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Abstract: In this work, we focus on a general family of measures of divergence for estimation and
testing with emphasis on conditional independence in cross tabulations. For this purpose, a restricted
minimum divergence estimator is used for the estimation of parameters under constraints and a
new double index (dual) divergence test statistic is introduced and thoroughly examined. The
associated asymptotic theory is provided and the advantages and practical implications are explored
via simulation studies.
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1. Introduction

The concept of distance or divergence is known since at least the time of Pearson,
who, in 1900, considered the classical goodness-of-fit (gof) problem by considering the
distance between observed and expected frequencies. The problem for both discrete and dis-
cretized continuous distributions have been in the center of attention for the last 100+ years.
The classical set-up is the one considered by Pearson where a hypothesized m-dimensional
multinomial distribution, say Multi(N, p1, . . . , pm) is examined as being the underlying
distributional mechanism for producing a given sample of size N. The problem can be
extended to examine the homogeneity (in terms of the distributional mechanisms) among
two independent samples or the independence among two population characteristics. In all
such problems we are dealing with cross tabulations or crosstabs (or contingency tables).
Problems of such nature appear frequently in a great variety of fields including biosciences,
socio-economic and political sciences, actuarial science, finance, business, accounting,
and marketing. The need to establish for instance, whether the mechanisms producing
two phenomena are the same or not is vital for altering economic policies, preventing
socio-economic crises or enforcing the same economic or financial decisions to groups
with similar underlying mechanisms (e.g., retaining the insurance premium in case of
similarity or having different premiums in case of diversity). It is important to note that
divergence measures play a pivotal role also in statistical inference in continuous settings.
Indeed, for example, in [1] the authors investigate the multivariate normal case while in
a recent work [2], the modified skew-normal-Cauchy (MSNC) distribution is considered,
against normality.

Let us consider the general case of two m-dimensional multinomial distributions
for which each probability depends on an s-dimensional unknown parameter, say θ =
(θ1, . . . , θs)>. A general family of measures introduced by [3] is the dα

Φ family defined by

dα
Φ(p(θ), q(θ)) =

m

∑
i=1

qi(θ)
1+αΦ

(
pi(θ)

qi(θ)

)
; α > 0, Φ ∈ F∗ (1)
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where α is a positive indicator (index) value, p(θ) = (p1(θ), . . . , pm(θ))> and q(θ) =
(q1(θ), . . . , qm(θ))>, F∗ is a class of functions s.t. F∗ = {Φ(·) : Φ(x) strictly convex,
x ∈ R+, Φ(1) = Φ′(1) = 0, Φ′′(1) 6= 0 and by convention, Φ(0/0) = 0 and 0Φ(p/0) =
limx→∞[Φ(x)/x]}.

Note that the well known Csiszar family of measures [4] is obtained for the special
case where the indicator is taken to be equal to 0 while the classical Kullback–Leibler (KL)
distance [5] is obtained if the indicator α is equal to 0 and at the same time the function
Φ(·) is taken to be Φ(x) ≡ ΦKL(x) = x log(x) or x log(x)− x + 1.

The function

Φλ(x) =
1

λ(λ + 1)

[
x(xλ − 1)− λ(x− 1)

]
∈ F∗, λ 6= 0,−1

is associated with the Freeman–Tukey test when λ = −1/2, with the recommended Cressie
and Read (CR) power divergence [6] when λ = 2/3, with the Pearson’s chi-squared
divergence [7] when λ = 1 and with the classical KL distance when λ→ 0.

Finally, the function

Φα(x) ≡ (λ + 1)Φλ(x)|λ=α =
1
α
[x(xα − 1)− α(x− 1)], α 6= 0

produces the BHHJ or Φα-power divergence [8] given by

dα
Φα

(p(θ), q(θ)) =
m

∑
i=1

qα
i (θ){qi(θ)− pi(θ)}+

1
α

m

∑
i=1

pi(θ){pα
i (θ)− qα

i (θ)}.

Assume that the underlying true distribution of an m-dimensional multinomial ran-
dom variable with N experiments, is

X = (X1, . . . , Xm)
> ∼ Multi

(
N, p = (p1, . . . , pm)

>)
where p is, in general, unknown, belonging to the parametric family

P =
{

p(θ) = (p1(θ), . . . , pm(θ))
> : θ = (θ1, . . . , θs)

> ∈ Θ ⊂ Rs
}

. (2)

The sample estimate p̂ = ( p̂1, . . . , p̂m)> of p is easily obtained by p̂i = xi/N where xi
is the observed frequency for the i-th category (or class).

Divergence measures can be used for estimating purposes by minimizing the asso-
ciated measure. The classical estimating technique is the one where (1) we take α = 0
and Φ(x) = ΦKL(x). Then, the resulting KL minimization is equivalent to the classical
maximization of the likelihood producing the well-known Maximum Likelihood Estimator
(MLE, see ([9], Section 5.2)). In general, the minimization with respect to the parameter of
interest of the divergence measure, gives rise to the corresponding minimum divergence es-
timator (see, e.g., [6,10,11]). For the case where constraints are involved the case associated
with Csiszar’s family of measures was recently investigated [12]. For further references,
please refer to [13–21].

Consider the hypothesis

H0 : p = p(θ0) vs. H1 : p 6= p(θ0), θ0 = (θ01, . . . , θ0s)
> ∈ Θ ⊂ Rs (3)

where p is the vector of the true but unknown probabilities of the underlying distribution
and p(θ0) the vector of the corresponding probabilities of the hypothesized distribution
which is unknown and falls within the family of P with the unknown parameters satisfying
in general, certain constraints, e.g., of the form c(θ) = 0, under which the estimation
of the parameter will be performed. The purpose of this work is twofold: having as a
reference the divergence measure given in (1), we will first propose a general double
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index divergence class of measures and make inference regarding the parameter estimators
involved. Then, we proceed with the hypothesis problem with the emphasis given to
the concept of conditional independence. The innovative idea proposed in this work is
the duality in choosing among the members of the general class of divergences, one for
estimating and one for testing purposes which may not be necessarily, the same. In that
sense, we propose a double index divergence test statistic offering the greatest possible
range of options, both for the strictly convex function Φ and the indicator value α > 0.

