preference scores
of all commonly existing nodes in the preference trees of two users. Therefore, when the
numbers of nodes in the preference tree of users A and B are 𝑁 and 𝑀, respectively, the
similarity 𝑆 , is calculated with the time complexity 𝑂(𝑁 × log 𝑀 × log 𝑀). Algorithm
1 outlines the similarity score procedure. In a similar graph of the MST structure, it is
possible to rapidly search for groups to perform CF based on the similarity threshold 𝛾.

Algorithm 1. Computing similarity between users A and B
Input: Preference tree 𝑇𝑟𝑒𝑒 and 𝑇𝑟𝑒𝑒
Output: 𝑆 ,
1: Initialize 𝑆 , to 0
2: procedure getSimilar(𝑇𝑟𝑒𝑒) do
3: let S be a stack
4: for all node in 𝑇𝑟𝑒𝑒
5: S.push(node)
6: while S is not empty do
7: 𝑛 = S.pop()
8: find 𝑛 in 𝑇𝑟𝑒𝑒
9: if 𝑛 is exist
10: 𝑆 , ← 𝑆 , + 𝑛 × 𝑛
11: return 𝑆 ,

3.6. Recommendation Algorithm
Existing recommendation systems operate based on the top-N method to determine

the contents to be recommended when a user is offline. Consequently, it is difficult for the
top-N method to satisfy real-time requirements. To realize real-time recommendation, our
proposed recommendation algorithm is based on the personalized tree, federated tree,
and CSG. The user-preference score for content, 𝑃, is computed using Equation (2): 𝑃 = 𝛽 × (𝐹 + 𝐶𝑆) + (1 − 𝛽) × 𝑃 (2)

where 𝐹 and 𝐶𝑆 denote the predicted preference scores for the LCC node in the fed-
erated tree and CSG, respectively. As 𝐹 and 𝑃 indicate the preferences for the LCC
nodes in each tree, they are calculated using Equation (1). 𝐶𝑆 is the average of 𝑃 in
the similarity trees of a collaborative group exhibiting a similarity of 𝛾 or higher to the
target user, as indicated in Equation (3):

Figure 6. Example of collaborative similarity graph.

In this study, we propose a CSG based on the maximum-spanning tree (MST) to
construct a graph of similarity between users, as illustrated in Figure 6. The similarity
S between the preference trees is calculated as the sum of the products of the preference
scores of all commonly existing nodes in the preference trees of two users. Therefore,
when the numbers of nodes in the preference tree of users A and B are N and M, respec-

Entropy 2022, 24, 503 8 of 14

tively, the similarity SA,B is calculated with the time complexity O(N × log2 M× log2 M).
Algorithm 1 outlines the similarity score procedure. In a similar graph of the MST structure,
it is possible to rapidly search for groups to perform CF based on the similarity threshold γ.

Algorithm 1. Computing similarity between users A and B

Input: Preference tree TreeA and TreeB

Output: SA,B
1: Initialize SA,B to 0
2: procedure getSimilar

(
TreeA) do

3: let S be a stack
4: for all node in TreeA

5: S.push(node)
6: while S is not empty do
7: nA

c = S.pop()
8: find nB

c in TreeB

9: if nB
c is exist

10: SA,B ← SA,B + nA
c × nB

c
11: return SA,B

3.6. Recommendation Algorithm

Existing recommendation systems operate based on the top-N method to determine
the contents to be recommended when a user is offline. Consequently, it is difficult for the
top-N method to satisfy real-time requirements. To realize real-time recommendation, our
proposed recommendation algorithm is based on the personalized tree, federated tree, and
CSG. The user-preference score for content, P, is computed using Equation (2):

P = β× (Flcc + CSlcc) + (1− β)× Plcc (2)

where Flcc and CSlcc denote the predicted preference scores for the LCC node in the fed-
erated tree and CSG, respectively. As Flcc and Plcc indicate the preferences for the LCC
nodes in each tree, they are calculated using Equation (1). CSlcc is the average of Plcc in the
similarity trees of a collaborative group exhibiting a similarity of γ or higher to the target
user, as indicated in Equation (3):

CSlcc =
1
N
×

N

∑
i=1

Pi
lcc (3)

where N denotes the number of users in the similarity group and Pi
lcc is the Plcc of the ith

user. To recommend content to the user in real time, the recommendation is determined on
the basis of an output sigmoid activation function for input P. The sigmoid output Osig
for P is calculated using Equation (4). In this case, the content is recommended to the user
only if Osig is greater than 0.5.

