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Abstract: This work proposes a new computational framework for learning a structured generative
model for real-world datasets. In particular, we propose to learn a Closed-loop Transcriptionbetween
a multi-class, multi-dimensional data distribution and a Linear discriminative representation (CTRL)
in the feature space that consists of multiple independent multi-dimensional linear subspaces. In
particular, we argue that the optimal encoding and decoding mappings sought can be formulated
as a two-player minimax game between the encoder and decoderfor the learned representation. A natural
utility function for this game is the so-called rate reduction, a simple information-theoretic measure
for distances between mixtures of subspace-like Gaussians in the feature space. Our formulation
draws inspiration from closed-loop error feedback from control systems and avoids expensive
evaluating and minimizing of approximated distances between arbitrary distributions in either the
data space or the feature space. To a large extent, this new formulation unifies the concepts and
benefits of Auto-Encoding and GAN and naturally extends them to the settings of learning a both
discriminative and generative representation for multi-class and multi-dimensional real-world data.
Our extensive experiments on many benchmark imagery datasets demonstrate tremendous potential
of this new closed-loop formulation: under fair comparison, visual quality of the learned decoder and
classification performance of the encoder is competitive and arguably better than existing methods
based on GAN, VAE, or a combination of both. Unlike existing generative models, the so-learned
features of the multiple classes are structured instead of hidden: different classes are explicitly
mapped onto corresponding independent principal subspaces in the feature space, and diverse visual
attributes within each class are modeled by the independent principal components within each subspace.

Keywords: closed-loop transcription; linear discriminative representation; rate reduction; minimax game

1. Introduction

One of the most fundamental tasks in modern data science and machine learning is to
learn and model complex distributions (or structures) of real-world data, such as images or
texts, from a set of observed samples. By “to learn and model”, one typically means that

Entropy 2022, 24, 456. https://doi.org/10.3390/e24040456 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e24040456
https://doi.org/10.3390/e24040456
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0002-4684-911X
https://doi.org/10.3390/e24040456
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e24040456?type=check_update&version=1


Entropy 2022, 24, 456 2 of 40

we want to establish a (parametric) mapping between the distribution of the real data, say
x ∈ RD, and a more compact random variable, say z ∈ Rd:

f (·, θ) : x ∈ RD 7→ z ∈ Rd or the inverse g(·, η) : z ∈ Rd 7→ x ∈ RD, (1)

where z has a certain standard structure or distribution (e.g., normal distributions). The so-
learned representation or feature z would be much easier to use for either generative (e.g.,
decoding or replaying) or discriminative (e.g., classification) purposes, or both.

Data embedding versus data transcription. Be aware that the support of the distribu-
tion of x (and that of z) is typically extremely low-dimensional compared to that of the ambient
space (for instance, the well-known CIFAR-10 datasets consist of RGB images with a resolu-
tion of 32× 32. Despite the images being in a space of R3072, our experiments will show
that the intrinsic dimension of each class is less than a dozen, even after they are mapped
into a feature space of R128) hence the above mapping(s) may not be uniquely defined
based on the support in the space RD (or Rd). In addition, the data x may contain multiple
components (e.g., modes, classes), and the intrinsic dimensions of these components are
not necessarily the same. Hence, without loss of generality, we may assume the data x to
be distributed over a union of low-dimensional nonlinear submanifolds ∪k

j=1Mj ⊂ RD,
where each submanifoldMj is of dimension dj � D. Regardless, we hope the learned
mappings f and g are (locally dimension-preserving) embedding maps [1], when restricted
to each of the componentsMj. In general, the dimension of the feature space d needs to
be significantly higher than all of these intrinsic dimensions of the data: d > dj. In fact, it
should preferably be higher than the sum of all the intrinsic dimensions: d ≥ d1 + · · ·+ dk,
since we normally expect that the features of different components/classes can be made
fully independent or orthogonal in Rd. Hence, without any explicit control of the map-
ping process, the actual features associated with images of the data under the embedding
could still lie on some arbitrary nonlinear low-dimensional submanifolds inside the feature
space Rd. The distribution of the learned features remains “latent” or “hidden” in the
feature space.

So, for features of the learned mappings (1) to be truly convenient to use for purposes
such as data classification and generation, the goals of learning such mappings should not
only simply reduce the dimension of the data x from D to d but also determine explicitly
and precisely how the mapped feature z = f (x) is distributed within the feature space Rd,
in terms of both its support and density. Moreover, we want to establish an explicit map
g(·) from this distribution of feature z back to the data space such that the distribution of its
image x̂ = g(z) (closely) matches that of x. To differentiate from finding arbitrary feature
embeddings (as most existing methods do), we call embeddings of data onto an explicit
family of models (structures or distributions) in the feature space as data transcription.

Paper Outline. This work is to show how such transcription can be achieved for
real-world visual data with one important family of models: the linear discriminative
representation (LDR) introduced by [2]. Before we formally introduce our approach in
Section 2, for the remainder of this section, we first discuss two existing approaches, namely
autoencoding and GAN, that are closely related to ours. As these approaches are rather
popular and known to the readers, we will mainly point out some of their main conceptual
and practical limitations that have motivated this work. Although our objective and
framework will be mathematically formulated, the main purpose of this work is to verify
the effectiveness of this new approach empirically through extensive experimentation,
organized and presented in Section 3 and Appendix A. Our work presents compelling
evidence that the closed-loop data transcription problem and our rate-reduction-based
formulation deserve serious attention from the information-theoretical and mathematical
communities. This has raised many exciting and open theoretical problems or hypotheses
about learning, representing, and generating distributions or manifolds of high-dimensional
real-world data. We discuss some open problems in Section 4 and new directions in
Section 5. Source code can be found at https://github.com/Delay-Xili/LDR (accessed on 9
February 2022).

https://github.com/Delay-Xili/LDR
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1.1. Learning Generative Models via Auto-Encoding or GAN

Auto-Encoding and its variants. In the machine-learning literature, roughly speak-
ing,there have been two representative approaches to such a distribution-learning task.
One is the classic “Auto Encoding” (AE) approach [3,4] that aims to simultaneously learn
an encoding mapping f from x to z and an (inverse) decoding mapping g from z back to x:

X
f (x,θ)−−−−−→ Z

g(z,η)−−−−−→ X̂. (2)

Here, we use bold capital letters to indicate a matrix of finite samples X = [x1, . . . , xn] ∈
RD×n of x and their mapped features Z = [z1, . . . , zn] ⊂ Rd×n, respectively. Typically, one
wishes for two properties: firstly, the decoded samples X̂ are “similar” or close to the origi-
nal X, say in terms of maximum likelihood p(X); and secondly, the (empirical) distribution
of the mapped samples Z, denoted as p̂(z|X), is close to certain desired prior distribution
p(z), say some much lower-dimensional multivariate Gaussian (The classical PCA can be
viewed as a special case of this task. In fact, the original auto-encoding is precisely cast as
nonlinear PCA [3], assuming the data lie on only one nonlinear submanifoldM).

However it is typically very difficult, often computationally intractable to maximize
the likelihood function p(X) or to minimize certain “distance”, say the KL-divergence
DKL( p̂, p), between p̂(z|X) and p(z). Except for simple distributions such as Gaussian,
the KL divergence usually does not have a closed-form, even for a mixture of Gaussians.
The likelihood and the KL-divergence become ill-conditioned when the supports of the
distributions are low-dimensional (i.e., degenerate) and not overlapping (which is almost
always the case in practice when dealing with distributions of high-dimensional data in
high-dimensional spaces). So in practice, one typically chooses to minimize instead certain
approximate bounds or surrogates derived with various simplifying assumptions on the
distributions involved, as is the case in variational auto-encoding (VAE) [5,6]. As a result,
even after learning, the precise posterior distribution of p̂(z|X) remains unclear or hidden
inside the feature space.

In this work, we will show that if we impose specific requirements on the (distribution
of) learned feature z to be a mixture of subspace-like Gaussians, a natural closed-form dis-
tance can be introduced for such distributions based on rate distortion from the information
theory. In addition, the optimal solution to the feature representation within this family
can be learned directly from the data without specifying any target p(z) in advance, which is
particularly difficult in practice when the distribution of a mixed dataset is multi-modal
and each component may have a different dimension.