Thus, the estimation problem can be examined considering expression (1) using a
function Φ2 ∈ F∗ and an indicator α2 > 0:

dα2
Φ2

(
p, p(θ)

)
=

m

∑
i=1

p1+α2
i (θ)Φ2

(
pi

pi(θ)

)
(4)

the minimization of which with respect to the unknown parameter, will produce the
restricted minimum (Φ2, α2) divergence (rMD) estimator

θ̂
r
(Φ2,α2) = arg inf

θ∈Θ:c(θ)=0
dα2

Φ2
(p̂, p(θ)) (5)

for some constraints c(θ) = 0. Observe that the unknown vector of underlying probabilities
has been replaced by the vector of the corresponding sample frequencies p̂. Then, the testing
problem will be based on

dα1
Φ1

(
p̂, p(θ̂r

(Φ2,α2))
)
=

m

∑
i=1

p1+α1
i (θ̂

r
(Φ2,α2))Φ1

(
p̂i

pi(θ̂
r
(Φ2,α2))

)
(6)

where Φ1(·) and α1 may be different from the corresponding quantities used for the
estimation problem in (4). Finally, the duality of the proposed methodology surfaces when
the testing problem is explored via the dual divergence test statistic formulated on the basis
of the double-α-double-Φ divergence given by

dα1
Φ1

(
p̂, p(θ̂r

(Φ2,α2))
)

(7)

where Φ1, Φ2 ∈ F∗ and α1, α2 > 0.
The remaining parts of this work are: Section 2 presents the formal definition and the

asymptotic properties of the rMD estimator (rMDE). Section 3 deals with the general testing
problem with the use of rMDE. The associated set up for the case of three-way contingency
tables is developed in Section 4 with a simulation section emphasizing on the conditional
independence of three random variables. We close this work with some conclusions.

2. Restricted Minimum (Φ, α)-Power Divergence Estimator

In what follows, we will provide the formal definition and the expansion of the rMD
estimator and prove its asymptotic normality. The assumptions required for establishing
the results of this section for the rMD estimator under constraints, are provided below:

Assumption 1.

(A0) f1(θ), . . . , fν(θ) are the constrained functions on the s-dimensional parameter θ, fk(θ) = 0,
k = 1, . . . , ν and ν < s < m− 1;

(A1) There exists a value θ0 ∈ Θ, such that X = (X1, . . . , Xm)> ∼ Multi(N, p(θ0));

(A2) Each constraint function fk(θ) has continuous second partial derivatives;

(A3) The ν× s and m× s matrices

Q(θ0) =

(
∂ fk(θ0)

∂θj

)
k=1,...,ν
j=1,...,s

and J(θ0) =

(
∂pi(θ0)

∂θj

)
i=1,...,m
j=1,...,s
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are of full rank;

(A4) p(θ) has continuous second partial derivatives in a neighbourhood of θ0;

(A5) θ0 satisfies the Birch regularity conditions (see Appendix A and [22]).

Definition 1. Under assumptions (A0)–(A3) the rMD estimator of θ0 is any vector in Θ,
such that

θ̂
r
(Φ,α) = arg inf{θ∈Θ⊂Rs : fk(θ)=0,k=1,...,ν}dα

Φ(p̂, p(θ)). (8)

In order to derive the decomposition of θ̂
r
(Φ,α) the Implicit Function Theorem (IFT) is

exploited according to which if a function has an invertible derivative at a point then itself
is invertible in a neighbourhood of this point but it cannot be expressed in closed form [23].

Theorem 1. Under Assumptions (A0)–(A5), the rMD estimator of θ0 is such that

θ̂
r
(Φ,α) = θ0 + H(θ0)

(
B(θ0)

>B(θ0)
)−1

B(θ0)
>diag(p(θ0)

α/2)×

× diag(p(θ0)
−1/2)(p̂− p(θ0)) + o(‖p̂− p(θ0)‖) (9)

where θ̂
r
(Φ,α) is unique in a neighbourhood of θ0 and

H(θ0) = I −
(

B(θ0)
>B(θ0)

)−1
Q(θ0)

>×

×
(

Q(θ0)
(

B(θ0)
>B(θ0)

)−1
Q(θ0)

>
)−1

Q(θ0),

B(θ0) = diag(p(θ0)
α/2)A(θ0), while A(θ0) = diag(p(θ0)

−1/2)J(θ0).

Proof. Let V be a neighbourhood of θ0 on which p(·) : Θ→ P ⊂ lm has continuous second
partial derivatives where lm is the interior of the unit cube of dimension m. Let

F = (F1, . . . , Fν+s) : lm ×Rν+s → Rν+s

with

Fj(p, λ, θ) =


f j(θ), j = 1, . . . , ν

∂dα
Φ(p, p(θ))

∂θj−ν
+

ν

∑
k=1

λk
∂ fk(θ)

∂θj−ν
, j = ν + 1, . . . , ν + s.

where (p, λ, θ) = (p1, . . . , pm, λ1, . . . , λν, θ1, . . . , θs) and λk, k = 1, . . . , ν are the coefficients
of the constraints.

It holds that

Fj(p1(θ0), . . . , pm(θ0), 0, . . . , 0, θ01, . . . , θ0s) = 0, j = 1, . . . , ν + s

and by denoting γ = (γ1, . . . , γν+s) = (λ1, . . . , λν, θ1, . . . , θs), the matrix

∂F
∂γ

=

(
∂Fj

∂γk

)
j=1,...,ν+s
k=1,...,ν+s

=

(
0ν×ν Q(θ0)

Q(θ0)
> Φ

′′
(1)B(θ)>B(θ)

)

is nonsingular at (p, λ, θ) = (p(θ0), γ0) = (p1(θ0), . . . , pm(θ0), 0, . . . , 0, θ01, . . . , θ0s) with
γ0 = (0ν, θ0).