Osig =
1

1 + e−P (4)

4. Experimental Evaluation
4.1. Dataset

Experiments were performed using large-scale real-world Amazon product data [41,42].
The Amazon dataset comprised 24 primary categories, each including item attributes,
historical data, and review data. In this study, we used the “electronic” category, which
comprised 2673 users, 130,054 reviews, and 55,101 items as the dataset. The dataset was
classified into 1541 categories, and the rating scores assigned to the items varied between
one and five points. We defined items with rating scores between one and two points as low-
preference items and those with scores between three and five points as high-preference
items. To evaluate the performance of the proposed system, we used approximately

Entropy 2022, 24, 503 9 of 14

100,000 data points to generate the preference-tree model, and the remaining data were
used for testing.

4.2. Evaluation Metrics

We evaluated four metrics—precision, recall, F1-measure, and accuracy—defined by
Equations (5)–(8), respectively [43]. A true positive (TP) refers to the case in which high-
preference content was recommended, and a true negative (TN) refers to the case in which
low-preference content was not recommended. Conversely, a false positive (FP) indicates
a recommendation of low-preference content, and a false negative (FN) indicates content
with a high preference not being recommended. The precision denotes the proportion of
predicted positive cases that are correctly identified as TPs. The recall is the proportion of
TP cases that is correctly predicted, indicating the hit ratio of the recommendation results.
The F1-measure is the harmonic mean of both the precision and recall and, in this study,
represents a performance evaluation considering the trade-off between precision and recall.

Precision =
TP

TP + FP
(5)

Recall =
TP

TP + FN
(6)

F1−measure =
2× Precision× Recall

Precision + Recall
(7)

Accuracy =
TP + TN

TP + TN + FP + FN
(8)

Furthermore, we evaluated novelty, which is the proportion of unknown items that
do not exist in a personalized tree over the total number of items in the recommendation
list. A total of N items were recommended; if the personalized preference for the ith item is
Pi

lcc, novelty can be calculated using Equation (9):

Novelty =
∑N

i=1 Pi
lcc

N
(9)

4.3. Experimental Environment

To evaluate the performance of the proposed recommendation system, we conducted
a comparative experiment with max-heap-tree-, collaborative-, knowledge-, and MF-based
recommendation systems. The experiments were performed on a desktop computer
equipped with an Intel Core i7-10700K CPU and 16 GB of RAM. The MF-based recommen-
dation system was implemented using the PyTorch framework, whereas the other schemes
were implemented using the Eclipse framework. To conduct comparative experiments
using the knowledge CF recommendation system, we designed an ontology based on a
decision tree using Protégé [44]. Furthermore, we used the Jena framework to develop
semantic functions [45].

4.4. Results

We conducted the first experiment by changing the constant α to determine whether
the proposed preference tree is suitable for the recommendation system. Table 2 lists
the average of the metrics measured based on the value of α. In this experiment, the
values of β and γ were set to 0.5. The two factors affecting the similarity prediction are
breadth and depth, which indicate diversity and granularity, respectively. As the value of α
increased and decreased, the recommendation system focused on diversity and granularity,
respectively. We observed that these two factors with α = 0.5 exhibited the best performance
when the effects on the preference prediction were balanced. This observation validated
that the proposed system performs best when the diversity and granularity of trees are
considered at the same rate during the prediction of preferences. Therefore, the proposed

Entropy 2022, 24, 503 10 of 14

preference-tree model is not biased toward diversity or granularity. This result confirms
that the proposed preference-tree model is suitable for predicting user preferences.

