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Abstract: The molecular weight distribution is an important factor that affects the properties of
polymers. A control algorithm based on the moment-generating function was proposed to regulate
the molecular weight distribution for polymerization processes in this work. The B-spline model
was used to approximate the molecular weight distribution, and the weight state space equation
of the system was identified by the subspace state space system identification method based on
the paired date of B-spline weights and control inputs. Then, a new performance criterion mainly
consisting of the moment-generating function was constructed to obtain the optimal control input.
The effectiveness of the proposed control method was tested in a styrene polymerization process. The
molecular weight distribution of the styrene polymers can be approximated by the B-spline model
effectively, and it can also be regulated towards the desired one under the proposed control method.

Keywords: molecular weight distribution; moment-generating function; B-spline

1. Introduction

Polymers are high molecular compounds consisting of macromolecules with different
chain lengths [1]. The properties of polymers are affected by their molecular weight distribu-
tion (MWD) [2–6], which can be measured directly or modelled mathematically [7–9]. The
production of polymers is widespread and long-standing in industrial processes; different
applications need different specifications for the polymers [10]. To meet these demands,
many performance indices consisting of polydispersity and average molecular weight
have been proposed. Under these indices, the control objective is commonly dealt with as
an optimization problem, which has been investigated in many studies [11–21]. Though
satisfactory control performance could be obtained in these studies, these indices cannot
fully characterize the entire molecular weight distribution of polymers.

However, the shape of the molecular weight distribution of polymers is essential
in many polymerization processes, such as paints and paper coatings [22,23], and the
average molecular weight and polydispersity index is unable to reflect the characteristics
of the MWD when the distribution is non-Gaussian. To solve this problem, the stochastic
distribution control (SDC) method can be proposed for molecular weight distribution
shaping in polymerization processes. The SDC method has been applied to many industrial
processes, such as distribution control of the flame temperature in furnace systems [24,25],
particulate process control in powder industries [26,27], distribution control of bubble size in
flotation processes [28], distribution control of crystal size in crystallization processes [29–31]
and power probability density function control in nuclear research reactors [32].

Unlike the methods based on performance indices consisting of polydispersity and
average molecular weight, the entire molecular weight distribution (MWD) of the polymer-
ization process is able to be regulated towards the target MWD under the SDC method.
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Since the MWD cannot be easily used in the MWD shape control of polymerization
processes directly, the dynamic modelling of the output MWD as the control input is
necessary. B-spline models can be utilized to approximate the output MWD [33]. The main
advantage of the B-spline MWD model is the decoupling of the time domain, the MWD
definition domain in the formulation and the obtained weights model of the MWD, which
can be made mathematically equivalent to any existing physical models for MWD systems
subjected to a pre-specified, small modelling error. Although several B-spline-based MWD
models have been developed [34–37], the linear B-spline MWD model is applied in this
paper due to its computational simplicity, which can reduce the computational time [38].

Next, a dynamic weights model can be established to make the subsequent control
problem easier to manage. Inspired by Greś and colleagues [39], the subspace identification
method is used to obtain the state space model between the weight vector of the B-spline
model and the control input. Based on the input and weight vector data of the B-spline
model, the state space model parameters of the system can be obtained through the row
subspace and column subspace mapped by the Hankel matrix. Canonical variate analysis,
multivariable output error state space and numerical subspace state space system identifi-
cation are three influential subspace identification methods. Compared to the traditional
identification method, numerical subspace state space system identification (N4SID) re-
quires less calculation and satisfies numeric stability [40]; therefore, the N4SID was adopted
in this paper.

Based on the weights model, control algorithms can be derived by minimizing per-
formance criteria, which indicate the difference between the output MWD and the target
MWD. As the characteristic of the MWD can be reflected by its moment-generating func-
tion (MGF), a new performance criterion using MGF based on the state space model was
proposed in this paper. Compared to the traditional performance criteria [33–38], the new
criterion needs no integral operation on the quadratic error and has less dependence on the
regulation of the criterion weights. The effectiveness of the proposed control method was
introduced in a styrene polymerization process.