GAN and its variants. Compared to measuring distribution distance in the (often
controlled) feature space z, a much more challenging issue with the above auto-encoding
approach is how to effectively measure the distance between the decoded samples X̂ and
the original X in the data space x. For instance, for visual data such as images, their
distributions p(X) or generative models p(X|z) are often not known. Despite extensive
studies in the computer vision and image processing literature [7], it remains elusive to find
a good measure for similarity of real images that is both efficient to compute and effective
in capturing visual quality and semantic information of the images equally well. Precisely
due to such difficulties, it has been suggested early on by [8] that one may have to take
a discriminative approach to learn the distribution or a generative model for visual data.
More recently, Generative Adversarial Nets (GAN) [9] offers an ingenious idea to alleviate this
difficulty by utilizing a powerful discriminator d, usually modeled and learned by a deep
network, to discern differences between the generated samples X̂ and the real ones X:

Z
g(z,η)−−−−−→ X̂, X

d(x,θ)−−−−−→ 0, 1. (3)

To a large extent, such a discriminator plays the role of minimizing certain distribu-
tional distance, e.g., the Jensen–Shannon divergence, between the data X and X̂. Compared
to the KL-divergence, the JS-divergence is well-defined even if the supports of the two
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distributions are non-overlapping. (However, JS-divergence does not have a closed-form
expression even between two Gaussians, whereas KL-divergence does). However, as
shown in [10], since the data distributions are low-dimensional, the JS-divergence can be
highly ill-conditioned to optimize. (This may explain why many additional heuristics
are typically used in many subsequent variants of GAN). So, instead, one may choose to
replace JS-divergence with the earth mover’s distance or the Wasserstein distance. However
both JS-divergence and W-distance can only be approximately computed between two
general distributions. (For instance, the W-distance requires one to compute the maximal
difference between expectations of the two distributions over all 1-Lipschitz functions).
Furthermore, neither the JS-divergence nor the W-distance have closed-form formulae, even
for the Gaussian distributions. (The (`1-norm) W-distance can be bounded by the (`2-norm)
W2-distance which has a closed-form [11]. However, as is well-known in high-dimensional
geometry, `1-norm and `2 norm deviate significantly in terms of their geometric and statis-
tical properties as the dimension becomes high [12]. The bound can become very loose).
However, from a data representation perspective, subspace-like Gaussians (e.g., PCA) or a
mixture of them are the most desirable family of distributions that we wish our features to become.
This would make all subsequent tasks (generative or discriminative) much easier. In this
work, we will show how to achieve this with a different fundamental metric, known as the
rate reduction, introduced by [13].

The original GAN aims to directly learn a mapping g(·), called a generator, from a stan-
dard distribution (say, a low-dimensional Gaussian random field) to the real (visual) data
distribution in a high-dimensional space. However, distributions of real-world data can be
rather sophisticated and often contain multiple classes and multiple factors in each class [14].
This makes learning the mapping g rather challenging in practice, suffering difficulties
such as mode-collapse [15]. As a result, many variants of GAN have been subsequently
developed in order to improve the stability and performance in learning multiple modes
and disentangling different factors in the data distribution, such as Conditional GAN [16–20],
InfoGAN [21,22], or Implicit Maximum Likelihood Estimation (IMLE) [23,24]. In particular,
to learn a generator for multi-class data, prevalent conditional GAN literature requires
label information as conditional inputs [16,25–27]. Recently, [28,29] has proposed training
a k-class GAN by generalizing the two-class cross entropy to a (k + 1)-class cross entropy.
In this work, we will introduce a more refined 2k-class measure for the k real and k generated
classes. In addition, to avoid features for each class collapsing to a singleton [30], instead
of cross entropy, we will use the so-called rate-reduction measure that promotes multi-mode and
multi-dimension in the learned features [13]. One may view the rate reduction as a metric
distance that has closed-form formulae for a mixture of (subspace-like) Gaussians, whereas
neither JS-divergence nor W-distance can be computed in closed form (even between
two Gaussians).

Another line of research is about how to stabilize the training of GAN. SN-GAN [31]
has shown that spectral normalization on the discriminator is rather effective, which
we will adopt in our work, although our formulation is not so sensitive to such choice
designed for GAN (see ablation study in Appendix A.9). PacGAN [32] shows that the
training stability can be significantly improved by packing a pair of real and generated
images together for the discriminator. Inspired by this work, we show how to generalize
such an idea to discriminating an arbitrary number of pairs of real and decoded samples without
concatenating the samples. Our results in this work will even suggest that the larger the
batch size discriminated, the merrier (see ablation study in Appendix A.10). In addition,
ref. [29] has shown that optimizing the latent features leads to state-of-the-art visual quality.
Their method is based on the deep compressed sensing GAN [28]. Hence, there are strong
reasons to believe that their method essentially utilizes the compressed sensing principle [12]
to implicitly exploit the low-dimensionality of the feature distribution. Our framework will
explicitly expose and exploit such low-dimensional structures on the learned feature distribution.

Combination of AE and GAN. Although AE (VAE) and GAN originated with some-
what different motivations, they have evolved into popular and effective frameworks for
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learning and modeling complex distributions of many real-world data such as images.
(In fact, in some idealistic settings, it can be shown that AE and GAN are actually equiva-
lent: for instance, in the LOG settings, authors in [33] have shown that GAN coincides with
the classic PCA, which is precisely the solution to auto-encoding in the linear case). Many
recent efforts tend to combine both auto-encoding and GAN to generate more powerful
generative frameworks for more diverse data sets, such as [15,34–42]. As we will see,
in our framework, AE and GAN can be naturally interpreted as two different segments
of a closed-loop data transcription process. However, unlike GAN or AE (VAE), the “ori-
gin” or “target” distribution of the feature z will no longer be specified a priori, and is
instead learned from the data x. In addition, this intrinsically low-dimensional distribution
of z (with all of its low-dimensional supports) is explicitly modeled as a mixture of orthogonal
subspaces (or independent Gaussians) within the feature space Rd, sometimes known as the
principal subspaces.

Universality of Representations. Note that GANs (and most VAEs) are typically
designed without explicit modeling assumptions on the distribution of the data nor on
the features. Many even believe that it is this “universal” distribution learning capability
(assuming minimizing distances between arbitrary distributions in high-dimensional space
can be solved efficiently, which unfortunately has many caveats and often is impractical)
that is attributed to their empirical success in learning distributions of complicated data
such as images. In this work, we will provide empirical evidence that such an “arbitrary
distribution learning machine” might not be necessary. (In fact, it may be computationally
intractable in general). A controlled and deformed family of low-dimensional linear subspaces
(Gaussians) can be more than powerful, and expressive enough to model real-world visual
data. (In fact, a Gaussian mixture model is already a universal approximator of almost
arbitrary densities [43]. Hence, we do not loose any generality at all). As we will also see,
once we can place a proper and precise metric on such models, the associated learning
problems can become much better conditioned and more amenable to rigorous analysis
and performance guarantees in the future.

1.2. Learning Linear Discriminative Representation via Rate Reduction

Recently, the authors in [2] proposed a new objective for deep learning that aims to
learn a linear discriminative representation (LDR) for multi-class data. The basic idea is to map
distributions of real data, potentially on multiple nonlinear submanifolds ∪k

j=1Mj ⊂ RD (in
classical statistical settings, such nonlinear structures of the data were also referred to as
principal curves or surfaces [44,45]. There has been a long quest of trying to extend PCA to
handle potential nonlinear low-dimensional structures in data distribution (see [46] for a
thorough survey) to a family of canonical models consisting of multiple independent (or
orthogonal) linear subspaces, denoted as ∪k

j=1Sj ⊂ Rd. To some extent, this generalizes
the classic nonlinear PCA [3] to more general/realistic settings where we simultaneously
apply multiple nonlinear PCAs to data on multiple nonlinear submanifolds. Or equivalently,
the problem can also be viewed as a nonlinear extension to the classic Generalized PCA
(GPCA) [46]. (Conventionally, “generalized PCA” refers to generalizing the setting of
PCA to multiple linear subspaces. Here, we need to further generalize multiple nonlinear
submanifolds. Unlike conventional discriminative methods that only aim to predict class
labels as one-hot vectors, the LDR aims to learn the likely multi-dimensional distribution
of the data, hence it is suitable for both discriminative and generative purposes. It has been
shown that this can be achieved via maximizing the so-called “rate reduction” objective
based on the rate distortion of subspace-like Gaussians [47].