Table 2. Average values of precision, recall, F1-measure, accuracy, and novelty measured based on α.
The values of β and γ were set to 0.5.

α Precision Recall F1-Measure Accuracy Novelty

0.3 0.659 0.713 0.685 0.596 0.285
0.4 0.633 0.737 0.681 0.579 0.224
0.5 0.646 0.725 0.683 0.588 0.302
0.6 0.635 0.739 0.683 0.570 0.331
0.7 0.620 0.739 0.674 0.571 0.275
0.8 0.604 0.689 0.644 0.543 0.292

In the second experiment, we evaluated the performance of the similarity tree, which
prevents the recommendation system from overfitting the historical data. Table 3 lists the
average metrics based on the similarity threshold γ. During the experiments, the values of
α and β were set to 0.5. When γ = 0.4, the similarity tree included a preference tree with a
low relevance. As the value of γ was small, a personalized tree with a low similarity was
included in the preference prediction. Therefore, a wide range of recommendations could
be made. We observed that the novelty was highest when γ was 0.4. Conversely, when γ
was 0.7, precision and recall exhibited their best performances because the recommendation
system considered a similarity tree. However, as the personalized tree significantly influ-
ences the preference prediction, the novelty performance was lowest when γ was set to a
large value. In subsequent experiments, γ was set to 0.5 to ensure that the recommendation
system could balance the user preference characteristics and novelty.

Table 3. Average values of precision, recall, F1-measure, accuracy, and novelty measured based on γ.
The values of α and β were set to 0.5.

γ Precision Recall F1-Measure Accuracy Novelty

0.4 0.584 0.661 0.620 0.545 0.329
0.5 0.601 0.685 0.641 0.578 0.302
0.6 0.612 0.747 0.673 0.582 0.285
0.7 0.619 0.751 0.678 0.589 0.224

In the third experiment, we evaluated the effect of the proportional constant β of the
personalized, federated, and similarity trees on the performance of the recommendation sys-
tem. Federated and similarity trees predict generalized preferences, whereas personalized
trees predict personalized preferences. Table 4 summarizes the average measured values of
the five metrics based on the value of β. As was confirmed in the second experiment, the
federated and similarity trees mitigated the overfitting problem by reducing the influence of
personalized recommendations. Additionally, as the value of β decreased, the performance
of the novelty was low while that of the recall was high. Based on previous experiments,
we confirmed that the recommendation system ensures novelty while maintaining a high
accuracy at α = γ = 0.5 and β = 0.6.

Entropy 2022, 24, 503 11 of 14

Table 4. Average values of precision, recall, F1-measure, accuracy, and novelty measured based on β.
The values of α and γ were set to 0.5.

β Precision Recall F1-Measure Accuracy Novelty

0.3 0.572 0.739 0.645 0.550 0.234
0.4 0.598 0.742 0.662 0.556 0.299
0.5 0.601 0.685 0.641 0.578 0.372
0.6 0.606 0.709 0.653 0.588 0.385
0.7 0.601 0.699 0.647 0.572 0.424
0.8 0.625 0.656 0.640 0.559 0.422

To evaluate the performance of the proposed recommendation system, we conducted
comparative experiments using MF-, max-heap-tree-, and knowledge-based recommenda-
tion systems. Furthermore, we conducted an ablation study to evaluate the performance
of the proposed federated, personalized preference, and similarity trees. The MF- and
knowledge-based schemes measure metrics using the top-N method, with which N is set
to 20.