Using the IFT a neighbourhood U of (p(θ0), γ0) exists, such that ∂F/∂γ is nonsin-
gular and a unique differentiable function γ∗ = (λ∗, θ∗) : A ⊂ lm → Rν+s, such that
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p(θ0) ∈ A and {(p, γ) ∈ U : F(p, γ) = 0} = {(p, γ∗(p)) : p ∈ A} and γ∗(p(θ0)) =
(λ∗(p(θ0)), θ∗(p(θ0))) = γ0. By the chain rule and for p = p(θ0) we obtain

∂F
∂p(θ0)

+
∂F

∂γ0

∂γ0
∂p(θ0)

= 0.

Then
∂θ0

∂p(θ0)
=

(
E(θ0)
W(θ0)

)
where

E(θ0) = Φ
′′
(1)
(

Q(θ0)
(

B(θ0)
>B(θ0)

)−1
Q(θ0)

>
)−1
×

×Q(θ0)
(

B(θ0)
>B(θ0)

)−1
B(θ0)

>diag(p(θ0)
α/2)diag(p(θ0)

−1/2)

and
W(θ0) = H(θ0)

(
B(θ0)

>B(θ0)
)−1

B(θ0)
>diag(p(θ0)

α/2)diag(p(θ0)
−1/2) (10)

since
∂F

∂p(θ0)
=

(
0ν×m

−Φ
′′
(1)B(θ0)

>diag(p(θ0)
α/2)diag(p(θ0)

−1/2)

)
.

Expanding θ∗(p) around p(θ0) and using (10) gives, for θ∗(p(θ0)) = θ0,

θ∗(p) = θ0 + H(θ0)
(

B(θ0)
>B(θ0)

)−1
B(θ0)

>diag(p(θ0)
α/2)×

× diag(p(θ0)
−1/2)(p̂− p(θ0)) + o(‖p̂− p(θ0)‖).

Since p̂
p−→ p(θ0) eventually p̂ ∈ A and then γ∗(p̂) = (λ∗(p̂), θ∗(p̂)) is the unique solution

of the system
fk(θ) = 0, k = 1, . . . , ν

∂dα
Φ(p, p(θ))

∂θj
+

ν

∑
k=1

λk
∂ fk(θ)

∂θj
= 0, j = 1, . . . , s

and (p̂, γ∗(p̂)) ∈ U. Hence, θ∗(p̂) coincides with rMDE θ̂
r
(Φ,α) given in (9).

The theorem below establishes the asymptotic normality of rMDE which is a straight-
forward extension of Theorem 2.4 [11] since by the Central Limit Theorem we know that

√
N(p̂− p(θ0))

L−−−→
N→∞

N(0, Σp(θ0)
) (11)

with the asymptotic variance-covariance matrix Σp(θ0)
given by diag(p(θ0))−p(θ0)p(θ0)

>.

Theorem 2. Under Assumptions (A0)–(A5), by (11) and for W(θ0) given in (10), the asymptotic
distribution of rMDE is the s-dimensional Normal distribution given by

√
N(θ̂

r
(Φ,α) − θ0)

L−−−→
N→∞

Ns(0, W(θ0)Σp(θ0)
W(θ0)

>).

Remark 1. The proposed class of estimators forms a family of estimators that goes beyond the
indicator α since it is easy to see that estimators obtained for the Csiszar’s ϕ family are given for
α = 0 in (1) and also the standard equiprobable model.
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3. Statistical Inference

In this section, we introduce the double index divergence test statistic

Tα1
Φ1

(
θ̂

r
(Φ2,α2)

)
=

2N
Φ′′1 (1)

dα1
Φ1

(
p̂, p(θ̂r

(Φ2,α2))
)

(12)

with Φ1, Φ2 ∈ F∗ and α1, α2 > 0 and make the additional assumptions by which we focus
on the Csiszar’s family of measures for testing purposes (the notation ϕ is used for clarity)
and the equiprobable model:

Assumption 2.

(A6) pi = 1/m, ∀i

(A7) Φ1 = ϕ, α1 = 0.

The Theorem below provides the asymptotic distribution of (12) under Assumptions
(A0)–(A7). Assumption (A7) will be later relaxed and a general asymptotic result will be
presented in the next subsection. A discussion about Assumption A6 will also be made in
the sequel.

Theorem 3. Under Assumptions (A0)–(A7) and for the hypothesis in (3) we have

T0
ϕ

(
θ̂

r
(Φ2,α2)

)
=

2N
ϕ′′(1)

dϕ

(
p̂, p(θ̂r

(Φ2,α2))
)

L−−−→
N→∞

χ2
m−1−s−ν

with θ̂
r
(Φ2,α2) given in (9).

Proof. It is straightforward that

p(θ̂r
(Φ2,α2)) = p(θ0) + J(θ0)(θ̂

r
(Φ2,α2) − θ0) + o(‖θ̂r

(Φ2,α2) − θ0‖)

which by Theorem 2, expression (11), and for M(θ0) = J(θ0)W(θ0) reduces to

p(θ̂r
(Φ2,α2))− p(θ0) = M(θ0)(p̂− p(θ0)) + op(N−1/2)

which implies that

√
N(p(θ̂r

(Φ2,α2))− p(θ0))
L−−−→

N→∞
N(0, M(θ0)Σp(θ0)

M(θ0)
>). (13)

Combining the above we obtain

√
N

(
p̂− p(θ0)

p(θ̂r
(Φ2,α2))− p(θ0)

)
L−−−→

N→∞
N
(

0,
(

I
M(θ0)

)
Σp(θ0)

(I, M(θ0)
>)

)
and √

N(p̂− p(θ̂r
(Φ2,α2)))

L−−−→
N→∞

N(0, L(θ0))

where

L(θ0) = Σp(θ0)
−M(θ0)Σp(θ0)

− Σp(θ0)
M(θ0)

> + M(θ0)Σp(θ0)
M(θ0)

>. (14)

The expansion of dϕ(p, q) around (p(θ0), p(θ0)) yields

T0
ϕ

(
θ̂

r
(Φ2,α2)

)
=

m

∑
i=1

N
pi(θ0)

(
p̂i − pi(θ̂

r
(Φ2,α2))

)2
+ op(1) = X>X + op(1)
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where
X =
√

Ndiag(p(θ0)
−1/2)(p̂− p(θ̂r

(Φ2,α2)))
L−−−→

N→∞
N(0, T(θ0)).