LDR via MCR2. More precisely, consider a set of data samples X = [x1, . . . , xn] ∈
RD×n from k different classes. That is, we have X = ∪k

j=1Xj with each subset of samples Xj

belonging to one of the low-dimensional submanifolds: Xj ⊂Mj, j = 1, . . . , k. Following
the notation in [2], we use a matrix Πj(i, i) = 1 to denote the membership of sample i
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belonging to class j (and Πj = 0 otherwise). One seeks a continuous mapping f (·, θ) : x 7→ z
from X to an optimal representation Z = [z1, . . . , zn] ⊂ Rd×n:

X
f (x,θ)−−−−−→ Z, (4)

which maximizes the following coding rate-reduction objective, known as the MCR2 principle [13]:

max
Z

∆R(Z |Π, ε)
.
=

1
2

log det
(

I + αZZ∗
)

︸ ︷︷ ︸
R(Z |ε)

−
k

∑
j=1

γj

2
log det

(
I + αjZΠjZ∗

)
︸ ︷︷ ︸

Rc(Z |Π,ε)

,
(5)

where α = d
nε2 , αj =

d
tr(Πj)ε2 , γj =

tr(Πj)
n for j = 1, . . . , k. In this paper, for simplicity we

denote ∆R(Z |Π, ε) as ∆R(Z) assuming Π, ε are known and fixed. The first term R(Z |ε),
or R(Z) for short, is the coding rate of the whole feature set Z (coded as a Gaussian source)
with a prescribed precision ε; the second term Rc(Z |Π, ε), or simply Rc(Z), is the average
coding rate of the k subsets of features Zj = f (Xj) (each coded as a Gaussian).

As has been shown by [13], maximizing the difference between the two terms will
expand the whole feature set while compressing and linearizing features of each of the k
classes. If the mapping f maximizes the rate reduction, it maps the features of different
classes into independent (orthogonal) subspaces in Rd. Figure 1 illustrates a simple example
of data with k = 2 classes (on two submanifolds) mapped to two incoherent subspaces
(solid black lines). Notice that, compared to AE (2) and GAN (3), the above mapping (4) is
only one-sided: from the data X to the feature Z. In this work, we will see how to use the
rate-reduction metric to establish inverse mapping from the feature Z back to the data X,
while still preserving the subspace structures in the feature space.

Figure 1. CTRL: A Closed-loop Transcription to an LDR. The encoder f has dual roles: it learns an
LDR z for the data x via maximizing the rate reduction of z and it is also a “feedback sensor” for
any discrepancy between the data x and the decoded x̂. The decoder g also has dual roles: it is a
“controller” that corrects the discrepancy between x and x̂ and it also aims to minimize the overall
coding rate for the learned LDR.

2. Data Transcription via Rate Reduction
2.1. Closed-Loop Transcription to an LDR (CTRL)

One issue with this one-sided LDR learning (4) is that maximizing the above objective (5)
tends to expand the dimension of the learned subspace for features in each class (if the
dimension of the feature space d is too high, maximizing the rate reduction may over-
estimate the dimension of each class. Hence, to learn a good representation, one needs to
pre-select a proper dimension for the feature space, as achieved in the experiments in [13].
In fact the same “model selection” problem persists even in the simplest single-subspace
case, which is the classic PCA [48]. Selecting the correct number of principal components in a
heterogeneous noisy situation remains an active research topic [49]). To verify whether the
learned features are neither over-estimating nor under-estimating the data structure, we may
consider learning a decoder g(·, η) : z 7→ x from the representation Z = f (X, θ) back to the
data space x: X̂ = g(Z, η), and check how close X and X̂ are or how close their features Z
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and Ẑ = f (X̂, θ) are. In principle, the decoder g should examine if all the learned features by
the encoder f are both necessary and sufficient for achieving this task. The overall pipeline
can be illustrated by the following “closed-loop” diagram:

X
f (x,θ)−−−−−→ Z

g(z,η)−−−−−→ X̂
f (x,θ)−−−−−→ Ẑ, (6)

where the overall model has parameters: Θ = {θ, η}.
Notice that in the above process, the segment from X to X̂ resembles a typical Auto-

Encoding process; although, as we will soon see, our MCR2-based encoder f plays an
additional role as a discriminator. The segment from Z to Ẑ draws resemblance to the
typical GAN process; although, in our context, the distribution of the latent variable z
will be learned from the data x. Despite these connections, as we will soon see, this
new closed-loop formulation will allow us to utilize the error feedback mechanism (widely
practiced in control systems) and directly enforce loop consistency between encoding and
decoding (networks) without using any additional discriminator(s) that are typically needed
in existing VAE/GAN architectures.

Here, in the specific context of rate reduction, we name this special auto-encoding
process “Transcription to an LDR” since the maximal rate-reduction principle explicitly
transcribes the data X, via f , to features Z on a linear discriminative representation (LDR)
(through our extensive experiments on diverse real-world visual datasets, one does not
lose any generality or expressiveness by restricting to this special but rich class of models.
On the contrary, the restriction significantly simplifies and improves the learning process),
which can be subsequently decoded back to the data space X̂, via g. Hence, the encod-
ing and decoding maps f and g together form a “closed-loop” process, as illustrated in
Figure 1. We hope that this closed-loop transcription to an LDR (CTRL) has the following
good properties:

• Injectivity: the generated x̂ = g( f (x, θ), η) ∈ X̂ should be as close to (ideally the same
as) the original data x ∈ X, in terms of certain measures of similarity or distance.

• Surjectivity: for all mapped images z = f (x) ∈ Z of the training data x ∈ X, there
are decoded samples ẑ = f (g(z, η), θ) ∈ Ẑ close to (ideally the same as) z.

Mathematically, we seek an embedding of the data x supported on certain nonlinear
submanifolds ∪k

j=1Mj in the space RD to feature z on a set of (discriminative) linear sub-

spaces ∪k
j=1Sj in the feature space Rd. Ideally, both f and g should be embeddings [1],

when restricted on the support of the data distribution or that of the features. (That is,
we hope f |Mj and g |Sj are all embeddings for all j = 1, . . . , k.) In addition, more ideally,
we hope f and g are mutually inverse embeddings: g ◦ f = Id (when restricted on the
submanifolds). Nevertheless, if we are only interested in learning the distribution, embed-
dings of the support would often suffice the purposes (e.g., classification or generative
purposes). Notice that the above goals are similar to many VAE+GAN-related methods
in the machine-learning literature, such as BiGAN [38] and ALI [39]. We will discuss the
differences of our approach from these existing methods in Section 2.3 (as well as providing
some experimental comparisons in the Appendix A).

At first sight, this is a rather daunting task, since we are trying to learn over a (seem-
ingly infinite-dimensional) functional space of all embeddings and distributions from finite
samples. In this work, we will take a more pragmatic approach and show how one can
learn a good encoding, decoding, and representation tuple: ( f , g, z) from X via tractable
computational means. In particular, we will convert the above goals to certain feasible
programs that optimize a sensible measure of goodness for the learned representations Z.

2.2. Measuring Distances in the Feature Space and Data Space

Contractive measure for the decoder. For the second item in the above wishlist, as the
representations in the feature space z are by design linear subspaces or (degenerate) Gaus-
sians, we have geometrically or statistically meaningful metrics for both samples and
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distributions in the feature space z. For example, we care about the distance between
distributions between the features of the original data Z and the transcribed Ẑ. Since the
features of each class, Zj and Ẑj, are similar to subspaces/Gaussians, their “distance” can
be measured by the rate reduction, with (5) restricted to two sets of equal size:

∆R
(
Zj, Ẑj

) .
= R

(
Zj ∪ Ẑj

)
− 1

2
(

R
(
Zj) + R

(
Ẑj)
)
. (7)

According to the interpretation of the rate reduction given in [13], the above quantity
precisely measures the volume of the space between Zj and Ẑj, illustrated as a pair of black
and blue lines in Figure 1. Then, for the “distance” of all, say k, classes, we simply sum the
rate reduction for all pairs:

d(Z, Ẑ) .
= min

η

k

∑
j=1

∆R
(
Zj, Ẑj

)
= min

η

k

∑
j=1

∆R
(
Zj, f (g(Zj, η), θ)

)
, (8)

where Zj = f (Xj, θ) and Ẑj = f (X̂j, θ). Obviously, a main goal of the learned decoder
g(·, η) is to minimize the distance between these distributions. Notice that if the encoder f
preserves (i.e., injective for) the intrinsic structures of the original data X, (this is typically
the case for MCR2-based feature representation [13]) this criterion essentially aims to ensure
there will be some decoded sample x̂ close to every data sample x—hence the decoder
g should be “surjective”. According to the ideas of IMLE [23], such a requirement could
effectively help to avoid mode-collapsing or mode-dropping.