In this paper, a novel control algorithm based on the moment-generating function for
polymerization processes was presented. The B-spline model was used to approximate the
MWD, and N4SID was introduced for system modelling. Then, a performance criterion
mainly consisting of the moment-generating function of the MWD was constructed, and
the control law could be obtained by minimizing the performance criterion. This control
algorithm was applied to a styrene polymerization process and simulation experiment to
verify its effectiveness.

2. B-Spline Model and Subspace Identification Method

For a polymerization process, the monomer is transformed into a polymer through
a series of chemical reactions. The free radical polymerization process includes chain
initiation, chain growth, chain transfer and chain termination. The reaction forming
monomer free radicals is called the chain initiation reaction, and it is the key to controlling
the rate throughout the polymerization reaction. An initiator added to the monomer is
heated to generate initiating radicals, and once the free radical monomer is generated,
it will immediately be added to the second monomer to generate a free radical chain
containing two monomer units. The activity of the free radical chain does not decay; it
will immediately be added to the third monomer and subsequent monomers in the chain.
Then, the degree of polymerization of chain radicals increases rapidly; these reactions
that increase the degree of polymerization are called chain growth reactions. The binding
reaction of free radicals is called a termination reaction, which has two forms: coupling and
disproportionation. In addition, the chain free radicals undergo a transfer reaction with
monomers, initiators or formed macromolecules, whereby a polymer chain is terminated,
and a new radical capable of propagating is formed. The schematization of proposed
reaction mechanisms is shown as Figure 1.
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Figure 2. Diagram of the MWD control system for the polymerization process. 
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Figure 1. Chain reaction polymerization process.

The dynamic MWD of the polymerization process can be obtained by the MWD
model described in [33] or measured directly through online techniques, and it cannot be
easily used in MWD shape control directly. Therefore, a B-spline approximation model
is established through the obtained MWD data. Through the weight data of the B-spline
model and the control input, the output MWD model can be identified by the N4SID
method, which is used in MWD control described later. The schematic diagram of the
proposed control algorithm is shown in Figure 2. By using the moment-generating function
(MGF), the pseudo-state vector of the target MWD and approximated MWD can be obtained
as zre f and z, respectively. The control input, u, is regulated by the MWD controller for the
shaping of output MWD.
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Figure 2. Diagram of the MWD control system for the polymerization process.

2.1. B-Spline Approximation for Output MWD

Consider a polymerization process where uk ∈ <d×1 is the manipulated variable to
control the shape of MWD, defined as γ(y, u(k)). This can be approximated by the B-spline
neural network

γ(y, uk) =
n

∑
i=1

ωi(uk)Bi(y) + e0 (1)

where uk represents the control input at time instant k, Bi(y)(i = 1, · · · , n) stands for the
basis functions which have been pre-designed on the domain of [a, b], n represents the
number of basis functions and ωi(uk) denotes the expansion weight. e0 is the approximation
error which can be ignored for expression simplification.

Since the integration of γ(y, uk) is equal to 1, the number of independent expan-
sion weights is n − 1, and the remaining expansion weight can be expressed by other
expansion weights.

Defining

bi =
∫ b

a
Bi(y)dy (i = 1, 2, · · · , n− 1)

L(y) =
Bn(y)

bn

Ci(y) = Bi(y)−
bi
bn

Bn(y) (i = 1, 2, · · · , n− 1)

C(y) = [C1(y), C2(y), · · ·Cn−1(y)]

vk = [w1(uk), w2(uk), · · ·wn−1(uk)]
T
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Then, the MWD γ(y, uk) can be reformed as

γ(y, uk) = C(y)vk + L(y) (2)

Multiplying C(y)T to both sides of Equation (2) and carrying out an integral operation
over the definition domain, the expansion weights vector vk can then be calculated as

vk = [
∫ b

a
C(y)TC(y)dy]

−1∫ b

a
C(y)T [γ(y, uk)− L(y)]dy (3)

Since the dynamics of the output MWD can be represented by Equation (1), we assume
that the input uk and expansion weights vector vk satisfy the following state space form:{

xk = Axk−1 + Buk−1

vk = Cxk + Duk
(4)

where xk ∈ <(n−1)×1 denotes the state vector and A, B, C and D stand for the coeffi-
cient matrices of the system, which can be identified by the subspace state space system
identification method in the next part.