Then, under A7, T(θ0) (see (14)) is a projection matrix of rank m − 1− s + ν since the
trace of the matrices A(θ0)

(
A(θ0)

>A(θ0)
)−1

A(θ0)
> and A(θ0)

(
A(θ0)

>A(θ0)
)−1

Q(θ0)
>(

Q(θ0)(A(θ0)
>A(θ0)

)−1
Q(θ0)

>)−1 Q(θ0)
(
A(θ0)

>A(θ0)
)−1

A(θ0)
> is equal to s and ν,

respectively.
Then, the result follows from the fact (see ([24], p. 57)) that X>X has a chi-squared

distribution with degrees of freedom equal to the rank of the variance-covariance matrix of
the random vector X as long as it is a projection matrix.

Remark 2. Relaxation of Assumption (A6): Arguing as in [11], when the true model is not the
equiprobable the result of Theorem 3 holds true as long as α2 = 0 and approximately true when
α2 → 0.

Asymptotic Theory of the Dual Divergence Test Statistic

Having established the two main results of the work, namely the decomposition of
the proposed restricted estimator (Theorem 1) together with its asymptotic properties
(Theorem 2), as well as the asymptotic distribution of the associated test statistic under
the class of Csiszar ϕ-functions (Theorem 3) we continue below extended in a natural way
the results of [11] for the dual divergence test statistic. The extensions presented in this
section are considered vital due to their practical impication on cross tabulations discussed
in Section 4. The proofs will be omitted since both results (Theorems 4 and 5) follow along
the lines of previous results (see Theorems 3.4 and 3.9 of [11]). In what follows we adopt
the following notation:

b = m−α1 , pα1
(1) = min

i∈{1,...,m}
pi(θ0)

α1 , pα1
(m)

= max
i∈{1,...,m}

pi(θ0)
α1 , k = m− 1− s + ν.

Theorem 4. Under Assumptions (A0)–(A7) we have

Tα1
Φ1
(θ̂

r
(Φ2,α2))

L−−−→
N→∞

bχ2
k .

Remark 3. Consider the case where Assumption (A6) is relaxed. Then, the asymptotic distribution
of the test statistic Tα1

Φ1
(θ̂

r
(Φ2,α2)) is estimated to be approximately bχ2

k where

b =
pα1
(1) + pα1

(m)

2
(15)

as long as α2 = 0 or α2 → 0. For further elaboration of this remark we refer to [11].

Remark 4. Observe that if α1 → 0 then b→ 1 and the asymptotic distribution becomes χ2
k , while

for α1 away from 0 the distribution is proportional to χ2
k with proportionality index b 6= 1. However,

for not equiprobable models these statements hold true as long as α2 is close to zero.

Consider now the hypothesis with contiguous alternatives [25,26]

H0 : p = p(θ0) vs. H1,N : p = p(θ0) +
d√
N

(16)

where d is an m-dimensional vector of known real values with components di satisfying
the assumption ∑m

i=1 di = 0.
Observe that as N tends to infinity, the local contiguous alternative converges to the

null hypothesis at the rate O(N1/2). Alternatives, such as those in (16), are known as Pitman



Entropy 2022, 24, 477 8 of 17

transition alternatives or Pitman (local) alternatives or local contiguous alternatives to the null
hypothesis H0 [25].

Theorem 5. Under Assumptions (A0)–(A7) and for the hypothesis (16) we have

Tα1
Φ1
(θ̂

r
(Φ2,α2))

L−−−→
N→∞

bχ2
k(ξ
>ξ)

which represents a non-central chi-squared distribution with k degrees of freedom and non-centrality
parameter ξ>ξ for which ξ = diag(p(θ0)

−1/2)(I − J(θ0)W(θ0))d.

Remark 5. Observe that under Assumption (A6) (pi = 1/m) the asymptotic distribution is
independent of Φ, α1 and α2. As a result the associated power of the test is Pr(χ2

k(ξ
>ξ) ≥ χ2

k,a)
where a the 100(1 − a)% percentile of the distribution. If assumption A6 is relaxed then the

distribution is approximately non-central chi-squared with proportionality index b =
p

α1
(1)+p

α1
(m)

2 .

4. Cross Tabulations and Dual Divergence Test Statistic

In this section, we try to take advantage of the methodology proposed earlier for
the analysis of cross tabulations. In particular we focus on the case of three categorical
variables, say X, Y, and Z with corresponding, I, J, and K. Then, assume that the probability
mass of a realization of a randomly selected subject is denoted by pijk(θ) = Pr(X = i, Y =
j, Z = k) > 0, where here and in what follows i = 1, . . . , I, j = 1, . . . , J, k = 1, . . . , K unless
otherwise stated. The associated probability vector is given as p(θ) = {pijk(θ)} where

pijk(θ) =


θijk, (i, j, k) 6= (I, J, K)

1−
I

∑
i=1

J

∑
j=1

K

∑
k=1

(i,j,k) 6=(I,J,K)

θijk, (i, j, k) = (I, J, K)

and the parameter space as Θ = {θijk, (i, j, k) 6= (I, J, K)}. The sample estimator of pijk(θ)
is p̂ijk = nijk/N, where nijk is the frequency of the corresponding (i, j, k) cell.