Contrastive measure for the encoder. For the first item in our wishlist, however, we
normally do not have a natural metric or “distance” for similarity of samples or distributions
in the original data space x for data such as images. As mentioned before, finding proper
metrics or distance functions on natural images has always been an elusive and challenging
task [7]. To alleviate this difficulty, we can measure the similarity or difference between X̂
and X through their mapped features Ẑ and Z in the feature space (again assuming f is
structure-preserving). If we are interested in discerning any differences in the distributions
of the original and transcribed samples, we may view the MCR2 feature encoder f (·, θ)
as a “discriminator” to magnify any difference between all pairs of Xj and X̂j, by simply
maximizing, instead of minimizing, the same quantity in (8):

d(X, X̂)
.
= max

θ

k

∑
j=1

∆R
(
Zj, Ẑj

)
= max

θ

k

∑
j=1

∆R
(

f (Xj, θ), f (X̂j, θ)
)
. (9)

That is, a “distance” between X and X̂ can be measured as the maximally achievable
rate reduction between all pairs of classes in these two sets. In a way, this measures how well
or badly the decoded X̂ aligns with the original data X—hence measuring the goodness of
“injectivity” of the encoder f . Notice that such a discriminative measure is consistent with
the idea of GAN [9] that tries to separate X and X̂ into two classes, measured by the cross-
entropy. Nevertheless, here the MCR2-based discriminator f naturally generalizes to cases
when the data distributions are multi-class and multi-modal, and the discriminativeness is
measured with a more refined measure—the rate reduction—instead of the typical two-
class loss (e.g., cross entropy) used in GANs. See Appendix A.8 for comparisons with some
ablation studies.

One may wonder why we need the mapping f (·, θ) to function as a discriminator
between X and X̂ by maximizing maxθ ∆R

(
f (X, θ), f (X̂, θ)

)
. Figure 2 gives a simple

illustration: there might be many decoders g such that f ◦ g is an identity (Id) mapping.
Here, we use the notion of “identity mapping” in a loose sense: depending on the context,
it could simply mean an embedding from Sz to Sz. f ◦ g(z) = z for all z in the subspace Sz
in the feature space. However, g ◦ f is not necessarily an auto-encoding map for x in the
original distribution Sx (here for simplicity drawn as a subspace). That is, g ◦ f (Sx) 6⊂ Sx,
let alone g ◦ f (Sx) = Sx or g ◦ f (x) = x. One should expect, without careful control of the
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image of g, with high probability, this would be the case, especially when the support of the
distribution of x is extremely low-dimensional in the original high-dimensional data space.
For example, as we will see in the experiments, the intrinsic dimension of the submanifold
associated with each image category is about a dozen, whereas images are embedded in a
(pixel) space of thousands or tens of thousands of dimensions.

Figure 2. Embeddings of Low-Dimensional Submanifolds in High-Dimensional Spaces. Sx (blue)
is the submanifold for the original data x; Sz (red) is the image of Sx under the mapping f , representing
the learned feature z; and the green curve is the image of the feature z under the decoding mapping g.

Remark: representing the encoding and decoding mappings. Some practical ques-
tions arise immediately: how rich should the families of functions be that we should
consider to use for the encoder f and decoder g that can optimize the above rate-reduction-
type objectives? In fact, similar questions exist for the formulation of GAN, regarding the
realizability of the data distribution by the generator, see [50]. Conceptually, here we know
that the encoder f needs to be rich enough to discriminate (small) deviations from the true
data supportMj, while the decoder g needs to be expressive enough to generate the data
distribution from the learned mixture of subspace-Gaussians. How should we represent
or parameterize them, hence making our objectives computable and optimizable? For the
most general cases, these remain widely open and challenging mathematical and compu-
tational problems. As we mentioned earlier, in this work, we will take a more pragmatic
approach by simply representing these mappings with popular neural networks that have
empirically proven to be good at approximating distributions of practical (visual) datasets
or for achieving the maximum of the rate-reduction-type objectives [13]. Nevertheless, our
experiments indicate that our formulation and objectives are not so sensitive to particular
choices in network structures or many of the tricks used to train them. In addition, in the
special cases when the real data distribution is benignly deformed from an LDR, the work
of [2] has shown that one can explicitly construct these mappings from the rate-reduction
objectives in the form of a deep network known as ReduNet. However, it remains unclear
how such constructions could be generalized to closed-loop settings. Regardless, answers
to these questions are beyond the scope of this work, as our purposes here are mainly to
empirically verify the validity of the proposed closed-loop data transcription framework.

2.3. Encoding and Decoding as a Two-Player MiniMax Game

Comparing the contractive and contrastive nature of (8) and (9) on the same utility,
we see the roles of the encoder f (·, θ) and the decoder g(·, η) naturally as “a two-player
game”: while the encoder f tries to magnify the difference between the original data and their
transcribed data, the decoder g aims to minimize the difference. Now for convenience, let us
define the “closed-loop encoding” function:

h(x, θ, η)
.
= f

(
g
(

f (x, θ), η
)
, θ
)

: x 7→ z. (10)

Ideally, we want this function to be very close to f (x, θ) or at least the distributions of
their images should be close. With this notation, combining (8) and (9), a closed-loop notion
of “distance” between X and X̂ can be computed as an equilibrium point to the following
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Min-Max (or Max-Min) program for the same utility in terms of rate reduction (theoretically,
there might be significant difference in formulating and seeking the desired solution as
the equilibrium point to a min-max or max-min game. In practice, we do not see major
differences as we optimize the program by simply alternating between minimization and
maximization. We leave a more careful investigation to future work):

D(X, X̂)
.
= min

η
max

θ

k

∑
j=1

∆R
(

f (Xj, θ), h(Xj, θ, η)
)
. (11)

Notice that this only measures the difference between (features of) the original data
and its transcribed version. It does not measure how good the representation Z (or Ẑ) is
for the multiple classes within X (or X̂). To this end, we may combine the above distance
with the original MCR2-type objectives (5): namely, the rate reduction ∆R(Z) and ∆R(Ẑ)
for the learned LDR Z for X and Ẑ for the decoded X̂. Notice that although the encoder f
tries to maximize the multi-class rate reduction of the features Z of the data X, the decoder
g should minimize the rate reduction of the multi-class features Ẑ of the decoded X̂. That is,
the decoder g tries to use a minimal coding rate needed to achieve a good decoding quality.

Hence, the overall “multi-class” Min-Max program for learning the Closed-loop Tran-
scription to an LDR, named CTRL-Multi, is subject to certain constraints (upper or lower
bounds) on the first term and the second term. In this work, we only consider the simple
case by adding these rate-reduction quantities together. Of course, in the future, one may
consider other more delicate formulations. For instance, we may consider a Min-Max game
on the third term (11). Such constrained minimax games have also started to draw attention
lately [51].

min
η

max
θ
TX(θ, η)

.
= ∆R

(
f (X, θ)

)︸ ︷︷ ︸
Expansive encode

+ ∆R
(
h(X, θ, η)

)︸ ︷︷ ︸
Compressive decode

+
k

∑
j=1

∆R
(

f (Xj, θ), h(Xj, θ, η)
)︸ ︷︷ ︸

Contrastive encode & Contractive decode

= ∆R
(
Z(θ)

)
+ ∆R

(
Ẑ(θ, η)

)
+

k

∑
j=1

∆R
(
Zj(θ), Ẑj(θ, η)

)
. (12)

Empirically, we have evaluated the necessity of these terms in an ablation study (see
Appendix A.8.3). Notice that, without the terms associated with the generative part h or
with all such terms fixed as constant, the above objective is precisely the original MCR2

objective proposed by [13]. In an unsupervised setting, if we view each sample (and its
augmentations) as its own class, the above formulation remains exactly the same. The
number of classes k is simply the number of independent samples. In addition, notice that
the minimax objective function depends only on (features of) the data X, hence one can
learn the encoder and decoder (parameters) without the need for sampling or matching
any additional distribution (as typically needed in GANs or VAEs).

