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Abstract: Finding a seed set to propagate more information within a specific budget is defined as the
influence maximization (IM) problem. The traditional IM model contains two cardinal aspects: (i) the
influence propagation model and (ii) effective/efficient seed-seeking algorithms. However, most
of models only consider one kind of node (i.e., influential nodes), ignoring the role of other nodes
(e.g., boosting nodes) in the spreading process, which are irrational. Specifically, in the real-world
propagation scenario, the boosting nodes always improve the spread of influence from the initial
activated seeds, which is an efficient and cost-economic measure. In this paper, we consider the
realistic budgeted influence maximization (RBIM) problem, which contains two kind of nodes to
improve the diffusion of influence. Facing the newly modified objective function, we propose a novel
B-degree discount algorithm to solve it. The novel B-degree discount algorithm which adopts the
cost-economic boosting nodes to retweet the influence from the predecessor nodes can greatly reduce
the cost, and performs better than other state-of-the-art algorithms in both effect and efficiency on
RBIM problem solving.

Keywords: realistic propagation model; boosting information spread; B-degree discount algorithm

1. Introduction

Social network is the structured representation of authentic network relations, which
has attracted the widespread attention of researchers around the world [1–3]. The IM
problem is a key problem in social networks, and its aim is to find a influential nodes set
whose influence spreading is maximized [4]. It is widely used in collaborative filtering,
political analysis, link prediction, web search and recommendation systems [5–9].

In order to solve the IM problem, Domingos et al. summarized it as an optimization
model firstly [10]. Then IM was generalized as a mathematical problem by Kempe et al.,
and two propagation models were proposed [11]: independent cascade (IC) model [12–14]
and linear threshold (LT) model [15,16]. They proved that find the optimal solution of such
a problem is NP-hard, and two approximate methods (one greedy and one heuristic) were
proposed to solve it. Generally, the IM problem mainly contains two core parts: diffusion
models and the selection method of the initial node set. Except the IC and LT models,
Ganesh et al. proposed the epidemic model [17,18], which uses the graph’s topological
properties to simulate the persistence of epidemics. Tzoumas et al. proposed a game-
theoretic model [19,20] which using the known linear threshold model to simulate the
diffusion of 2-player games. Meanwhile, some greedy algorithms [21–23], heuristic algo-
rithms [24,25] and their extensions [26,27] have been presented to find the most influential
seed sets. Leskovec et al. [28] proposed cost-effective lazy forward selection (CELF), which,
according to the sub-modularity of the influence maximization objective, achieves near-
optimal placements. Chen et al. proposed the NewGreedyIC algorithm, which can decrease
the time costs and optimize the diffusion of influence [23]. Gong et al. [27] proposed the
memetic algorithm, and designed population initialization and local search to improve the
algorithm efficiency.
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To simulate more realistic propagation scenarios, Lin et al. proposed boosting the
influence model firstly, which selected the boosting nodes set to increase the influence
spread of the initial seed nodes [29]. Shi et al. further proposed a new framework which
gave the cost of seed/boosting nodes and considered the optimal nodes set in a social
network with a constrained budget [30]. However, these works did not clarify the different
influence between seed nodes and boosting nodes.

In this paper, a more flexible budget model is proposed to improve the shortcoming
of propagation models, and a new nodes selection strategy is proposed to improve the
propagation efficiency of the new model. This paper’s contributions are summarized as
follows:

(1) We propose a new framework for influence maximization (RBIM) for specific
scenarios to distinguish the different influence between seed nodes and boosting nodes.

(2) We propose a new strategy which first looks for candidate boosting nodes and then
reverse finds seed nodes that have less influence.

(3) We introduce a new strategy based on the degree discount algorithm, so that the
degree discount algorithm can iteratively select seed nodes and boosting nodes.

2. Related Work

Given a graph G(V, E), where V = (V1, V2, . . . , Vn) is the set of all nodes, E is the set
of all edges. The IM problem’s aim is to find most influential nodes set within the budget
k [31]. We can generalize it as a constrained optimization problem:

S∗ = argmax
S⊆V

σ(S), s.t.C(S) = k, (1)

where S is the selected set of seed nodes, σ(S) is the expected final influence of the nodes
in S, and C(S) is the expected cost of S.

Figure 1 is a simplified network diagram of the IM problem, each node’s cost is 1. The
IM problem’s aim is to find the optimal set S. We choose the most influential node as the
seed node. When the budget k is 1, we choose A as the seed node. When k is 2, the seed
nodes set can be (A, C), (A, B) or (A, D).