In this set up the dual divergence test statistics is given as

Tα1
Φ1

(
θ̂

r
(Φ2,α2)

)
=

2N
Φ′′1 (1)

I

∑
i=1

J

∑
j=1

K

∑
k=1

pijk(θ̂
r
(Φ2,α2))

1+αΦ1

(
p̂ijk

pijk(θ̂
r
(Φ2,α2))

)
(17)

where p̂ijk as above and the rMD estimator as

θ̂
r
(Φ2,α2) = arg inf

{θ∈Θ⊂Rs : fk(θ)=0,k=1,...,ν}

I

∑
i=1

J

∑
j=1

K

∑
k=1

pijk(θ)
1+α2 Φ2

(
p̂ijk

pijk(θ)

)
. (18)

For α1, α2 = 0 and special cases of the functions Φ1 and Φ2, classical restricted
minimum divergence estimators and associated test statistics can be derived from (18)
and (17), respectively. For example, for α1, α2 = 0, and Φ1, Φ2 = ΦKL the likelihood ratio
test statistic with the restricted maximum likelihood estimator (G2(θ̂

r
)) can be derived,

while for Φ1, Φ2 = Φλ and λ = 1 we obtain the chi-squared test statistic with the restricted
minimum chi-squared estimator (X2(θ̂

r
X2)). For Φ1, Φ2 = Φλ and λ = 2/3 the dual

divergence test statistic reduces to the power divergence test statistic with the restricted
minimum power divergence estimator (CR(θ̂r

CR)) whereas for λ = −1/2 reduces to
the Freeman–Tukey test statistic with the restricted minimum Freeman–Tukey estimator
(FT(θ̂r

FT)).
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The hypothesis of conditional independence between X, Y, and Z is given for any
triplet i, j, k by

H0 : pijk(θ0) =
pi∗k(θ0)p∗jk(θ0)

p∗∗k(θ0)
, θ0 ∈ Θ unknown

where

pi∗k(θ0) =
J

∑
j=1

pijk(θ0), p∗jk(θ0) =
I

∑
i=1

pijk(θ0) and p∗∗k(θ0) =
I

∑
i=1

J

∑
j=1

pijk(θ0).

Under the (I − 1)(J − 1)K constrained functions

fijk(θ) = p11k(θ)pijk(θ)− p1jk(θ)pi1k(θ) = 0

i = 2, . . . , I, j = 2, . . . , J, k = 1, . . . , K the above H0 hypothesis with θ0 unknown, becomes

H0 : p = p(θ0), for θ0 ∈ Θ0,

where Θ0 = {θ ∈ Θ : fijk(θ) = 0, i = 2, . . . , I, j = 2, . . . , J, k = 1, . . . , K}.

Remark 6. For practical purposes, the choice of the values of the indices is motivated by the work
of [8] where, in an attempt to achieve a compromise between robustness and efficiency of estimators,
they recommended the use of small values in the (0, 1) region. In the following subsection, our
analysis will reconfirm their findings since as it will be seen, values of both indices close to (0) (than
to one (1)) will be found to be associated with a good performance not only in terms of estimation
but also in terms of goodness of fit as it will be reflected in the size and the power of the test.

Simulation Study

In this simulation study, we use the rMD estimator and the associated dual divergence
test statistic for the analysis of cross tabulations. Specifically, we are going to compare in
terms of size and power classical tests with those that can be derived through the proposed
methodology, for the problem of conditional independence of three random variables in
contingency tables. We test the hypothesis of conditional independence for a 2× 2× 2
contingency table, thus in this case we have m = 8 probabilities of the multinomial model,
s = 7 unknown parameters to estimate and two constraint functions (ν = 2) which are
given by

f221(θ) = θ111θ221 − θ121θ211 and f222(θ) = θ112

(
1−

2

∑
i=1

2

∑
j=1

2

∑
k=1

(i,j,k) 6=(2,2,2)

θijk

)
− θ122θ212.

For a better understanding of the behaviour of the dual divergence test statistic given
in (17) we compare it with the four classical tests-of-fit mentioned earlier in Section 4,
namely with the G2(θ̂

r
), X2(θ̂

r
X2), CR(θ̂r

CR) and FT(θ̂r
FT). The proposed test Tα1

Φ1

(
θ̂

r
(Φ2,α2)

)
is applied for Φ1 = Φα1 , Φ2 = Φα2 and six different values of α1 and α2, α1, α2 = 10−7, 0.01,
0.05, 0.10, 0.50, and 1.50. Note that, the critical values used in this simulation study, are
the asymptotic critical values based on the asymptotic distribution bχ2

2 with b as in (15) for
the double index family of test statistics, and the χ2

2 for the classical test statistics. For the
analysis we used 100,000 simulations and sample sizes equal to n = 20, 25 (small sample
sizes) and n = 40, 45 (moderate sample sizes).
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In this study, we have used the model previously considered by [27] given by

p111 = π111 − π111w p211 = π211 + π222w− π111w

p112 = π112 + π111w− π222w p212 = π212 + π111w− π222w

p121 = π121 + π222w p221 = π221 + π222w− π111w

p122 = π122 + π111w p222 = π222 − π222w

where 0 ≤ w < 1 and πijk = pi∗∗ × p∗j∗ × p∗∗k i, j, k = 1, 2 with

π111 = 0.036254 π112 = 0.164994 π121 = 0.092809 π122 = 0.133645

π211 = 0.092809 π212 = 0.133645 π221 = 0.237591 π222 = 0.108253.

For w = 0 we take the model under the null hypothesis of conditional independence
while for values w 6= 0 we take the models under the alternative hypotheses. We considered
the following values of w = 0.00, 0.30, 0.60, and 0.90. Note that the larger the value of w the
more we deviate from the null model. For the simulation study, we used the R software [28],
while for the constrained optimization the auglag function from the nloptr package [29].

From Table 1, we can observe that in terms of size the performance of the Tα1
Φ1
(θ̂

r
(Φ2,α2))

is adequate for values of α1, α2 ≤ 0.5 both for small and moderate sample sizes. In addition,
we can see that for α1 ≤ 0.10, Tα1

Φ1
(θ̂

r
(Φ2,α2)) appears to be liberal while for α1 ≥ 0.5 appears

to be conservative. We also note that the size becomes smaller as α1 and α2 increase with
α1 ≥ α2. Table 2 provides the size of the classical tests-of-fit from where we can observe
that CR(θ̂r

CR) has the best performance among all competing tests for every sample size.
In contrast, FT(θ̂r

FT) has the worst performance among all competing tests and appears to
be very liberal. Furthermore, X2(θ̂

r
X2) appears to be conservative while G2(θ̂

r
) appears to

be liberal. Note that for α1 ∈ [0.01, 0.5] and α2 ≤ 0.10, Tα1
Φ1
(θ̂

r
(Φ2,α2)) behaves better than the

G2(θ̂
r
) test statistic and its performance is quite close to the performance of the X2(θ̂

r
X2).