As a special case, if X only has one class, the above Min-Max program reduces (as
the first two rate reduction terms automatically become zero) to a special “two-class” or
“binary” form, named CTRL-Binary, between X and the decoded X̂ by viewing X and X̂
as two classes {0, 1}. Notice that this binary case resembles formulation of the original
GAN (3). Nevertheless, instead of using cross entropy, our formulation adopts a more
refined rate-reduction measure, which has been shown to promote diversity in the learned
representation [13]).

CTRL-Binary: min
η

max
θ
T b

X (θ, η)
.
= ∆R

(
f (X, θ), h(X, θ, η)

)
= ∆R

(
Z(θ), Ẑ(θ, η)

)
. (13)

Sometimes, even when X contains multiple classes/modes, one could still view
all classes together as one class. Then, the above binary objective is to align the union
distribution of all classes with their decoded X̂. This is typically a simpler task to achieve
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than the multi-class one (12), since it does not require learning of a more refined multi-class
CTRL for the data, as we will later see in experiments. Notice that one good characteristic
of the above formulation is that all quantities in the objectives are measured in terms of rate
reduction for the learned features (assuming features eventually become subspace Gaussians).

In all of our subsequent experiments, we solve the above minimax programs using
the most basic gradient descent–ascent (GDA) algorithm [52] that alternates between the
minimization and maximization, with the same learning rate and without any timescale
separation (as typically needed for training GANs [53]). Although more refined optimiza-
tion schemes can likely further improve the efficiency and performance, we leave these for
future investigations.

Remark: closed-loop error correction. One may notice that our framework (see
Figure 1) draws inspiration from closed-loop error correction widely practiced in feedback
control systems. In the machine-learning and deep-learning literature, the idea of closed-
loop error correction and closed-loop fixed point has been explored before to interpret the
recursive error-correcting mechanism and explain stability in a forward (predictive) deep
neural network, for example the deep equilibrium networks [54] and the deep implicit networks
[55], again drawing inspiration from feedback control. Here, in our framework, the closed-
loop mechanism is not used to interpret the encoding or decoding (forward) networks f
and g. Instead, it is used to form an overall feedback system between the two encoding
and decoding networks for correcting the “error” in the distributions between the data x
and the decoded x̂. Using terminology from control theory, one may view the encoding
network f as a “sensor” for error feedback while the decoding network g as a “controller”
for error correction. However, notice that here the “target” for control is not a scalar nor
a finite dimensional vector, but a continuous mapping—in order for the distribution of x̂
to match that of the data x. This is in general a control problem in an infinite dimensional
space. The space of diffeomorphisms of submanifolds is infinite-dimensional [1]. Ideally,
we hope when the sensor f and the controller g are optimal, the distribution of x becomes
a “fixed point” for the closed loop while the distribution of z reaches a compact LDR.
Hence, the minimax programs (12) and (13) can also be interpreted as games between an
error-feedback sensor and an error-reducing controller.

Remark: relation to bi-directional or cycle consistency. The notion of “bi-directional”
and “cycle” consistency between encoding and decoding has been exploited in the works
of BiGAN [38] and ALI [39] for mappings between the data and features and in the work
of CycleGAN [56] for mappings between two different data distributions. In our context,
it is similar in order to promote g ◦ f and f ◦ g to be close to identity mappings (either
for the distributions or for the samples). Interestingly, our new closed-loop formulation
actually “decouples” the data X, say, observed from the external world, from their internally
represented features Z. The objectives (12) and (13) are functions of only the internal features
Z(θ) and Ẑ(θ, η), which can be learned and optimized by adjusting the neural networks
f (·, θ) and g(·, η) alone. There is no need for any additional external metrics or heuristics
to promote how “close” the decoded images X̂ are to X. This is very different from most
VAE/GAN-type methods such as BiGAN and ALI that require additional discriminators
(networks) for the images and the features. Some experimental comparison are given in
the Appendix A.2. In addition, in Appendix A.8.1, we provide some ablation study to
illustrate the importance and benefit of a closed loop for enforcing the consistency between
the encoder and decoder.

Remark: transparent versus hidden distribution of the learned features. Notice
that in our framework, there is no need to explicitly specify a prior distribution either as
a target distribution to map to for AE (2) or as an initial distribution to sample from for
GAN (3). The common practice in AEs or GANs is to specify the prior distribution as a
generic Gaussian. This is however particularly problematic when the data distribution
is multi-modal and has multiple low-dimensional structures, which is commonplace for
multi-class data. In this case, the common practice in AEs or GANs is to train a conditional
GAN for different classes or different attributes. However, here we only need to assume
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the desired target distribution belonging to the family of LDRs. The specific optimal
distribution of the features within this family is then learned from the data directly, and
then can be represented explicitly as a mixture of independent subspace Gaussians (or
equivalently, a mixture of PCAs on independent subspaces). We will give more details in the
experimental Section 3 as well as more examples in Appendices A.2–A.4. Although many
GAN + VAE-type methods can learn bidirectional encoding and decoding mappings,
the distribution of the learned features inside the feature space remains hidden or even
entangled. This makes it difficult to sample the feature space for generative purposes or to
use the features for discriminative tasks. (For instance, typically one can only use so-learned
features for nearest-neighbor-type classifiers [38], instead of nearest subspace as in this
work, see Section 3.3).

3. Empirical Verification on Real-World Imagery Datasets

This experiment section serves three purposes: First, we empirically justify the pro-
posed formulation for data transcription by demonstrating good properties of the learned
encoder, decoder, and representation tuple ( f , g, z) from X. Second, we compare our
method with several representative methods from the GAN family and VAE family. The pur-
pose of the comparison is not to compete for any state-of-the-art performance. Instead,
we want to convincingly verify the validity of the proposed framework and its poten-
tial in going beyond. Finally, we evaluate the so-learned CTRL through both generative
tasks (controlled visualization) and discriminative (classification) tasks. More extensive
experimental results, evaluations, and ablation studies can be found in the Appendix A.

Datasets. We provide extensive qualitative and quantitative experimental results
on the following datasets: MNIST [57], CIFAR-10 [58], STL-10 [59], CelebA [60], LSUN
bedroom [61], and ImageNet ILSVRC 2012 [62]. The network architectures and imple-
mentation details can be found in Appendix A.1 and corresponding Appendix A for
each dataset.

3.1. Empirical Justification of CTRL Transcription

To empirically validate our new framework, we conduct experiments from a small
low-variety dataset (MNIST), to a small dataset of diverse real-world objects (CIFAR-10),
to higher resolution images (STL-10, CelebA, LSUN-bedroom), to a large-scale diverse
image set (ImageNet). The results are evaluated both quantitatively and qualitatively.
Implementation details, more experimental results, and ablation studies are given in
Appendix A.

Comparison (IS and FID) with other formulations. First, we conduct five experi-
ments to fairly compare our formulation with GAN [63] and VAE(-GAN) [64] on MNIST
and CIFAR-10. Except for the objective function, everything else is exactly the same for all
methods (e.g., networks, training data, optimization method). These experiments are: (1).
GAN; (2). GAN with its objective replaced by that of the CTRL-Binary (13); (3). VAE-GAN ;
(4). Binary CTRL (13); and (5). Multi-class CTRL (12). Some visual comparison is given in
Figure 3. IS [65] and FID [66] scores are summarized in Table 1. Here, for simplicity, we
have chosen a uniform feature dimension d = 128 for all datasets. If we choose a higher
feature dimension, say d = 512, for the more complex CIFAR-10 dataset, the visual quality
can be further improved, see Table A14 in Appendix A.11.

(a) MNIST (b) CIFAR-10 (c) ImageNet

Figure 3. Qualitative comparison on (a) MNIST, (b) CIFAR-10 and (c) ImageNet. First row: original
X; other rows: reconstructed X̂ for different methods.
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Table 1. Quantitative comparison on MNIST and CIFAR-10. Average Inception scores (IS) [65] and
FID scores [66]. ↑means higher is better. ↓means lower is better.

Method GAN
GAN

(CTRL-
Binary)

VAE-GAN CTRL-
Binary

CTRL-
Multi

MNIST IS ↑ 2.08 1.95 2.21 2.02 2.07
FID ↓ 24.78 20.15 33.65 16.43 16.47

CIFAR-10 IS ↑ 7.32 7.23 7.11 8.11 7.13
FID ↓ 26.06 22.16 43.25 19.63 23.91

As we see from Table 1, replacing cross-entropy with the Equation (13) can improve the
generative quality. The two CTRL formulations are clearly on par with the others in terms
of IS and significantly better in FID. Finally, with the same training datasets, the quality of
CTRL-Multi is lower than that of CTRL-Binary. This is expected, as the multi-class task is
more challenging. Nevertheless, as we will see soon, images decoded by CTRL-Multi align
much better with their classes than Binary.