Table 5 summarizes the performance evaluated based on the five metrics of the com-
pared recommendation schemes. Proposed Scheme A exhibited a low novelty performance
because it predicts preferences based on a personalized preference tree. As Proposed
Schemes B and C predict preferences based on federated and similarity trees, respectively,
the novelty and recall performance improved in comparison with that of Proposed Scheme
A. These results indicate that an overfitting problem may occur when the recommenda-
tion system considers only the personalized preference tree. As the max-heap-tree-based
system predicts preferences based on the maximum preference score for each node, it
has difficulty considering various factors during the preference prediction. Consequently,
the max-heap-tree-based scheme exhibited the lowest performance for all the metrics.
The MF-based recommendation system has better novelty and accuracy performances
than Proposed Scheme A because it predicts the preference based on only generalized
preferences. However, both the max-heap-tree- and MF-based methods are unsuitable
for real-time recommendations because they recommend items using the top-N method.
The knowledge-based scheme predicts preferences based on the TF-IDF similarity vector
between items; it exhibits the best performance in terms of precision. However, as the
prediction of preferences is impossible for items that do not exist in the TF-IDF vector,
we did not measure its novelty performance. In the case of Proposed Scheme D, which
predicts the preference based on all trees, its accuracy and novelty performances were
the highest among the compared schemes. Based on these experimental results, we con-
firmed that recommendation systems using the three types of trees can recommend with
high accuracies.

Table 5. Average values of precision, recall, F1-measure, accuracy, and novelty measured with
α = γ = 0.5 and β = 0.6. Proposed Scheme A uses personalized tree. Proposed Scheme B uses per-
sonalized and federated trees. Proposed Scheme C uses personalized and similarity trees. Proposed
Scheme D uses personalized, federated, and similarity trees.

Scheme Precision Recall F1-Measure Accuracy Novelty

Proposed Scheme A 0.581 0.704 0.637 0.513 0.188
Proposed Scheme B 0.554 0.759 0.640 0.588 0.341
Proposed Scheme C 0.583 0.722 0.645 0.529 0.332
Proposed Scheme D 0.606 0.709 0.653 0.588 0.385

MF-based 0.590 0.682 0.633 0.544 0.229
Max-heap-tree-based 0.553 0.611 0.581 0.467 0.113

Knowledge-based 0.718 0.633 0.673 0.575 NAN

Finally, we evaluated the runtimes when updating the proposed tree models and predict-
ing their preferences. The runtimes were measured using approximately 100,000 historical

Entropy 2022, 24, 503 12 of 14

data points used in the previous experiment. Figure 7 illustrates the runtime results for
Proposed Schemes A, B, C, and D. We observed that Proposed Scheme B used additional
federated trees, which increased the runtime slightly compared with that of Proposed
Scheme A. Proposed Scheme C exhibited a significantly increased runtime compared with
that of Proposed Scheme A because it has to identify similarity groups and search for LCC
nodes in similarity trees. In the case of Proposed Scheme D, the tree updating runtime
was measured to be 9.11 s, which is the largest runtime as all federated, personalized,
and similarity trees should be updated. However, Proposed Scheme D can be applied
in a real-time recommendation system because it is possible to predict user preferences
within approximately 0.13 s. Consequently, the proposed recommendation system satisfies
real-time requirements and provides a better prediction performance than existing systems
without additional computations or requirements.

Entropy 2022, 24, x FOR PEER REVIEW 12 of 15

vector, we did not measure its novelty performance. In the case of Proposed Scheme D,
which predicts the preference based on all trees, its accuracy and novelty performances
were the highest among the compared schemes. Based on these experimental results, we
confirmed that recommendation systems using the three types of trees can recommend
with high accuracies.

Table 5. Average values of precision, recall, F1-measure, accuracy, and novelty measured with 𝛼 = 𝛾 = 0.5 and 𝛽 = 0.6. Proposed Scheme A uses personalized tree. Proposed Scheme B uses personal-
ized and federated trees. Proposed Scheme C uses personalized and similarity trees. Proposed
Scheme D uses personalized, federated, and similarity trees.