2.2. Subspace State Space System Identification

The relationship between control input uk and expansion weight vector vk can be rep-
resented by Equation (4). This paper employs the N4SID method to identify the coefficient
matrices A, B, C and D [40]. Compared with traditional methods, N4SID requires less
calculation and has a high modelling accuracy.

To save computing space and speed up computer processing, some Hankel matrices
are constructed as follows:

U0|i−1 =


u0 u1 · · · uj−1

u1 u2 · · · uj

...
...

. . .
...

ui−1 ui · · · u2i+j−2

 (5)

V0|i−1 =


v0 v1 · · · vj−1

v1 v2 · · · vj

...
...

. . .
...

vi−1 vi · · · v2i+j−2

 (6)

where i is the row number that should be larger than the order of the identified system, j is
the column number, and 2i + j− 2 should be smaller than the length of the data.

To simplify the derivation of the N4SID method, some matrices of input and expansion
weights are defined as Up = U0|i−1, U f = Ui|2i−1, Vp = V0|i−1 and Vf = Vi|2i−1.

Similarly, the state matrices can be defined as

Xp = [x1 x2 · · · xj] (7)

X f = [xi+1 xi+2 · · · xi+j] (8)

The generalized observability matrix (Γi) and generalized controllability matrix (∆i) of
the identified system are shown as

Γi = [C CA CA2 · · ·CAi]
T

(9)

∆i = [Ai−1B Ai−2B · · · B] (10)
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A Toeplitz matrix is defined as

Hi =


D 0 0 · · · 0

CB D 0 · · · 0
CAB CB D · · · 0
· · · · · · · · · · · · · · ·

CAi−2B CAi−3B CAi−4B · · · D

 (11)

Then, the state space Equation (4) can be reformulated by the Hankel matrices as

Vp = ΓiXp + HiUp (12)

Vf = ΓiX f + HiU f (13)

X f = AiXp + ∆iUp (14)

Substituting Equations (12) and (13) to Equation (14), X f can be represented as

X f = AiXp + ∆iUp = Ai
(
−Γ†

i HiUp + Γ†
i Vp

)
+ ∆iUp

= LpWp

(15)

where Wp =
[

Up Vp
]T , Lp =

[
∆i − AiΓ†

i Hi AiΓ†
i
]

and Γ†
i is the Moore–Penrose

pseudo-inverse of the generalized observability matrix.
Substituting Equation (15) to (13), Vf can be denoted as

Vf = ΓiLpWp + HiU f (16)

Making an oblique projection of Vf to Wp along the direction of U f

Oi = Vf /U f Wp = ΓiLpWp

= ΓiX f
(17)

where Oi is the oblique projection.
Based on the assumption that System (4) is observable and controllable, rank(Oi) = n,

and then the singular value decomposition of Oi can be shown as

Oi = USVT =
[

U1 U2
][ S1 0

0 S2

][
VT

1

VT
2

]
(18)

where S1 denotes a diagonal matrix consisting of singular values far greater than 0 and S2
denotes a diagonal matrix composed of singular values close to 0.

From Equations (17) and (18), Γi and X f can be estimated as

Γi = U1S1/2
1 (19)

X̂ f = S1/2
1 VT

1 (20)

Then, the coefficient matrices of System (4) can be obtained by least squares (LS)

[A B C D] = arg min
A B C D

∣∣∣∣( X̂ f ,k+1
Vi

)
−
(

A B
C D

)(
X̂ f ,k
Ui|i

)∣∣∣∣2
F

(21)

Therefore, the estimated expansion weights vector (vk) can be obtained by{
x̂k = Axk−1 + Buk−1

v̂k = Cx̂k + Duk
(22)
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where v̂k is the estimated expansion weights vector, and x̂k is the estimated state variable
vector of the dynamic weights model.

3. MWD Shaping Control Algorithm Using MGF for Polymerization Processes

We can note that the MWD is uniquely determined by its moment-generating function.
We can carry out a sampling operation on the moment-generating function of the MWD,
and the complete information of the MWD can be reflected if the sampling points are
sufficiently large. The shape of the MWD approaches the target MWD when the sampling
points of the output MWD approach those of the target MWD. Then, a performance criterion
using the moment-generating function can be constructed based on the identified dynamic
weights model, and the control algorithm can be derived by minimizing the criterion.