Visualizing correlation of features Z and decoded features Ẑ. We visualize the cosine
similarity between Z and Ẑ learned from the multi-class objective (12) on MNIST, CIFAR-10
and ImageNet (10 classes), which indicates how close ẑ = f ◦ g(z) is from z. Results in
Figure 4 show that Z and Ẑ are aligned very well within each class. The block-diagonal
patterns for MNIST are sharper than those for CIFAR-10 and ImageNet, as images in
CIFAR-10 and ImageNet have more diverse visual appearances.

(a) MNIST (b) CIFAR10 (c) ImageNet

Figure 4. Visualizing the alignment between Z and Ẑ: |Z>Ẑ| and in the feature space for (a) MNIST,
(b) CIFAR-10, and (c) ImageNet-10-Class.

Visualizing auto-encoding of the data X and the decoded X̂. We compare some
representative X and X̂ on MNIST, CIFAR-10 and ImageNet (10 classes) to verify how close
x̂ = g ◦ f (x) is to x. The results are shown in Figure 5, and visualizations are created from
training samples. Visually, the auto-encoded x̂ faithfully captures major visual features
from its respective training sample x, especially the pose, shape, and layout. For the simpler
dataset such as MNIST, auto-encoded images are almost identical to the original. The visual
quality is clearly better than other GAN+VAE-type methods, such as VAE-GAN [34] and
BiGAN [38]. We refer the reader to Appendices A.2, A.4 and A.7 for more visualization
of results on these datasets, including similar results on transformed MNIST digits. More
visualization results for learned models on real-life image datasets such as STL-10, CeleB,
and LSUN can be found in the Appendices A.5 and A.6.
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(a) MNIST X (b) MNIST X̂ (c) CIFAR-10 X (d) CIFAR-10 X̂ (e) ImageNet X (f) ImageNet X̂

Figure 5. Visualizing the auto-encoding property of the learned closed-loop transcription
(x ≈ x̂ = g ◦ f (x)) on MNIST, CIFAR-10, and ImageNet (zoom in for better visualization).

3.2. Comparison to Existing Generative Methods

Table 2 gives a quantitative comparison of visual quality of our method with others
on CIFAR-10, STL-10, and ImageNet. In general, there is a large difference in terms of FID
and IS scores between the GAN family and the VAE family of models. SNGAN [31] are
commonly used methods in most generative applications, while LOGAN [29] is the state-
of-the-art method on ImageNet in terms of FID and IS. More comparisons with existing
methods, including results on on the higher-resolution ImageNet dataset, can be found in
Table A10 of the Appendix A.7.

As we see, even if the rate-reduction objectives (12) and (13) are not specifically de-
signed nor engineered for visual quality and the networks and hyper-parameters adopted
in our experiments are rather basic compared to many of the state-of-the-art generative
methods, our method is still rather competitive in terms of these metrics. In our current im-
plementation, the original objectives are used without any other heuristics or regularization.
The simplicity of our framework and formulation suggests that there is significant room
for further improvement. For instance, in all experiments on all datasets, we have chosen a
feature dimension of d = 128 for simplicity and uniformity. In the last Appendix A.11, we
have conducted an ablation study on using a higher feature dimension d = 512. The visual
quality of the learned model can be significantly improved (as shown in Figure A22 and
Table A14 of Appendix A.11).

In fact, compared to these methods, our method has learned not just any generative
model. It has learned a structured generative model that has many additional beneficial
properties that we now present.

Table 2. Comparison of CIFAR-10 and STL-10. Comparison with more existing methods and on
ImageNet can be found in Table A10 in the Appendix A. ↑ means higher is better. ↓ means lower
is better.

Method GAN Based Methods VAE/GAN-Based Methods

SNGAN CSGAN LOGAN VAE-GANNVAE DC-
VAE

CTRL-
Binary

CTRL-
Multi

CIFAR-10 IS ↑ 7.4 8.1 8.7 7.4 - 8.2 8.1 7.1
FID ↓ 29.3 19.6 17.7 39.8 50.8 17.9 19.6 23.9

STL-10 IS ↑ 9.1 - - - - 8.1 8.4 7.7
FID ↓ 40.1 - - - - 41.9 38.6 45.7

3.3. Benefits of the Learned LDR Transcription Model

As we have argued before, the learned LDR transcription model (including the feature
z, the encoder f , and the decoder g) can be used for both generative and discriminative pur-
poses. In particular, unlike almost all existing generative methods, the internal structures or
distribution of the learned z are no longer “hidden” as they have clear subspace structures.
Hence, we can easily derive an explicit (parametrizable) model for the distribution of the
learned features as a mixture of independent subspace-like Gaussians. This gives us full
control in sampling the learned distribution for generative purposes.
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Principal subspaces and principal components for the feature. To be more specific,
given the learned k-class features ∪k

j=1Zj for the training data, we have observed that the
leading singular subspaces for different classes are all approximately orthogonal to each
other: Zi ⊥ Zj (see Figure 4). This corroborates with our above discussion about the
theoretical properties of the rate-reduction objective. They essentially span k independent
principal subspaces. We can further calculate the mean z̄j and the singular vectors {vi

j}
rj
i=1

(or principal components) of the learned features Zj for each class. Although we conceptu-
ally view the support of each class is a subspace, the actual support of the features is close
to being on the sphere due to feature (scale) normalization. Hence, it is more precise to find
its mean and its support centered around the mean. Here, rj is a rank we may choose to
model the dimension of each principal subspace (say, based on a common threshold on the
singular values). Hence, we obtain an explicit model for how the feature z is distributed in
each of the k principal subspaces in the feature space Rd:

zj ∼ z̄j +

rj

∑
l=1

nj
lσ

l
j v

l
j , where nj

l ∼ N (0, 1), j = 1, . . . , k. (14)

Hence, this essentially gives an explicit mixture of a subspace-like Gaussians model
for the learned features: statistical differences between different classes are modeled as k
independent principal subspaces; statistical differences within each class j are modeled as
rj independent principal components in the jth subspace.

Decoding samples from the feature distribution. Using the CIFAR-10 and CelebA
datatsets, we visualize images decoded from samples of learned feature subspace. For the
CIFAR-10 dataset, for each class j, we first compute the top four principal components of
the learned features Zj (via SVD). For each class j, we then compute |〈zi

j, vl
j〉|, the cosine

similarity between the l-th principal direction vl
j and feature sample zi

j. After finding the

top five zi
j according to |〈zi

j, vl
j〉| for each class j, we reconstruct images x̂i

j = g(zi
j). Each

row of Figure 6 is for one principal component. We observe that images in the same row
share the same visual attributes; images in different rows differ significantly in visual
characteristics such as shape, background, and style. See Figure A7 of Appendix A.4 for
more visualization of principal components learned for all 10 classes of CIFAR-10. These
results clearly demonstrate that the principal components in each subspace of the Gaussian
disentangles different visual attributes. In addition, we do not observe any mode dropping
for any of the classes, although the dimensions of the classes were not known a priori.

(a) Horse (b) Ship

Figure 6. CIFAR-10 dataset. Visualization of top 5 reconstructed x̂ = g(z) based on the closest
distance of z to each row (top 4) of principal components of data representations for class 7—‘Horse’
and class 8—‘Ship’.

Disentangled visual attributes as principal components. For the CelebA dataset, we
calculate the principal components of all learned features in the latent space. Figure 7a
shows some decoded images along these principal directions. Again, these principal com-
ponents seem to clearly disentangle visual attributes/factors such as wearing a hat, changing
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hair color, and wearing glasses. More examples can be found in Appendix A.6. The results
are consistent with the property of MCR2 that promotes diversity of the learned features.

(a) Disentangled attributes as principal components (b) Interpolation between distinct samples

Figure 7. CelebA dataset. (a): Sampling along three principal components that seem to correspond
to different visual attributes; (b): Samples decoded by interpolating along the line between features
of two distinct samples.