Figure 1. Example of IM problem.

Equation (1) is mainly made up of two parts: propagation models and selection
method of initial nodes. In the development of social networks, numerous models have
been proposed to simulate information diffusion process. Kempe et al. [11] proposed two
classical diffusion models firstly: (i) The independent cascade (IC) model [32] supposes
that a user v can be activated by its predecessor u with probability p(u,v) through edge e(u,v).
(ii) The linear threshold (LT) model’s basic idea is that a user v can be activated when it has a
sufficient number of predecessor nodes in the actively status. Besides the IC and LT models,
the epidemic model [17,18] and game-theoretic model [19,33] have also been devised to
simulate the process of information diffusion. In order to find influential nodes, some
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greedy algorithms [21–23], heuristic algorithms [24,25,34], and their extensions [26,27]
have been proposed. Leskovec and Krause [11] proposed the CELF algorithm, which
utilizes the sub-modularity of the model to find the near-optimal solution in a sparse large
network. Furthermore, Goyal [22] proposed a highly optimized approach based on the
CELF algorithm, which uses the property of sub-modularity. Besides the greedy algorithm,
a degree discount heuristic algorithm was proposed [23], which uses the degree to measure
the influence of nodes. Roaa et al. proposed a new degree discount heuristics that improves
the influence spread [35]. Kitsak et al. [36] proposed the coreness/location as an important
index to determine the node spreading, which is named the k-shell algorithm. He et al. [37]
proposed the two-stage iterative framework, which uses the iterative framework to select
the candidate nodes set, and removed the apical dominance to select the final seed nodes.

With the popularity of internet propagation scenarios, the boosting influence spread
model began to attract scholars’ attention. Lin et al. first proposed the k-boosting problem,
which selects appropriate boosting nodes to increase the influence diffusion of initial seed
nodes [29]. Then, Shi et al. [30] further proposed holistic budgeted influence maximization,
which uses a new framework based on the boosting influence spread model. In this article,
the author maximized the influence spread by overall planning the cost of seed nodes
and boosting nodes in a constrained budget. However, these works do not specifically
divide the influence of the seed node and boosting node. Actually, we can comprehensively
consider the influence and cost between seed and boosting nodes, which is more practical
in a social network.

3. Proposed Methodology

In this paper, instead of studying the traditional influence maximization (IM) problem,
we consider a novel realistic budgeted influence maximization (RBIM) problem which aims
to find both seed nodes and boosting nodes. Figure 2 illustrates the main framework of
the proposed methodology. Firstly, the boosting nodes are introduced into the IC model,
and the influence diffusion process is improved for a more realistic scenario—the boosting
influence model. Then, the traditional degree discount algorithm is adopted, and a modified
boosting-degree discount method is proposed, which can achieve efficient and effective
results on RBIM problem solving.

Traditional 
IC model

Boosting 
Influence 

Model

Boosting 
nodes

Traditional 
Degree Discount 

AlgorithmImproved

Integrated

Boosting 
Degree Discount 

Algorithm

Modified 
algoirthm

The Proposed 
RBIM Problem

Applied to

Figure 2. The diagram of the proposed methodology.

Definition 1 (Independent Cascade Model [29]). In a graph G = (V, E), there is an edge
e(u,v) ∈ E between two nodes u and v. The newly activated node u can activate node v with
probability p(u,v). The aim of the IM problem is to find the most influential seed nodes set with a
constrained budget k.

3.1. Boosting Influence Model

Definition 2 (Boosting Influence Model [30]). In a graph G = (V, E), there is an edge
e(u,v) ∈ E between two nodes u and v. The newly activated node u can activate node v with
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probability p(u,v), and can boost node v with probability p
′
(u,v) (p

′
(u,v) > p(u,v)). The aim of the

boosting influence model is to find the most influential seed nodes and boosting nodes set with a
constrained budget k.

Definition 2 proposed the boosting influence model. A group of nodes is defined as
boosting nodes. These boosting nodes would receive and propagate information from
the predecessor nodes with a higher probability. For example, people are more willing to
forward a tweet that was published by their friends. We can choose users who have less
influence and use a lower cost (such as trial and discount) to persuade them to publish a
given article. The boosting nodes we selected are more easily affected by their friends with
a specific probability.