Scheme Precision Recall F1-Measure Accuracy Novelty
Proposed Scheme A 0.581 0.704 0.637 0.513 0.188
Proposed Scheme B 0.554 0.759 0.640 0.588 0.341
Proposed Scheme C 0.583 0.722 0.645 0.529 0.332
Proposed Scheme D 0.606 0.709 0.653 0.588 0.385

MF-based 0.590 0.682 0.633 0.544 0.229
Max-heap-tree-based 0.553 0.611 0.581 0.467 0.113

Knowledge-based 0.718 0.633 0.673 0.575 NAN

Finally, we evaluated the runtimes when updating the proposed tree models and
predicting their preferences. The runtimes were measured using approximately 100,000
historical data points used in the previous experiment. Figure 7 illustrates the runtime
results for Proposed Schemes A, B, C, and D. We observed that Proposed Scheme B used
additional federated trees, which increased the runtime slightly compared with that of
Proposed Scheme A. Proposed Scheme C exhibited a significantly increased runtime com-
pared with that of Proposed Scheme A because it has to identify similarity groups and
search for LCC nodes in similarity trees. In the case of Proposed Scheme D, the tree up-
dating runtime was measured to be 9.11 s, which is the largest runtime as all federated,
personalized, and similarity trees should be updated. However, Proposed Scheme D can
be applied in a real-time recommendation system because it is possible to predict user
preferences within approximately 0.13 s. Consequently, the proposed recommendation
system satisfies real-time requirements and provides a better prediction performance than
existing systems without additional computations or requirements.

Figure 7. Execution time required for updating the tree and predicting preferences.

5. Conclusions
In this study, we proposed a preference-tree-based real-time recommendation sys-

tem to avoid information overload. Most existing recommendation systems suffer from a

Figure 7. Execution time required for updating the tree and predicting preferences.

5. Conclusions

In this study, we proposed a preference-tree-based real-time recommendation system
to avoid information overload. Most existing recommendation systems suffer from a
large overhead incurred in learning regression models used for preference prediction or
in selecting groups of similar users. To realize real-time recommendations, we developed
various tree models that can predict user preferences with fast runtimes using federated,
personalized preference, and similarity trees. The proposed system predicts preferences
based on two balance constants and one similarity threshold to recommend items with a
high accuracy while balancing both generalized and personalized preferences. To achieve
a time-variant recommendation system, we employ an ordered HashMap data structure
for fast tree searching and updating. The results of comparative experiments conducted
to determine the constant values and thresholds confirmed that the proposed system
facilitates the accurate recommendation of items to a target user. Additionally, we observed
that the novelty performance of the proposed system is improved when generalized
preferences are predicted based on both federated and similarity trees. In conclusion, we
verified that the proposed recommendation system satisfies real-time requirements and
mitigates both the cold-start and overfitting problems that are generally observed in existing
systems. However, the proposed recommendation system predicts preferences through
fixed parameters. That is, it performs recommendations using the same algorithm without
differentiating between new and existing users. In future work, we plan to design a novel
algorithm that analyzes the patterns of historical user data and develop a highly accurate
recommendation algorithm using dynamic parameters for federated and similarity trees.

Author Contributions: Conceptualization, S.K. and K.C.; methodology, S.K.; software, S.K.; valida-
tion, S.K. and K.C.; investigation, S.K.; resources, S.K.; data curation, S.K.; writing—original draft

Entropy 2022, 24, 503 13 of 14

preparation, S.K. and K.C.; writing—review and editing, S.K. and K.C. All authors have read and
agreed to the published version of the manuscript.

Funding: The present research has been conducted by the Research Grant of Kwangwoon University
in 2022.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Yin, C.; Shi, L.; Sun, R.; Wang, J. Improved collaborative filtering recommendation algorithm based on differential privacy

protection. J. Supercomput. 2020, 76, 253–258. [CrossRef]
2. Bradley, K.; Smyth, B. Improving Recommendation Diversity. In Proceedings of the Twelfth Irish Conference on Artificial

Intelligence and Cognitive Science, Maynooth, Ireland, 29 May 2022.
3. Mcfee, B.; Barrington, L.; Lanckeriet, G. Learning content similarity for music recommendation. IEEE Trans. Audio Speech Lang.