Linear interpolation between features of two distinct samples. Figure 7b shows
interpolating features between pairs of training image samples of the CeleA dataset, where
for two training images x1 and x2, we reconstruct based on their linearly interpolated
feature representations by x̂ = g(α f (x1) + (1− α) f (x2)), α ∈ [0, 1]. The decoded images
show continuous morphing from one sample to another in terms of visual characteristics,
as opposed to merely a superposition of the two images. Similar interpolation results
between two digits in the MNIST dataset can be found in Figure A3 of the Appendix A.2.

Encoded features for classification. Notice that not only is the learned decoder good
for generative purposes, but the encoder is also good for discriminative tasks. In this
experiment, we evaluate the discriminativeness of the learned CTRL model by testing how
well the encoded features can help classify the images. We use features of the training
images to compute the learned subspaces for all classes, then classify features of the test
images based on a simple nearest subspace classifier. Many other encoding methods train
a classifier (say, with an additional layer) after the learned features. Results in Table 3
show that our model gives competitive classification accuracy on MNIST compared to
some of best VAE-based methods. We also tested the classification on CIFAR-10, and
the accuracy is currently about 80.7%. As expected, the representation learned with the
multi-class objective is very discriminative and good for classification tasks. Be aware
that all generative models, GANs, VAEs, and ours, are not specifically engineered for
classification tasks. Hence, one should not expect the classification accuracy to compete
with supervised-trained classifiers yet. This demonstrates that the learned CTRL model is
not only generative but also discriminative.

Table 3. Classification accuracy on MNIST compared to classifier-based VAE methods [42]. Most of
these VAE-based methods require auxiliary classifiers to boost classification performance.

Method VAE Factor
VAE

Guide-
VAE DC-VAE CTRL-

Binary
CTRL-
Multi

MNIST 97.12% 93.65% 98.51% 98.71% 89.12% 98.30%

4. Open Theoretical Problems

So far, we have given theoretical intuition and derivation for the formulation of closed-
loop transcription, as well as empirical evidence to showcase both the performance and
potential of this formulation. In this section, we take a step back to explore the theoretical
underpinnings of the closed-loop LDR transcription. We organize this section by discussing
three primary objectives associated with learning an LDR representation:

1. Learn a simple linear discriminative representation f (X) of the data X, which we can
reliably use to classify the data.



Entropy 2022, 24, 456 17 of 40

2. Learn a reconstruction g ◦ f (X) ∼ X of the so-learned representation f (X), to ensure
consistency in the representation.

3. Learn both representation and reconstruction in a closed-loop manner, using feedback from
the encoder f and decoder g to jointly solve the above two tasks.

These three objectives encompass the overarching principle of CTRL transcription,
and indeed each of these objectives are tied to a wide array of mathematical and theoretical
problems. We now outline some of the most important theoretical questions or hypotheses
implicated by our results, which we leave for future work to study and to answer, likely by
a broader range of research communities.

4.1. Distributions of the LDR Representation

Our primary mode of optimizing for a “simple representation” is through the LDR
framework proposed in [2]. One important open theoretical problem is finding the right
energy function to optimize in order to promote LDR. It was shown in [2] that an LDR can
be learned for the multi-class data by maximizing the MCR2 objective ∆R(Z) given in (5).
This motivates the first two terms in our objective function (12): maximizing ∆R(Z), ∆R(Ẑ)
promotes their representations to be LDRs.

Although the authors in [2] have shown the MCR2 objective can promote the features
learned to be in orthogonal subspaces and characterized the optimal second moments of
the distributions, there remain open questions regarding the optimal distributions within
the subspaces. A standing hypothesis is that the optimal distributions should be Gaussian.
There is indeed already theoretical work on similar energy functions: the Brascamp–Lieb
inequalities [67], where the authors study a functional similar to the rate-reduction objective
which, in certain contexts, is maximized uniquely by Gaussians. Hence, an important future
theoretical direction for the CTRL transcription is to exactly characterize distributional
properties of the extremals (both minima and maxima) of the MCR2 objective or its variants.
Such results can further justify the use of Gaussian models (14) to characterize the learned
features within the subspaces.

We also notice that the so-learned LDR features have additional striking properties, as
shown by examples in Figure 7. Distinctive visual attributes of the imagery data seem to be
clearly disentangled by different principal components of the distribution, and along each
principal direction, one can linearly interpolate the features, whereas the original data are
nonlinear and cannot be directly interpolated. These results go beyond the guarantees given
by [2], and an open theoretical problem is that of studying just how the CTRL transcription
learns to disentangle and linearize such visual attributes. This understanding is crucial to
extend the CTRL transcription framework beyond the 2D vision domain.

4.2. Self-Consistency in the Learned Reconstruction

If the learned encoder Z = f (X) is an embedding of the data submanifolds to the
subspaces, it should admit an inverse (decoding) mapping X̂ = g(Z). As distributional
distance in the data space is hard to come by, the rate reduction ∆R

(
Z, Ẑ

)
gives a well-

defined distribution distance between Z and Ẑ which is used to enforce similarity between
X and X̂ in our formulation. Notice that, unlike the KL-divergence or the JS-divergence,
the rate reduction is well-defined for degenerate distributions and easily computable in
closed-form between mixtures of (degenerate) Gaussians. The third term of Equation (12),
∑k

j=1 ∆R
(
Zj(θ), Ẑj(θ, η)

)
, is exactly this distributional distance, which is minimized only

when the estimated second moments of Zj and Ẑj are the same. While this distributional
distance seems weaker than sample-wise `2-distance, we observe strong reconstruction
performance nevertheless.

Notice that the current objectives (12) or (13) do not impose any constraints on the
mappings of individual samples. That is, they do not explicitly specify how an individual
sample x should be related to its decoded version x̂ = g( f (x)), or how their corresponding
features z and ẑ are related. Hence, theoretically, nothing is known about relationships
between individual samples and their features. However, somewhat surprisingly, experi-
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mental results with the multi-class objective (12) in next section suggest that they actually
can be rather close, at least for the given training samples X. For example, see Figure 5.
Of course, one could consider explicitly imposing certain sample-wise requirements in
the objectives, such as enforcing xi to be close to x̂i = g( f (xi)). It has been observed
empirically in GANs or VAEs that imposing such sample-wise similarity or dissimilar-
ity would improve visual quality around samples of interest, such as the DC-VAE [42]
and the OpenGAN [68]. However, theoretically, how such sample-wise distances or con-
straints may affect the difficulty or accuracy of learning the correct support and density of
the distributions remains an open problem.

4.3. Properties of the Closed-Loop Minimax Game

Above are the two primary objectives for CTRL transcription: while the encoder f tries
to maximize the expressiveness and discriminativeness of the learned LDR representation,
the decoder g tries to minimize the reconstruction error and coding rates. The competing
objectives of the encoder f and the decoder g naturally lead to a two-player game. In this
paper, we have formulated this game as a zero-sum game, namely Equation (12). Likewise,
we have also implemented the most straightforward algorithm for solving this zero-sum
game: gradient descent–ascent (GDA) [52], where the minimizer and maximizer take alter-
nating gradient steps. These simplifications into a GDA-optimized zero-sum game were
made in order to create a concrete algorithm for our experimentation. However, simplifying
to a zero-sum game and GDA is certainly not the only way to solve the more general game
described above. This game-theoretic formulation puts CTRL transcription outside of
the theoretical realm of [2], since we are no longer finding pure maximizers of ∆R(Z),
but rather stable minimax equilibria.

As is the case with GANs, these equilibria may not necessarily be Nash equilibria [50],
but rather the more general sense of Stackelberg [69]. So, the problem of studying minimax
equilibria of (12) is likely, in its most general form, quite challenging. Nevertheless, our
experiments suggest such equilibria tend to be well-behaved, e.g., having a large range
of attraction. Our extensive empirical experiments and ablation studies indicate that,
in general, the minimax objective converges rather stably to good equilibria for all the
real datasets without any special optimization tricks or particular requirements on the
networks. The only important factor for the stability of the optimization seems to be a
large enough batch size (see Appendix A.10). These observations can be further corrob-
orated with analysis on simpler models: our ongoing work suggests that if we restrict
our attention to simplified data structures (e.g., X distributed on a linear subspace), then
one can provide theoretical guarantees that the equilibria become efficiently and correctly
solvable by the minimax formulation. Extending such analysis to more sophisticated data
structures (multiple subspaces, nonlinear submanifolds) remains an exciting new directions
for future research.