3.1. Moment-Generating Function

For the traditional performance criterion [33–38], if the integral value of the quadratic
error between the output MWD and target MWD is very small, then the regulation of
criterion weights is critical. In order to reduce the impact of criterion weights on control
performance, a moment-generating function is proposed in this section to construct the
performance criterion of the proposed control method. The moment-generating function
can be represented as

Mk(ξ) =
∫ ∞

−∞
exp(ξy)γ(y, uk)dy (23)

where ξ ∈ R1 and γ(y, uk) is the output MWD at time k.
By expanding (23), the following equation can be obtained as follows:

Mk(ξ) = 1 + ξm1 +
ξ2m2

2!
+ . . . +

ξnms

s!
+ . . . (24)

where ms denotes the sth moment.
For the convenience of the following calculation, the cumulant-generating function

φk(ξ) can be defined as
φk(ξ) = logMk(ξ) (25)

The estimated value of φk(ξ), denoted as φ̂k(ξ), can be calculated utilizing the ob-
tained output MWD. By selecting ξ1, ξ2, . . . , ξm, a pseudo-state vector (zk) can be denoted
as follows:

zk(ξ) =
[
φ̂k(ξ1), φ̂k(ξ2), . . . , φ̂k(ξm)

]T (26)

Note that enough characteristics of the output MWD can be reflected if m is suffi-
ciently large.

Similarly, the pseudo-state vector of the target MWD can be denoted as

zre f (ξ) =
[
φ̂k(ξ1), φ̂k(ξ2), . . . , φ̂k(ξm)

]T (27)

Then, the following performance criterion can be constructed for the controller design:

Jk =
(

zk − zre f

)T
Q
(

zk − zre f

)
+

1
2

uk
T Ruk (28)

where Q and R denote the weights, and the second term denotes energy constraints on the
control input.

The first term on the right side of Equation (28) can be reformed as

Jk =
(

zk − zre f

)T
Q
(

zk − zre f

)
(29)

which indicates the difference between the output MWD and target MWD.
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3.2. Control Algorithm

As shown in Performance Criterion (28), it is obvious that the output MWD approaches
the target MWD when the performance criterion decreases. In practical polymerization
processes, the constraint on the control input is usually taken into consideration in the case
of actuator saturation.

Then, the optimal control input can be solved as follows uk
∗ = arg min

uk
Jk = arg min

uk

((
zk − zre f

)T
Q
(

zk − zre f

)
+ 1

2 uk
T Ruk

)
s.t. Umin < uk < Umax

(30)

where Umin and Umax stand for the lower and upper bounds of the control input, respectively.
Since the analytical solution of the nonlinear programming optimization problem, (30),

cannot be easily solved, the control input can be obtained by quadratic programming in
this paper.

4. Simulation Study

In this section, the performance of the proposed controller was tested in a styrene
polymerization process. Styrene was the monomer for polymerization, and azobisisobu-
tyronitrile was used as the initiator. The monomer and the initiator were blended and
pumped into a tank reactor where the polymerization occurred, after which the styrene
polymers were produced. Since the ratio of the monomer to the initiator is essential and
critical to the polymerization process in the reaction tank, the ratio of the flow rate of the
monomer to the sum flow rate, defined as c, is regarded as the manipulated variable in the
MWD control system.

4.1. Modelling of the Molecular Weight Distribution

Since the molecular weight distribution in the styrene polymerization process is not
easily measured directly, dynamic modelling of the molecular weight distribution in the
styrene polymerization process is presented in this section.

Under the assumption that the sum flow rate into the tank reactor is invariant, the
dynamic model of molecular weight distribution can be established by following the work
in [33]. To uphold conciseness of the description, only the major differential equations
are presented.

The concentrations in the tank reactor can be described by the following mass bal-
ance equations:

dCI
dt

= (CI0 − CI)/κ − KdCI (31)

dCM
dt

= (CM0 − CM)/κ − 2KiCI −
(
Kp + Kct

)
Mφ0 (32)

where CI and CM stand for the concentrations of azobisisobutyronitrile and styrene, re-
spectively. CI0 and CM0 denote the initial concentrations of azobisisobutyronitrile and
styrene, respectively. κ is a constant which represents the average residential time in the
tank reactor. Kd, Ki, Kp and Kct stand for different rate constants in the polymerization
process. φ0 denotes the radical concentration.