Process. 2012, 20, 2207–2218. [CrossRef]
4. Yang, B.; Mei, T.; Hua, X.-S.; Yang, L.; Yang, S.-Q.; Li, M. Online Video Recommendation Based on Multimodal Fusion and

Relevance Feedback. In Proceedings of the 6th ACM International Conference on Image and Video Retrieval, Amsterdam,
The Netherlands, 9–11 July 2007.

5. Mei, T.; Yang, B.; Hua, X.-S.; Yang, L.; Yang, S.-Q.; Li, S. Videoreach: An Online Video Recommendation System. In Proceedings
of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Amsterdam,
The Netherlands, 23–27 July 2007.

6. Yin, H.; Wang, Q.; Zheng, K.; Li, Z.; Zhou, X. Overcoming data sparsity in group recommendation. IEEE Trans. Knowl. Data Eng.
2020, 210–219. [CrossRef]

7. Kumar, P.; Ramjeevan, S.T. Recommendation system techniques and related issues: A survey. Inter. J. Inf. Technol. 2018,
10, 495–501. [CrossRef]

8. Hu, Y.; Qimin, P.; Xiaohui, H. A Time-Aware and Data Sparsity Tolerant Approach for Web Service Recommendation. In
Proceedings of the 2014 IEEE International Conference on Web Services, Anchorage, AK, USA, 27 June–2 July 2014.

9. Schafer, J.B.; Frankowski, D.; Herlocker, J.; Sen, S. Collaborative Filtering Recommender Systems; The Adaptive Web. Lec-
ture Notes in Computer Science; Brusilovsky, P., Kobsa, A., Nejdl, W., Eds.; Springer: Berlin/Heidelberg, Germany, 2007;
Volume 4321, pp. 291–324.

10. Chi, Y.; Yue, M.L.; Yuxin, C. Nonconvex optimization meets low-rank matrix factorization: An overview. IEEE Trans. Signal
Process. 2019, 67, 5239–5269. [CrossRef]

11. Bobadilla, J.; Ortega, F.; Hernando, F.; Gutiérrez, A. Recommender systems survey. Knowl. Based Syst. 2013, 46, 109–132. [CrossRef]
12. Mohamed, M.H.; Mohamed, H.K.; Mohamed, H.I. Recommender Systems Challenges and Solutions Survey. In Proceedings of

the 2019 International Conference on Innovative Trends in Computer Engineering (ITCE), Aswan, Egypt, 2–4 February 2019.
13. Reddy, S.R.S.; Nalluri, S.; Kunisetti, S.; Ashok, S.; Venkatesh, B. Content-based movie recommendation system using genre

correlation. In Smart Intelligent Computing and Applications; Suresh, C., Vikrant, B.D., Eds.; Springer: Singapore, 2019; pp. 391–397.
14. Wang, D.; Liang, Y.; Xu, D.; Feng, X.; Guan, R. A content-based recommender system for computer science publications. Knowl.

Based Syst. 2018, 157, 1–9. [CrossRef]
15. Badriyah, T.; Azvy, S.; Yuwono, W.; Syarif, I. Recommendation System for Property Search Using Content based Filtering Method.

In Proceedings of the 2018 International Conference on Information and Communications Technology (ICOIACT), Bandung,
Indonesia, 2 August 2022.

16. Zhu, Z.; Liang, J.; Li, D.; Yu, H.; Liu, G. Hot topic detection based on a refined TF-IDF algorithm. IEEE Access 2019, 7, 26996–27007.
[CrossRef]

17. Ben-Porat, O.; Moshe, T. A game-theoretic approach to recommendation systems with strategic content providers. In Proceedings
of the 32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montreal, QC, Canada, 3–8 December 2018.