3.2. Realistic Budgeted Influence Maximization Problem (RBIM)

Definition 3. RBIM problem: given a graph G = (V, E) , the aim of the RBIM problem is to find
a set (S, B)∗ which can achieve the maximize influence with a constrained budget k:

(S, B)∗ = argmax(S,B)σ(S, B), s.t.Cs(S) + Cb(B) ≤ k, (2)

where S denotes the initial seed set, and B denotes the initial boosting node set, σ(S, B)
represents the expected influence of the binary (S, B), Cs(S) = ∑u∈S cs(u) and Cb(B) =

∑u∈B cb(u)(cs(u) and cb(u) represent the total costs of nodes in S and B, respectively. In
addition, it is noted that the cost of activating a node as a seed or a boosting node is
different, and generally, an individual prefers to transmit the message than propose firstly,
so we set costs of both to satisfy cs(·) � cb(·) for each node. Meanwhile, we give the
cost for the seed node, the propagation probability and boost probability between each
of the two nodes. It is reasonable to assume that if a node is selected as a boosting node,
its influence propagation probability is lower than when selecting it as a seed node (for
example, v ∈ V , σB(v) = 0.8× σS(v)).

We drew a diagram to illustrate RBIM problem in Figure 3. In the propagation diagram,
the black value represents the propagation probability and the red value represents the
boosts probability. Table 1 lists the cost of each node in Figure 3. The diagram on the left is
the propagation influence diagram with node D as the seed node, while the diagram on the
right is the propagation influence diagram with node D as the boosting node. The solution
of the IM problem is to select A and B as seed nodes with budget (k = 2) and its’ expected
influence spread is 0.88 (the seed nodes is not calculated in the expected influence spread).
However, the RBIM problem has a better solution with the same budget. We can select C as
the seed node and D as the boosting node; the influence spread is 1.1.

Figure 3. The diagram of RBIM.
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Table 1. The cost of nodes.

A B C D

cost (seed) 1 1 1 3
cost (boost) 0.3 0.3 0.3 1

3.3. The New Strategy

we compare the traditional strategy with the new strategy in Table 2. Figure 4 is
a simplified diagram of a small data network. In a real social network, nodes with dif-
ferent influence usually have a different cost. In this example, nodes with more than
five successors are considered high influence nodes and others are considered low in-
fluence nodes. The cost of the high influence node as the seed node is 1, and the cost
of the boosting node is 0.5. The cost of the low influence node is 0.1. We choose the
node with the largest number of successors and judge whether it is the seed node or
the boosting node according to probability. In the above schematic diagram, we first
select node C as the candidate node according to the number of successors, and se-
lect seed node f from the predecessors of node C to boost node C with a probability
of 0.6. If C is successfully boosted, S = ( f ), B = (C), Cs(S) = 0.1, Cb(B) = 0.5. If
it is not boosted successfully, we continue to select node e to boost node C. If node
C is boosted successfully, S = ( f , e), B = (C), Cs(S) = 0.2, Cb(B) = 0.5; otherwise
S = ( f , e, C), Cs(S) = 1.2. Under this strategy, we find that the expected cost of the
boosting node C is E(cost(c)) = 0.6× 0.6 + 0.24× 0.7 + 0.16× 1.2 = 0.72. We can see that
the expected cost is lower than the cost of directly selecting seed nodes without using this
strategy. However, in real-life scenarios, the cost of high influence nodes is much higher
than that of low influence nodes. Using this strategy can save expenses effectively (obtain
greater influence within the same expenses).

Table 2. Comparison of new strategy and traditional strategy.

New Strategy Traditional Strategy

role of node seed node, boosting node seed node, boosting node

relationship between different
role nodes

The seed node is the
predecessor of the boosting

node
no connection

advantage
The cost is low and the role

division of different nodes is
obvious

The node iteration process is
simple

Figure 4. The example of new strategy.

3.4. Improved Degree Discount Algorithm Introduction

In this subsection, we improve the degree discount algorithm. The primary idea of the
degree discount is that when v is activated, then the degree of all its neighbors should not
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count their edges linked to node v (i.e., d
′
u → du − 1 , u ∈ N(v)(N(v) express the neighbors

set of node v).
The cost of selecting a node as a boosting node is much lower than that of activating it

as a seed node in realistic scenarios. In today’s internet media era, the influence of media’s
original works is often greater than the works obtained from the third-party platform
in the fixed communication network. For example, the cost of employing a hub agent
to forward an advertisement message is relatively lower than asking him to publish the
original message. We can choose influential person’s friends to boost an influential person
with a lower cost.