Through the use of the generation function technique, the following differential equa-
tions can be deduced:

dφ0

dt
= φ0/κ + 2KiCI − Ktφ0

2 (33)

dφ1

dt
= −φ1/κ + 2KiCI + Kpφ0M− Ktφ0φ1 + Kct M(φ0 − φ1) (34)

dφ2

dt
= −φ2/κ + 2KiCI + Kp M(φ0 + 2φ1)− Ktφ0φ2 + Kct M(φ0 − φ2) (35)
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where φ1 and φ2 are leading moments for radicals, and Kt stands for the termination
rate constant.

Similarly, the differential equations concerning the leading moments for dead polymers
can also be derived as

dG0

dt
= G0/κ + KctCM0φ0 + 0.5Ktφ0

2 (36)

dG1

dt
= −G1/κ + KctCM0φ1 + Ktφ0φ1 (37)

dG2

dt
= −G2/κ + KctCM0φ2 + Ktφ0φ2 + Ktφ1

2 (38)

where G0, G1 and G2 stand for the leading moments for dead polymers.
Then, the MWD of the polymers can be described by a Schultz–Zimme distribution

function, shown as

fsz(y) =
b

b
yb−1 exp

(
−by/Fz

)
FzbΛ(y)

(39)

where y denotes the chain length and

b =
G1

2

G0G2 − G1
2

Fz = G1/G0

Λ(y) =
∫ ∞

0
yb−1e−ydy

Therefore, the molecular weight distribution of the produced styrene polymers can be
calculated from the leading moments of polymers by Equation (39). The number-average
molecular weight Mn and weight-average molecular weight Mw can be easily obtained
from the molecular weight distribution, and the polydispersity of the polymers can be
calculated as HI = Mw/Mn.

Once the molecular weight distribution of the produced styrene polymers is obtained,
it can be approximated by a B-spline model. In this simulation, ten third-order basis func-
tions are applied to construct the B-spline model, and the basis functions are formulated as

B(i, j) =

{
−2/w(i)2 · (j− y(i)− w(i)/2)2 + 0.5, y(i) ≤ y ≤ y(i) + w(i)

0, otherwise
(40)

where i stands for the ith basis function of the B-spline model, j denotes the chain length of
the dead polymers and w(·) is the width of the basis function, and

y(i) = 1 + 200(i− 1), i = 1, 2, . . . , 10

w(i) =

{
220, i = 1, 2, . . . , 9

199, i = 10

The error of the B-spline approximation of the produced styrene polymer MWD is
presented in Figure 3. It is obvious that the approximation error keeps within a proper
range, indicating that the B-spline model is able to approximate the produced styrene
polymer MWD effectively. The initial MWD, as shown in Figure 4, reaches the maximum
value around chain length 200 and then gradually decreases; thus, the error in the model
decreases with an increasing chain length.
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4.2. MWD Shape Control of the Styrene Polymerization Process

The control objective in this simulation is regulating the molecular weight distribution
of the produced styrene polymers towards the target distribution, which is shown in
Figure 5. The ratio, c, is the control input of the MWD shape control system for the styrene
polymerization process.
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The sampling period is set to 1s, the initial input is 0.47 and for the weights of the
performance criterion (27), Q is a 10-order identity matrix, and R = 0.1.

The simulation results are shown in Figures 4–8.
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Figure 4 demonstrates that the performance criterion can be regulated to a small value
in a relatively short time by the proposed control method. The MWDs of the polymerization
process at certain times are demonstrated in Figure 5. The variations of the ratio (manipu-
lated variable of the control system) are illustrated in Figure 6, and the variations are within
a proper range; the ratio keeps relatively stable when the MWD of the polymerization
process is regulated close to the target one. The evolution of the MWD is illustrated by a
three-dimensional graph in Figure 7. The change in the polydispersity over time is shown
in Figure 8, which can be kept within a proper range. It can be seen that the MWD of
the polymerization process gradually approaches the target MWD when the performance
criterion gradually becomes smaller under the proposed algorithm.