18. Nilashi, M.; Othman, I.; Karamollah, B. A recommender system based on collaborative filtering using ontology and dimensionality
reduction techniques. Expert Syst. Appl. 2018, 92, 507–520. [CrossRef]

19. Koohi, H.; Kourosh, K. A new method to find neighbor users that improves the performance of collaborative filtering. Expert Syst.
Appl. 2017, 83, 30–39. [CrossRef]

20. Xue, F.; He, X.; Wang, X.; Xu, J.; Liu, K.; Hong, R. Deep item-based collaborative filtering for top-n recommendation. ACM Trans.
Info. Syst. (TOIS) 2019, 37, 1–25. [CrossRef]

21. Koohi, H.; Kourosh, K. User based collaborative filtering using fuzzy C-means. Measurement 2016, 91, 134–139. [CrossRef]
22. Tan, Z.; Liangliang, H. An efficient similarity measure for user-based collaborative filtering recommender systems inspired by the

physical resonance principle. IEEE Access 2017, 5, 27211–27228. [CrossRef]

http://doi.org/10.1007/s11227-019-02751-7
http://doi.org/10.1109/TASL.2012.2199109
http://doi.org/10.1109/TKDE.2020.3023787
http://doi.org/10.1007/s41870-018-0138-8
http://doi.org/10.1109/TSP.2019.2937282
http://doi.org/10.1016/j.knosys.2013.03.012
http://doi.org/10.1016/j.knosys.2018.05.001
http://doi.org/10.1109/ACCESS.2019.2893980
http://doi.org/10.1016/j.eswa.2017.09.058
http://doi.org/10.1016/j.eswa.2017.04.027
http://doi.org/10.1145/3314578
http://doi.org/10.1016/j.measurement.2016.05.058
http://doi.org/10.1109/ACCESS.2017.2778424

Entropy 2022, 24, 503 14 of 14

23. Ar, Y.; Erkan, B. A genetic algorithm solution to the collaborative filtering problem. Expert Syst. Appl. 2016, 61, 122–128. [CrossRef]
24. Al Hassanieh, L.; Jaoudeh, C.A.; Abdo, J.B.; Demerjian, J. Similarity Measures for Collaborative Filtering Recommender Systems.

In Proceedings of the 2018 IEEE Middle East and North Africa Communications Conference (MENACOMM), Jounieh, Lebanon,
18–20 April 2018.

25. Park, Y.; Jinoh, O.; Hwanjo, Y. RecTime: Real-time recommender system for online broadcasting. Inf. Sci. 2017, 409, 1–16.
[CrossRef]

26. Xu, M.; Shenghao, L. Semantic-enhanced and context-aware hybrid collaborative filtering for event recommendation in event-
based social networks. IEEE Access 2019, 7, 17493–17502. [CrossRef]

27. Wei, J.; He, J.; Chen, K.; Zhou, Y.; Tang, Z. Collaborative filtering and deep learning based recommendation system for cold start
items. Expert Syst. Appl. 2017, 69, 29–39. [CrossRef]

28. Zhang, S.; Yao, L.; Sun, A.; Tay, Y. Deep learning based recommender system: A survey and new perspectives. ACM Comput.
Surveys (CSUR) 2019, 52, 1–38. [CrossRef]

29. Su, Y.; Hong, D.; Li, Y.; Jing, P. Low-rank regularized deep collaborative matrix factorization for micro-video multi-label
classification. IEEE Signal Process. Lett. 2020, 27, 740–744. [CrossRef]

30. Yi, B. Deep matrix factorization with implicit feedback embedding for recommendation system. IEEE Trans. Ind. Informat. 2019,
15, 4591–4601. [CrossRef]

31. Chen, J.; Wang, X.; Zhao, S.; Qian, F.; Zhang, Y. Deep attention user-based collaborative filtering for recommendation. Neurocom-
puting 2020, 383, 57–68. [CrossRef]

32. Fu, M.; Qu, H.; Yi, Z.; Lu, L.; Liu, Y. A novel deep learning-based collaborative filtering model for recommendation system. IEEE
Trans. Cybern. 2018, 49, 1084–1096. [CrossRef]

33. Zhang, Y.; Yin, H.; Huang, Z.; Du, X.; Yang, G.; Lian, D. Discrete Deep Learning for Fast Content-Aware Recommendation.
In Proceedings of the Eleventh ACM International Conference on Web Search and DATA mining, Marina Del Rey, CA, USA,
5–9 February 2018.