Table 1. Size (w = 0.00) calculations (%) of the Tα1
Φ1
(θ̂

r
(Φ2,α2)) test statistic for sample sizes n =

20, 25, 40, 45. Sizes that satisfy Dale’s criterion are presented in bold.

α2

α1 10−7 0.01 0.05 0.10 0.50 1.50 10−7 0.01 0.05 0.10 0.50 1.50

n = 20 n = 25

10−7 8.256 8.257 8.260 8.263 9.216 13.856 7.863 7.865 7.878 7.920 8.927 13.192
0.01 8.207 8.206 8.209 8.224 9.224 13.623 7.753 7.754 7.763 7.817 8.797 12.930
0.05 7.896 7.849 7.879 7.886 8.719 12.916 7.340 7.334 7.327 7.350 8.313 12.277
0.10 7.403 7.404 7.378 7.356 8.046 11.994 6.965 6.959 6.940 6.934 7.675 11.364
0.50 3.873 3.850 3.769 3.612 3.023 4.050 3.857 3.819 3.722 3.604 3.191 4.304
1.50 0.920 0.893 0.807 0.758 0.509 0.202 1.046 1.019 0.948 0.885 0.602 0.203

n = 40 n = 45

10−7 7.016 7.016 7.027 7.055 7.887 11.362 6.858 6.858 6.870 6.908 7.732 11.099
0.01 6.933 6.933 6.940 6.957 7.778 11.183 6.760 6.760 6.770 6.805 7.601 10.941
0.05 6.590 6.589 6.580 6.593 7.342 10.505 6.427 6.422 6.415 6.426 7.153 10.340
0.10 6.246 6.239 6.228 6.222 6.794 9.758 6.082 6.070 6.053 6.043 6.612 9.586
0.50 3.854 3.832 3.762 3.661 3.367 4.362 3.813 3.789 3.716 3.635 3.331 4.269
1.50 1.172 1.160 1.115 1.066 0.760 0.383 1.183 1.170 1.119 1.068 0.773 0.437

In order to examine the closeness of the estimated (true) size to the nominal size
α = 0.05 we consider the criterion given by Dale [30]. The criterion involves the following
inequality

|logit(1− α̂n)− logit(1− α)| ≤ d (19)
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where logit(p) = log(p/(1− p)) and α̂n is the estimated (true) size. The estimated (true)
size is considered to be close to the nominal size if (19) is satisfied with d = 0.35. Note that
in this situation the estimated (true) size is close to the nominal one if α̂n ∈ [0.0357, 0.0695]
and is presented in Tables 1 and 2 in bold. This criterion has been used previously among
others by [27,31].

Regarding the proposed test we can see that for small sample sizes the estimated (true)
size is close to the nominal for α1 ∈ [0.10, 0.50] and α2 ≤ 0.10 while for moderate sample
sizes for α1 ∈ [10−7, 0.50] and α2 ≤ 0.10. With reference to the classical tests-of-fit we can
observe that the size of the CR(θ̂r

CR) is close to the nominal for every sample size whereas
the size of G2(θ̂

r
) and X2(θ̂

r
X2) is close only for moderate sample sizes. Finally, we note

that the estimated (true) size of FT(θ̂r
FT) fails to be close to the nominal both for small and

moderate sample sizes.
In Tables 3–5, we provide the results regarding the power of the proposed family of

test statistics for the three alternatives and sample sizes n = 20, 25, 40, 45, while Table 2
provides the results regarding the power of the classical tests-of-fit. The performance tends
to be better as we deviate from the null model and as the sample size increases both for the
classical and the proposed tests.

Table 2. Size (w = 0.00) and power (w = 0.30, 0.60, 0.90) calculations (%) for the classical tests-of-fit.
Sizes that satisfy Dale’s criterion are presented in bold.

Sample size FT G2 CR X2 FT G2 CR X2

w = 0.00 w = 0.30

n = 20 14.715 8.261 4.219 3.140 18.366 9.072 4.200 2.966
n = 25 13.664 7.865 4.333 3.477 19.674 9.846 4.783 3.646
n = 40 11.154 7.016 4.722 4.059 21.920 12.192 6.935 5.548
n = 45 10.787 6.858 4.703 4.082 22.467 12.992 7.471 6.081

w = 0.40 w = 0.45

n = 20 29.707 14.936 7.096 4.910 47.859 26.721 13.789 9.704
n = 25 35.768 18.966 9.469 7.118 62.810 38.023 20.147 15.296
n = 40 48.366 31.513 18.780 15.030 85.773 69.599 47.644 39.481
n = 45 50.821 35.381 22.367 18.217 89.108 76.685 57.000 48.451

Table 3. Power (w = 0.30) calculations (%) of the Tα1
Φ1
(θ̂

r
(Φ2,α2)) test statistic for sample sizes n =

20, 25, 40, 45.

α2

α1 10−7 0.01 0.05 0.10 0.50 1.50 10−7 0.01 0.05 0.10 0.50 1.50

n = 20 n = 25

10−7 9.073 9.072 9.071 9.076 9.993 15.062 9.846 9.846 9.868 9.895 10.924 15.729
0.01 8.990 8.989 8.988 9.006 9.948 14.724 9.630 9.630 9.651 9.727 10.712 15.343
0.05 8.350 8.278 8.340 8.357 9.231 13.819 9.033 9.008 8.990 9.022 9.876 14.332
0.10 7.694 7.696 7.626 7.616 8.273 12.656 8.225 8.216 8.194 8.188 8.890 13.111
0.50 3.751 3.717 3.607 3.418 2.889 4.199 3.797 3.761 3.656 3.581 3.252 4.620
1.50 0.793 0.764 0.676 0.630 0.415 0.163 0.820 0.810 0.756 0.718 0.479 0.158

n = 40 n = 45

10−7 12.192 12.193 12.207 12.231 13.142 17.775 12.992 12.992 13.003 13.052 14.014 18.490
0.01 11.935 11.934 11.942 11.979 12.853 17.387 12.724 12.724 12.730 12.764 13.721 18.148
0.05 11.075 11.075 11.069 11.074 11.844 16.046 11.799 11.786 11.760 11.768 12.628 16.815
0.10 10.072 10.060 10.039 10.022 10.565 14.549 10.747 10.729 10.688 10.669 11.218 15.183
0.50 4.863 4.842 4.743 4.648 4.342 5.815 5.214 5.179 5.078 4.977 4.648 6.116
1.50 0.979 0.970 0.928 0.890 0.662 0.379 1.032 1.019 0.978 0.928 0.693 0.412
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Table 4. Power (w = 0.60) calculations (%) of the Tα1
Φ1
(θ̂

r
(Φ2,α2)) test statistic for sample sizes n =

20, 25, 40, 45.