The simulation results shown above illustrate that the moment-generating function-
based control algorithm for polymerization processes’ MWD control is effective, and both
the regulating time and the evolution of the MWD are satisfactory.

5. Conclusions

In this work, a control algorithm using the moment-generating function was presented
for MWD shaping of polymerization processes. The output MWD was approximated by
a discrete-time B-spline MWD model. Based on the input and expansion weight data of
the B-spline model (which was used to approximate the output MWD), a system model
could be identified through the N4SID method. Then, a performance criterion based on the
moment-generating function was proposed, and the control algorithm could be derived
by minimizing the performance criterion. The proposed control algorithm was tested in
a styrene polymerization process, and the simulation results confirmed its effectiveness.
The manipulated variable can be kept within a proper range, and the regulation time
is satisfactory. Output MWD can also be adjusted to the target MWD gradually. The
contributions can be summarized as:

1. The moment-generating function was used to construct the performance criterion,
which simplifies the regulation of criterion weights so that the application of the proposed
control method to the practical polymerization process becomes more convenient;

2. The subspace identification method was applied to establish the dynamic weights
model of the controlled system based on the pair data of the control input and ex-
pansion weights, which avoids the numerical ill-conditioning and parameter overlap
problems in traditional identification methods;

3. The proposed moment-generating, function-based control algorithm is effective for
the MWD shaping of the styrene polymerization process. Both the evolution of the
output MWD and the regulation time are satisfactory.

Author Contributions: Conceptualization, J.Z.; Methodology, J.P.; Software, J.P.; Writing—original
draft, J.P.; Writing—review & editing, J.Z. and M.R. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by National Natural Science Foundation of China (grant number
61973116), State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources
(grant number LAPS2019-0415), and Shanxi Provincial Natural Science Foundation (grant number
20210302123189).

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Li, Q.; Shen, H.-X.; Liu, C.; Wang, C.-F.; Zhu, L.; Chen, S. Advances in frontal polymerization strategy: From fundamentals to

applications. Prog. Polym. Sci. 2022, 127, 101514. [CrossRef]
2. Kida, T.; Tanaka, R.; Hiejima, Y.; Nitta, K.-h.; Shiono, T. Improving the strength of polyethylene solids by simple controlling of the

molecular weight distribution. Polymer 2021, 218, 123526. [CrossRef]
3. Whitfield, R.; Truong, N.; Anastasaki, A. Precise Control of both Dispersity and Molecular Weight Distribution Shape by Polymer

Blending. Angew. Chem. Int. Ed. 2021, 60, 19383–19388. [CrossRef]

http://doi.org/10.1016/j.progpolymsci.2022.101514
http://doi.org/10.1016/j.polymer.2021.123526
http://doi.org/10.1002/anie.202106729


Entropy 2022, 24, 499 12 of 13

4. Shimizu, T.; Truong, N.; Whitfield, R.; Anastasaki, A. Tuning Ligand Concentration in Cu(0)-RDRP: A Simple Approach to
Control Polymer Dispersity. ACS Polym. Au 2021, 1, 187–195. [CrossRef]

5. Gentekos, D.; Dupuis, L.; Fors, B. Beyond Dispersity: Deterministic Control of Polymer Molecular Weight Distribution. J. Am.
Chem. Soc. 2016, 138, 1848–1851. [CrossRef]

6. Gentekos, D.; Fors, B. Molecular Weight Distribution Shape as a Versatile Approach to Tailoring Block Copolymer Phase Behavior.
ACS Macro Lett. 2018, 7, 677–682. [CrossRef]

7. Walsh, D.; Schinski, D.; Schneider, R.; Guironnet, D. General route to design polymer molecular weight distributions through
flow chemistry. Nat. Comm. 2020, 11, 3094. [CrossRef] [PubMed]

8. Junkers, T.; Vrijsen, J. Designing molecular weight distributions of arbitrary shape with selectable average molecular weight and
dispersity. Eur. Polym. J. 2020, 134, 109834. [CrossRef]

9. Rubens, M.; Junkers, T. A predictive framework for mixing low dispersity polymer samples to design custom molecular weight
distributions. Polym. Chem. 2019, 10, 5721. [CrossRef]