34. He, X.; Zhang, H.; Kan, M.-Y.; Chua, T.-S. Fast matrix factorization for Online Recommendation with Implicit Feedback. In
Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval, Pisa, Italy,
17–21 July 2016.

35. Li, H.; Diao, X.; Cao, J.; Zheng, Q. Collaborative filtering recommendation based on all-weighted matrix factorization and fast
optimization. IEEE Access 2018, 6, 25248–25260. [CrossRef]

36. Chen, L.; Guoxin, Z.; Eric, Z. Fast greedy map inference for determinantal point process to improve recommendation diversity.
In Proceedings of the 32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montreal, QC, Canada,
3–8 December 2018.

37. Zhu, H.; Li, X.; Zhang, P.; Li, G.; He, J.; Li, H.; Gai, K. Learning Tree-Based Deep Model for Recommender Systems. In Proceedings
of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, London, UK, 19–23 August 2018.

38. Mu, Y.; Xiaodong, L.; Lidong, W. A Pearson’s correlation coefficient based decision tree and its parallel implementation. Inf. Sci.
2018, 435, 40–58. [CrossRef]

39. Rathore, S.S.; Sandeep, K. A decision tree logic based recommendation system to select software fault prediction techniques.
Computing 2017, 99, 255–285. [CrossRef]

40. Kang, S.; Jeong, C.; Chung, K. Tree-based real-time advertisement recommendation system in online broadcasting. IEEE Access
2020, 8, 192693–192702. [CrossRef]

41. He, R.; Julian, M. Ups and Downs: Modeling the Visual Evolution of Fashion Trends with One-Class Collaborative Filtering. In
Proceedings of the 25th International Conference on World Wide Web, Montréal, QC, Canada, 11–15 April 2016.

42. McAuley, J.; Targett, C.; Shi, Q.; van den Hengel, A. Image-Based Recommendations on Styles and Substitutes. In Proceedings
of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval, Santiago, Chile,
9–13 August 2015.

43. Powers, D.M. Evaluation: From precision, recall and F-measure to ROC, informedness, markedness and correlation. J. Mach.
Learn. Tech. 2011, 2, 37–63.

44. Noy, N.F.; Sintek, M.; Decker, S.; Crubezy, M.; Fergerson, R.W. Creating semantic web contents with protege-2000. IEEE Intell.
Syst. 2001, 16, 60–71. [CrossRef]

45. McBride, B. Jena: A semantic web toolkit. IEEE Internet Comput. 2002, 6, 55–59. [CrossRef]

http://doi.org/10.1016/j.eswa.2016.05.021
http://doi.org/10.1016/j.ins.2017.04.038
http://doi.org/10.1109/ACCESS.2019.2895824
http://doi.org/10.1016/j.eswa.2016.09.040
http://doi.org/10.1145/3158369
http://doi.org/10.1109/LSP.2020.2983831
http://doi.org/10.1109/TII.2019.2893714
http://doi.org/10.1016/j.neucom.2019.09.050
http://doi.org/10.1109/TCYB.2018.2795041
http://doi.org/10.1109/ACCESS.2018.2828401
http://doi.org/10.1016/j.ins.2017.12.059
http://doi.org/10.1007/s00607-016-0489-6
http://doi.org/10.1109/ACCESS.2020.3031925
http://doi.org/10.1109/5254.920601
http://doi.org/10.1109/MIC.2002.1067737

	Introduction
	Related Work
	Recommendation Systems
	Recommendation in Real-Time Systems

	Proposed System
	Proposed Recommendation System
	Preference Tree Model
	Tree Model Formulation
	Federated Tree
	Similarity Tree
	Recommendation Algorithm

	Experimental Evaluation
	Dataset
	Evaluation Metrics
	Experimental Environment
	Results

	Conclusions
	References