Figure 5 shows the flow chart of the proposed boosting degree discount algorithm.
The main iteration process is as follows: firstly, select the node v with the greatest influence
within the budget as the candidate node and judge whether v can be effectively boosted
by the predecessor node with low influence; then, update seed nodes set S and boosting
nodes set B according to the boosted state of v within the budget.

Figure 5. Algorithm flow chart.

In this section, we propose the RBIM problem based on the real network influence
propagation model. In order to further solve the RBIM problem, we propose a node
configuration strategy which uses low-cost nodes to boost highly influential nodes. The
strategy is integrated into the degree discount algorithm. The detailed process of boosting
the degree discount algorithm is described in Algorithm 1: firstly choosing a candidate
boosting node according to the degree of nodes; secondly, reverse find the seed nodes
through boosting node which is the candidate boosting nodes’ predecessors; lastly, calculate
the cost of the boosting node and its seed nodes to decide whether to leave it in boosting
nodes set B. In the specific setting of the algorithm, it is reasonable to assume that the cost
of seed node v is closely related to the degree dv(cs(v) = φ(dv)).



Entropy 2022, 24, 502 7 of 12

Algorithm 1 B(Boosting)-degree discount algorithm (G, k).

initialize S = φ, B = φ (S represents the seed nodes set, and B represents the boosting
nodes set)
for each node v do

calculate the degree dv
cS(v) = φ(dv)
cB(v) = 0.5× cS(v)
compute its input degree iv

end for
for i in (1:k) do

select u = argmaxv(dv | v ∈ V \ S ∪ B)
Su = ∅
for i in iu and di < 0.1× du do

qu = qu × (1− piu)
cB(u) = cS(i) + cB(u)
Su = Su ∪ i
if qu < 0.05 then

if cB(u) < cS(u) then
S = {S ⋃

Su}, B = {B ⋃
u} ,

else
S = {S ⋃

u}
cB(u) = 0.5× cS(u)
break

end if
else

continue
end if

end for
end for
if u in S then

for each neighbor v ∈ V \ S of u do
tv = tv + 1
ddv = dv − 2tv − (dv − tv)tv p

end for
else

for each input degree m of u do
for each neighbor n of m do

if n 6= u then
tn = tn + 1
ddn = dn − 2tn − (dn − tn)tn p

end if
end for

end for
end if

4. Experiments
4.1. Data Sets

We test the performance of the new algorithm on synthetic data sets and real-world
data sets. Table 3 lists the characteristics of the tested data sets. The three synthetic data sets
are processed from three classical data sets, namely, ER-directed graph [38], BA-directed
graph [39] and WS-directed graph [40]. Because the new strategy needs to consider the
predecessor and successor nodes of candidate nodes, we modify three classical synthetic
networks as follows. Firstly, we set the number of nodes n = 3000, the probability of the
edge generation between two nodes as 0.01, and generate the ER graph. Then, we convert
it into a directed network and the edge is deleted randomly with a probability of 0.6. The
ER-directed network includes 3000 nodes and 35,690 edges. We generate the BA network



Entropy 2022, 24, 502 8 of 12

by setting the number of nodes n = 3000, the number of edges m = 10 for each node. Each
new node generated in the network needs to establish m edges with the existing nodes until
all nodes are generated. Then, we convert it into a directed network and the edge is deleted
randomly with a probability of 0.6. The BA-directed network includes 3000 nodes and
23,837 edges. We generate the WS network from a circular network containing 3000 nodes
and each edge in the network is randomly reconnected with a probability of 0.05. Then,
we transform the WS network into the directed network and delete edges randomly with
a probability of 0.6. The WS-directed network includes 3000 nodes and 23,993 edges. We
adopt three real-world network data sets in the experiments. The detailed characteristics of
the three network data sets are as follows. Epinions is a consumer review web site based on
mutual trust. Web site members can independently decide whether to trust each other, then
build a trust network through a trust relationship. This network consists of 75,819 nodes
and 508,836 edges (http://snap.stanford.edu/data/soc-Epinions1.html, (27 September
2021)). Wiki-Vote is the voting data of Wikipedia administrators, which establishes social
networks through voting and being voted. The network include 7115 nodes, 103,689 edges
(http://snap.stanford.edu/data/wiki-Vote.html, (30 September 2021)). The DBLP site
is a reference network of scientific publications, which is constructed by the reference
of each publication to another publication. It includes 12,591 nodes and 49,743 edges
(https://dblp.uni-trier.de/db (1 October 2021)).