10. Al-haj Ali, M.; Ali, E.M. Effect of monomer feed and production rate on the control of molecular weight distribution of
polyethylene in gas phase reactors. Comput. Chem. Eng. 2011, 35, 2480–2490. [CrossRef]

11. BenAmor, S.; Doyle, F.J.; McFarlane, R. Polymer grade transition control using advanced real-time optimization software. J.
Process Control 2004, 14, 349–364. [CrossRef]

12. Bonvin, D.; Bodizs, L.; Srinivasan, B. Optimal Grade Transition for Polyethylene Reactors via NCO Tracking. Chem. Eng. Res. Des.
2005, 83, 692–697. [CrossRef]

13. Cervantes, A.M.; Tonelli, S.; Brandolin, A.; Bandoni, J.A.; Biegler, L.T. Large-scale dynamic optimization for grade transitions in a
low density polyethylene plant. Comput. Chem. Eng. 2002, 26, 227–237. [CrossRef]

14. Chatzidoukas, C.; Perkins, J.D.; Pistikopoulos, E.N.; Kiparissides, C. Optimal grade transition and selection of closed-loop
controllers in a gas-phase olefin polymerization fluidized bed reactor. Chem. Eng. Sci. 2003, 58, 3643–3658. [CrossRef]

15. Chatzidoukas, C.; Pistikopoulos, S.; Kiparissides, C. A Hierarchical Optimization Approach to Optimal Production Scheduling in
an Industrial Continuous Olefin Polymerization Reactor. Macromol. React. Eng. 2009, 3, 36–46. [CrossRef]

16. Lima, N.M.N.; Filho, R.M.; Embiruçu, M.; Maciel, M.R.W. A cognitive approach to develop dynamic models: Application to
polymerization systems. J. Appl. Polym. Sci. 2007, 106, 981–992. [CrossRef]

17. Ohshima, M.; Tanigaki, M. Quality control of polymer production processes. J. Process Control 2000, 10, 135–148. [CrossRef]
18. Sato, C.; Ohtani, T.; Nishitani, H. Modeling, simulation and nonlinear control of a gas-phase polymerization process. Comput.

Chem. Eng. 2000, 24, 945–951. [CrossRef]
19. Terrazas-Moreno, S.; Flores-Tlacuahuac, A.; Grossmann, I.E. Simultaneous design, scheduling, and optimal control of a methyl-

methacrylate continuous polymerization reactor. AIChE J. 2008, 54, 3160–3170. [CrossRef]
20. Wang, Y.; Seki, H.; Ohyama, S.; Akamatsu, K.; Ogawa, M.; Ohshima, M. Optimal grade transition control for polymerization

reactors. Comput. Chem. Eng. 2000, 24, 1555–1561. [CrossRef]
21. Harrisson, S. The downside of dispersity: Why the standard deviation is a better measure of dispersion in precision polymerization.

Polym. Chem. 2018, 9, 1366. [CrossRef]
22. Congalidis, J.P.; Richards, J.R. Process Control of Polymerization Reactors: An Industrial Perspective. Polym. React. Eng. 1998, 6,

71–111. [CrossRef]
23. Sayer, C.; Arzamendi, G.; Asua, J.M.; Lima, E.L.; Pinto, J.C. Dynamic optimization of semicontinuous emulsion copolymerization

reactions: Composition and molecular weight distribution. Comput. Chem. Eng. 2001, 25, 839–849. [CrossRef]
24. Eek, R.A.; Bosgra, O.H. Controllability of particulate processes in relation to the sensor characteristics. Powder Technol. 2000, 108,

137–146. [CrossRef]
25. Gommeren, H.J.C.; Heitzmann, D.A.; Moolenaar, J.A.C.; Scarlett, B. Modelling and control of a jet mill plant. Powder Technol. 2000,

108, 147–154. [CrossRef]
26. Braatz, R.D. Advanced control of crystallization processes. Annu. Rev. Control 2002, 26, 87–99. [CrossRef]
27. Aamir, E.; Nagy, Z.K.; Rielly, C.D. Optimal seed recipe design for crystal size distribution control for batch cooling crystallisation

processes. Chem. Eng. Sci. 2010, 65, 3602–3614. [CrossRef]
28. Nagy, Z.K.; Braatz, R.D. Advances and New Directions in Crystallization Control. Annu. Rev. Chem. Biomol. Eng. 2012, 3, 55–75.