α2

α1 10−7 0.01 0.05 0.10 0.50 1.50 10−7 0.01 0.05 0.10 0.50 1.50

n = 20 n = 25

10−7 14.928 14.937 14.932 14.944 16.186 22.900 18.965 18.964 19.004 19.042 20.607 27.684
0.01 14.807 14.813 14.808 14.833 16.117 22.486 18.565 18.564 18.598 18.702 20.235 27.069
0.05 13.711 13.583 13.726 13.735 14.939 21.143 17.436 17.383 17.360 17.422 18.733 25.365
0.10 12.612 12.619 12.529 12.525 13.217 19.545 15.794 15.767 15.743 15.726 16.869 23.368
0.50 6.088 5.994 5.811 5.416 4.553 6.403 6.879 6.821 6.656 6.473 5.912 8.458
1.50 1.118 1.077 0.944 0.889 0.553 0.215 1.275 1.240 1.152 1.081 0.729 0.260

n = 40 n = 45

10−7 31.513 31.518 31.533 31.608 33.469 40.799 35.381 35.381 35.404 35.465 37.411 44.556
0.01 30.904 30.903 30.925 30.999 32.868 40.221 34.848 34.845 34.863 34.941 36.744 43.942
0.05 28.949 28.946 28.938 28.956 30.509 37.756 32.727 32.716 32.697 32.715 34.310 41.510
0.10 26.504 26.485 26.434 26.398 27.631 34.747 30.146 30.110 30.051 30.014 31.289 38.456
0.50 11.949 11.867 11.598 11.409 10.830 14.703 14.052 13.966 13.632 13.321 12.731 16.901
1.50 1.797 1.761 1.692 1.578 1.142 0.716 1.973 1.945 1.870 1.776 1.295 0.838

Table 5. Power (w = 0.90) calculations (%) of the Tα1
Φ1
(θ̂

r
(Φ2,α2)) test statistic for sample sizes n =

20, 25, 40, 45.

α2

α1 10−7 0.01 0.05 0.10 0.50 1.50 10−7 0.01 0.05 0.10 0.50 1.50

n = 20 n = 25

10−7 26.712 26.710 26.707 26.711 28.495 37.924 38.017 38.016 38.132 38.191 40.982 50.954
0.01 26.589 26.586 26.585 26.613 28.718 37.421 37.365 37.364 37.456 37.645 40.482 50.206
0.05 25.437 25.267 25.531 25.502 27.170 35.979 35.674 35.559 35.526 35.643 38.260 48.187
0.10 24.287 24.284 24.232 24.172 24.868 33.946 33.014 32.939 32.867 32.854 35.184 45.569
0.50 12.003 11.780 11.424 10.772 8.807 11.665 14.353 14.226 13.870 13.560 12.312 16.886
1.50 1.731 1.662 1.489 1.422 0.904 0.298 2.268 2.226 2.026 1.916 1.387 0.506

n = 40 n = 45

10−7 69.599 69.605 69.637 69.755 72.196 79.363 76.685 76.685 76.731 76.805 78.802 84.683
0.01 68.923 68.923 68.954 69.049 71.518 79.003 76.177 76.173 76.192 76.264 78.143 84.344
0.05 66.310 66.309 66.306 66.365 68.576 77.069 73.760 73.745 73.732 73.766 75.748 82.751
0.10 62.500 62.455 62.372 62.343 64.660 74.161 70.295 70.264 70.144 70.131 72.172 80.319
0.50 30.094 29.904 29.349 28.848 27.895 36.902 36.612 36.465 35.792 35.073 34.056 43.732
1.50 3.748 3.678 3.472 3.210 2.269 1.562 4.349 4.274 4.017 3.747 2.665 1.927

As general comments regarding the behaviour of the proposed and the classical tests-
of-fit in terms of power we state that the best results for the Tα1

Φ1
(θ̂

r
(Φ2,α2)) are obtained

for small values of α1 in the range (0, 0.1] and large values of α2 with α1 ≤ α2. Note
that although in terms of power results become better as α2 increases in terms of size
these are adequate only for α2 ≤ 0.5. In addition, we can observe that the performance
of Tα1

Φ1
(θ̂

r
(Φ2,α2)) is better than the CR(θ̂r

CR) and X2(θ̂
r
X2) for every alternative and every

sample size for α1 ≤ 0.1 and α2 ≤ 0.5 and slightly better than G2(θ̂
r
) for small values of

α1 and large values of α2, for example for α1 = 0.01 and α2 = 0.50. Furthermore, we can
observe that for α1 = 0.1 and α2 ≤ 0.1 the size of the test is better than the size of the
G2(θ̂

r
) and slightly worst form the size of the CR(θ̂r

CR) and X2(θ̂
r
X2) test statistics while

its power is quite better than the power of the CR(θ̂r
CR) and X2(θ̂

r
X2) and slightly worst

than the G2(θ̂
r
). Additionally, we can see that as α1 and α2 tend to 0 the behaviour of the

Tα1
Φ1
(θ̂

r
(Φ2,α2)) test statistic coincides with the G2(θ̂

r
) test both in terms of size and power as

it was expected.
In order to attain a better insight about the behaviour of the test statistics, we apply