Table 3. Nodes set.

Data Sets Nodes Edges Average Degree

ER_to_directed 3000 35,690 11.85
BA_to_directed 3000 23,837 7.95
WS_to_directed 3000 23,993 8.0

Epinions 75 k 508 6.70
Wiki-Vote 7 k 103 k 14.57

Dblp 12 k 49 k 3.95

4.2. Baseline Algorithms

We compare the new algorithm with five classical baseline algorithms. The basic ideas
of these five baseline algorithms are as follows:

Iv-greedy: Iv greedy calculates the influence of each node, repeatedly selects the node
with the largest marginal influence [41].

celf: The celf’s core idea is that, with the increase in selected nodes, the marginal
influence of each node can never increase. Its iterative process is as follows: Initially, the
non seed nodes set are arranged in descending order according to the marginal influence.
When a new seed node appears, we recalculate the marginal influence of the top element
of the non seed nodes sequence. Generally, the marginal influence of the top node is still
largest and arranged at the top, so as to reduce the time complexity [28].

Degree: The core idea of the degree algorithm is to calculate each nodes’ degree and
select the seed nodes from the nodes which have a large degree [11].

Single degree discount: The core idea is to discount each neighbor of the newly selected
seed.

Degree discount: The degree discount algorithm is based on the degree algorithm to
remove the degree value of the degree node that is entered as the seed node and constantly
update the degree value of the non seed node [42].

4.3. Experiments and Results

We conduct experiments on three synthetic networks and three social network to show
the effectiveness of the new algorithm. The code is written in Python, and all experiments
are tested on a laptop with Intel (R) core (TM) I5-10300h CPU with 2.5 GHz and 16.0 GB
memory under Windows 10 64-bit operating system.

http://snap.stanford.edu/data/soc-Epinions1.html
http://snap.stanford.edu/data/wiki-Vote.html
https://dblp.uni-trier.de/db
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We show the experimental results of six network data sets in the figure below. Each
curve shows the change of influence diffusion relative to constraint budget k. In the
experiment of this paper, we set the budget k from 1 to 20, the activation probabilities of
these network seed nodes are 0.01, 0.01, 0.001, 0.02, 0.05, and 0.1.

In this part of the experiment, we simplify the model and set the cost of the boosting
node as 0.5, then the corresponding influence is reduced to 0.8 of the original activation
probability, while the cost, when it is regarded as a seed node, is 1. In the boosting degree
discount algorithm, we inversely find seed nodes which can activate the boosting node, and
the boost probability is 0.5. In the original hypothesis, we set the reverse search seed node
as the node with relatively small influence (in the microblog scenario, we find the blogger
with a large number of fans as the boosting node, and the blogger with a small number of
fans is the seed node according to the crowd concerned by the blogger). We set its cost as
0.05 if the number of successor nodes do not exceed 0.05 of the number of successor of the
boosting node. In Figures 6–8 of this article, each picture represents a data set. The X-axis
of the picture represents the given budget, the Y-axis represents the influence that can be
achieved, and the different curves on each picture represent different algorithms. From the
experimental results, it can be seen that under the same budget conditions, the boosting
degree discount algorithm can obtain greater influence. In summary, the boosting degree
discount algorithm is better than other algorithms in our realistic model.

Figure 6. Epinions and Wiki.

Figure 7. Dblp and ER_to_directed.
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Figure 8. BA_to_directed and WS_to_directed.

5. Conclusions

This paper proposes a more realistic propagation model, which comprehensively
considers the cost and influence of different role nodes. Based on this scenario, we propose
a new strategy, which uses low-cost nodes to activate nodes with high influence. We
introduce the above strategy into the traditional degree discount algorithm so that the
degree discount algorithm can iteratively select the optimal node set for the seed nodes and
the boosting nodes under the condition of the lowest average marginal cost. The results of
the experiment show that the improved degree discount algorithm has greater influence
under the same budget. In future work, we can divide the cost of each node according to
its expected influence (or other measurement indicators such as degree) to make it more in
line with real-life scenarios. The strategy of finding the boosting node first and finding the
seed node in reverse can be combined with other propagation model algorithms to solve
the influence propagation problem with a more flexible strategy.
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