[CrossRef]
29. Sun, X.; Yue, H.; Wang, H. Modelling and control of the flame temperature distribution using probability density function shaping.

Trans. Inst. Meas. Control 2006, 28, 401–428. [CrossRef]
30. Zhou, J.; Yue, H.; Zhang, J.; Wang, H. Iterative Learning Double Closed-Loop Structure for Modeling and Controller Design of

Output StochAstic Distribution Control Systems. IEEE Trans. Control Syst. Technol. 2014, 22, 2261–2276. [CrossRef]
31. Abharian, A.E.; Fadaei, A.H. Power probability density function control and performance assessment of a nuclear research reactor.

Ann. Nucl. Energy 2014, 64, 11–20. [CrossRef]
32. Zhu, J.; Gui, W.; Yang, C.; Xu, H.; Wang, X. Probability density function of bubble size based reagent dosage predictive control for

copper roughing flotation. Control Eng. Pract. 2014, 29, 1–12. [CrossRef]
33. Hong, Y.; Jinfang, Z.; Wang, H.; Liulin, C. In Shaping of molecular weight distribution using B-spline based predictive probability

density function control. In Proceedings of the 2004 American Control Conference, Boston, MA, USA, 30 June–2 July 2004;
pp. 3587–3592.

http://doi.org/10.1021/acspolymersau.1c00030
http://doi.org/10.1021/jacs.5b13565
http://doi.org/10.1021/acsmacrolett.8b00295
http://doi.org/10.1038/s41467-020-16874-6
http://www.ncbi.nlm.nih.gov/pubmed/32555179
http://doi.org/10.1016/j.eurpolymj.2020.109834
http://doi.org/10.1039/C9PY01012B
http://doi.org/10.1016/j.compchemeng.2011.04.014
http://doi.org/10.1016/j.jprocont.2003.06.001
http://doi.org/10.1205/cherd.04367
http://doi.org/10.1016/S0098-1354(01)00743-8
http://doi.org/10.1016/S0009-2509(03)00223-9
http://doi.org/10.1002/mren.200800030
http://doi.org/10.1002/app.25961
http://doi.org/10.1016/S0959-1524(99)00042-6
http://doi.org/10.1016/S0098-1354(00)00375-6
http://doi.org/10.1002/aic.11658
http://doi.org/10.1016/S0098-1354(00)00550-0
http://doi.org/10.1039/C8PY00138C
http://doi.org/10.1080/10543414.1998.10744484
http://doi.org/10.1016/S0098-1354(01)00658-5
http://doi.org/10.1016/S0032-5910(99)00211-9
http://doi.org/10.1016/S0032-5910(99)00213-2
http://doi.org/10.1016/S1367-5788(02)80016-5
http://doi.org/10.1016/j.ces.2010.02.051
http://doi.org/10.1146/annurev-chembioeng-062011-081043
http://doi.org/10.1177/0142331206073124
http://doi.org/10.1109/TCST.2014.2306452
http://doi.org/10.1016/j.anucene.2013.09.018
http://doi.org/10.1016/j.conengprac.2014.02.021


Entropy 2022, 24, 499 13 of 13

34. Wang, H.; Baki, H.; Kabore, P. Control of bounded dynamic stochastic distributions using square root models: An applicability
study in papermaking systems. Trans. Inst. Meas. Control 2001, 23, 51–68. [CrossRef]

35. Wang, H.; Yue, H. A rational spline model approximation and control of output probability density functions for dynamic
stochastic systems. Trans. Inst. Meas. Control 2003, 25, 93–105. [CrossRef]

36. Zhou, J.; Hong, Y.; Wang, H. Shaping of Output PDF Based on the Rational Square-root B-spline Model. ACTA Autom. Sin. 2005,
31, 343.

37. Zhang, J.; Yue, H.; Zhou, J. Predictive PDF control in shaping of molecular weight distribution based on a new modeling algorithm.
J. Process Control 2015, 30, 80–89. [CrossRef]

38. Yue, H.; Wang, H.; Zhang, J. Shaping of molecular weight distribution by iterative learning probability density function control
strategies. Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng. 2008, 222, 639–653. [CrossRef]
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