Dale’s criterion, not only for the nominal size α = 0.05, but also for a range of nominal sizes
that are of interest. Based on the previous analysis, beside the classical tests, we will focus
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our interest on the T0.05
Φ1

(θ̂
r
(Φ2,0.05)), T0.10

Φ1
(θ̂

r
(Φ2,0.10)), and T0.20

Φ1
(θ̂

r
(Φ2,0.20)). The following

simplified notation is used in every Figure, FT ≡ FT(θ̂r
FT), ML ≡ G2(θ̂

r
), CR ≡ CR(θ̂r

CR),
Pe≡ X2(θ̂

r
X2), T1≡ T0.05

Φ1
(θ̂

r
(Φ2,0.05)), T2≡ T0.10

Φ1
(θ̂

r
(Φ2,0.10)), and T3= T0.20

Φ1
(θ̂

r
(Φ2,0.20)). From

Figure 1a, we can see that for small sample sizes (n = 25) T0.20
Φ1

(θ̂
r
(Φ2,0.20)) and CR(θ̂r

CR)

satisfy Dale’s criterion for every nominal size while T0.10
Φ1

(θ̂
r
(Φ2,0.10)) and X2(θ̂

r
X2) for nom-

inal sizes greater than 0.03 and 0.06, respectively. Note that the dashed line in Figure 1
denotes the situation in which the estimated (true) size equals to the nominal size and
thus lines that lie above this reference line refer to liberal tests while those that lie below to
conservative ones. On the other hand, for moderate sample sizes (n = 45) all chosen test
statistics satisfy Dale’s criterion except FT(θ̂r

FT).
Taking into account the fact that the actual size of each test differs from the targeted

nominal size, we have to make an adjustment in order to proceed further with the compari-
son of the tests in terms of power. We focus our interest in those tests that satisfy Dale’s
criterion and follow the method proposed in [32] which involves the so-called receiver
operating characteristic (ROC) curves. In particular, let G(t) = Pr(T ≥ t) be the survivor
function of a general test statistic T, and c = inf{t : G(t) ≤ α} be the critical value, then
ROC curves can be formulated by plotting the power G1(c) against the size G0(c) for
various values of the critical value c. Note that with G0(t) we denote the distribution of the
test statistic under the null hypothesis and with G1(t) under the alternative.
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Figure 1. Estimated (true) sizes against nominal sizes. The shaded area refers to Dale’s criterion.
(a) n = 25. (b) n = 45.

Since results are similar for every alternative we restrict ourselves to w = 0.60 which
refers to an alternative that is neither too close nor too far from the null. For small sample
sizes (n = 25) results are presented in Figure 2, where we can see that the proposed test is
superior from the classical tests-of-fit in terms of power. However, for moderate sample
sizes (n = 45) we can observe in Figure 3 that G2(θ̂

r
) has the best performance among all

competing tests followed by the proposed test-of-fit.
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Figure 2. (a) Empirical ROC curves for n = 25. (b) The same curves magnified over a relevant range
of empirical sizes.
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Figure 3. (a) Empirical ROC curves for n = 45. (b) The same curves magnified over a relevant range
of empirical sizes.

From the conducted analysis we conclude that regarding the proposed test there is a
trade off between size and power for different choices of the indices α1 and α2. In particular,
we can see that as α1 increases the size becomes smaller in the expense of smaller power,
while as α2 increases the power becomes better and the tests more liberal. In conclusion,
we could state that for values of α1 and α2 in the range (0.05, 0.25) the resulting test statistic
provides a fair balance between size and power which makes it an attractive alternative
to the classical tests-of-fit where for small sample sizes larger values of the indices are
preferable whereas for moderate sample sizes, smaller ones are recommended.
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5. Conclusions

In this work, a general divergence family of test statistics is presented for hypothesis
testing problems as in (3), under constraints. For estimating purposes, we introduce, discuss
and use the rMD (restricted minimum divergence) estimator presented in (8). The proposed
double index (dual) divergence test statistic involves two pairs of elements, namely (Φ2, α2)
to be used for the estimation problem and (Φ1, α1) to be used for the testing problem.
The duality refers to the fact that the two pairs may or may not be the same providing the
researcher with the greatest possible flexibility.

The asymptotic distribution of the dual divergence test statistic is found to be propor-
tional to the chi-squared distribution irrespectively of the nature of the multinomial model,
as long as the values of the two indicators involved are relative close to zero (less than 0.5).
Such values are known to provide a satisfactory balance between efficiency and robustness
(see, for instance, [8] or [3]).

The methodology developed in this work can be used in the analysis of contingency
tables which is applicable in various scientific fields: biosciences, such as genetics [33] and
epidemiology [34]; finance, such as the evaluation of investment effectiveness or business
performance [35]; insurance science [36]; or socioeconomics [37]. This work concludes
with a comparative simulation study between classical test statistics and members of
the proposed family, where the focus is placed on the conditional independence of three
random variables. Results indicate that, by selecting wisely the values of the α1 and α2
indices, we can derive a test statistic that can be thought of as a powerful and reliable
alternative to the classical tests-of-fit especially for small sample sizes.
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Appendix A

The Birch regularity conditions mentioned in Assumption (A5) of Section 2 are stated
below (for details see [22])

1. The point θ0 is an interior point of Θ;
2. pi = pi(θ0) > 0 for i = 1, . . . , m;
3. The mapping p(θ) : Θ→ P is totally differentiable at θ0 so that the partial derivatives

of pi(θ0) with respect to each θj exist at θ0 and p(θ) has a linear approximation at θ0
given by

pi(θ) = pi(θ0) +
s

∑
j=1

(θj − θ0j)
∂pi(θ0)

∂θj
+ o(‖θ− θ0‖), i = 1, . . . , m

as θ→ θ0.



Entropy 2022, 24, 477 16 of 17

4. The Jacobian matrix

J(θ0) =

(
∂p(θ)

∂θ

)
θ=θ0

=

(
∂pi(θ0)

∂θj

)
i=1,...,m
j=1,...,s

is of full rank;
5. The mapping inverse to θ→ p(θ) exists and is continuous at θ0;
6. The mapping p : Θ→ P is continuous at every point θ ∈ Θ.
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