Despite many possible pathological solutions to the minimax game, empirically, as we
have presented in the previous section (alongside many examples in the Appendix A),
the solution found by the simple GDA algorithm generally strikes a good trade-off be-
tween expressiveness and parsimony of the learned model. The solution automatically
determines the proper dimensions for different classes. Ablation studies in Appendix A.10
on the large ImageNet dataset further suggest that this formulation is insensitive to over-
parameterization by increasing network width, as long as the batch size grows accord-
ingly. However, a rigorous justification for such good model-selection properties remains
widely open.

5. Conclusions and Future Work

This work provides a novel formulation for learning a both generative and discriminative
representation for a multi-class, multi-dimensional, possibly nonlinear, distribution of
real-world data. We have provided compelling empirical evidence that the distribution
of most datasets can be effectively mapped to an LDR, a union of independent princi-
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pal subspaces and principal components. The objective function is entirely based on an
intrinsic information-theoretic measure, the rate reduction, without any other heuristics
or regularizing terms. The objective can be achieved with a closed-loop minimax game
between the two encoder and the decoder networks without any additional network(s).

The main purpose of this paper is to demonstrate the conceptual simplicity and practi-
cal potential of this new framework for distribution/representation learning, instead of
striving for state-of-the-art performance with heavy engineering. Nevertheless, with our
preliminary implementation, a more informative LDR of the data can be effectively learned
with a simple closed-loop transcription for a variety of real-world, multi-class, multi-modal
visual datasets, from small to large, from low-resolution to higher-resolution, from domain-
specific to diverse categories. The so-learned encoder f already enjoys the benefits of
AE/VAEs for their discriminative property and the decoder g with the benefits of GANs
for their good generative visual quality. However, probably more importantly, the internal
structures of the learned feature representation has now become transparent, hence fully
interpretable and controllable (for generative purposes): visual differences between classes are
naturally “disentangled” as independent subspaces, while diverse visual attributes within
each class are “disentangled” as principal components within each subspace. From ex-
tensive ablation studies given in the Appendix A, we see that the rate-reduction-based
objective can be stably optimized across a wide range of datasets and network architectures
without any additional regularizations or engineering tricks. Both the feedback closed-loop
and the rate-reduction measure play indispensable roles in fostering the ease and success of
finding the CTRL transcription.

One may notice that there are many ways this simple formulation can be significantly
improved or extended. Firstly, in this work, we have simply adopted networks that were
designed for GANs, but they may not be optimal for the rate-reduction-type objectives.
For example, our ablation study already suggests that some of the components of such
networks such as spectral normalization are not quite essential. Characteristics from the
white-box ReduNet [2] derived from optimizing rate reduction can be explored in the
future. Secondly, notice that our rate-reduction objectives do not impose any requirements
on how individual samples should be encoded or decoded although the results from
the multi-class objective indicate a certain level of alignment on the individual samples.
Recent studies such as DC-VAE [42] or OpenGAN [68] suggest that imposing additional
regularization on individual samples may further improve decoded visual quality. Such
regularization can certainly be incorporated into this new framework. Last but not the least,
compared to GANs and VAEs, our method leads to an explicit structured model for the
feature distribution: a mixture of incoherent subspace Gaussians. Such an explicit model
has the potential of making many subsequent tasks easier and better: better control of
feature sampling for decoding and synthesis [70], designing more robust generators and
classifiers for noise and corruptions based on the low-dimensional structures identified,
or even extending to the settings of incremental and online learning [71,72]. We leave all
these new directions, together with all the open theoretical problems posed in Section 4,
for future investigation.
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Appendix A

Appendix A.1. Experiment Settings and Implementation Details

Network backbones. For MNIST, we use the standard CNN models in Tables A1 and A2,
following the DCGAN architecture [63]. We resize the MNIST image resolution from 28 × 28
to 32 × 32 to fit DCGAN architecture. All α in lReLU (lReLU is short for Leaky-ReLU) of the
encoder are set to 0.2.

We adopt ResNet architectures for CIFAR-10 shown in Tables A3 and A4, and STL-10
shown in Tables A5 and A6. Each ResBlock up is same as Resnet, but add an up-sampler
after the first conv layer. All batch normalization layers of ResBlock in the encoder are
replaced with spectral normalization layer.

Finally, we use the same architecture for CelebA, LSUN-bedroom, and ImageNet-128
(see Tables A7 and A8) as all three datasets have the same 128 × 128 resolution. Again,
each ResBlock up is same as Resnet, but add an up-sampler after the first conv layer.
All batch-normalization layers in the encoder are replaced with spectral normalization
layer. All experiments utilize this lightweight PyTorch library “mimicry” [73] that provides
implementations of some popular state-of-the-art GANs and evaluation metrics.

Table A1. Decoder for MNIST.

z ∈ R1×1×128

4 × 4, stride = 1, pad = 0 deconv. BN 256 ReLU

4 × 4, stride = 2, pad = 1 deconv. BN 128 ReLU

4 × 4, stride = 2, pad = 1 deconv. BN 64 ReLU

4 × 4, stride = 2, pad = 1 deconv. 1 Tanh
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Table A2. Encoder for MNIST.

Gray image x ∈ R32×32×1

4 × 4, stride = 2, pad = 1 conv 64 lReLU

4 × 4, stride = 2, pad = 1 conv. BN 128 lReLU

4 × 4, stride = 2, pad = 1 conv. BN 256 lReLU

4 × 4, stride = 1, pad = 0 conv 128

Table A3. Decoder for CIFAR-10.

z ∈ R128

dense −→ 4 × 4 × 256

ResBlock up 256

ResBlock up 256

ResBlock up 256

BN, ReLU, 3 × 3 conv, 3 Tanh

Table A4. Encoder for CIFAR-10.

RGB image x ∈ R32×32×3

ResBlock down 128

ResBlock down 128

ResBlock 128

ResBlock 128

ReLU

Global sum pooling

dense −→ 128

Table A5. Decoder for STL-10.

z ∈ R128

dense −→ 6 × 6 × 512

ResBlock up 256

ResBlock up 128

ResBlock up 64

BN, ReLU, 3 × 3 conv, 3 Tanh
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Table A6. Encoder for STL-10.

RGB image x ∈ R48×48×3

ResBlock down 64

ResBlock down 128

ResBlock down 256

ResBlock down 512

ResBlock 1024

ReLU

Global sum pooling

dense −→ 128

Table A7. Decoder for CelebA-128, LSUN-bedroom-128, and ImageNet-128.

z ∈ R128

dense −→ 4 × 4 × 1024

ResBlock up 1024

ResBlock up 512

ResBlock up 256

ResBlock up 128

ResBlock up 64

BN, ReLU, 3 × 3 conv, 3 Tanh

Table A8. Encoder for CelebA-128, LSUN-bedroom-128, and ImageNet-128.

RGB image x ∈ R128×128×3

ResBlock down 64

ResBlock down 128

ResBlock down 256

ResBlock down 512

ResBlock down 1024

ResBlock 1024

ReLU

Global sum pooling

dense −→ 128

Optimization and training details. Across all of our experiments, we use Adam [74]
as our optimizer, with hyperparameters β1 = 0.5, β2 = 0.999. We adopt the simple gradi-
ent descent–ascent algorithm for alternating minimizing and maximizing the objectives.
The initial value of learning rate is set to be 0.00015 and is scheduled with linear decay.
We choose ε2 = 0.5 for both Equations (12) and (13) in all CTRL experiments. For all
CTRL-Multi experiments on ImageNet, we only choose 10 classes. The details of the 10
classes are shown in Table A9. Most experiments are trained on RTX 3090 GPUs.
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Table A9. ID and correspond category for 10 classes of ImageNet.

ID Category

n02930766 cab, hack, taxi, taxicab
n04596742 wok
n02974003 car wheel
n01491361 tiger shark, Galeocerdo cuvieri
n01514859 hen
n09472597 volcano
n07749582 lemon
n09428293 seashore, coast, seacoast, sea-coast
n02504458 African elephant, Loxodonta africana
n04285008 sports car, sport car

Appendix A.2. MNIST

Settings. On MNIST dataset, we train our model using DCGAN [63] architecture with
our proposed objectives CTRL-Multi (12) and CTRL-Binary (13). The learning rate is set to
10−4 and the batch size is set to 2048. We train our model with 15,000 iterations.

More results illustrating auto-encoding. Here, we give more reconstruction results,
or X̂, from CTRL-Multi and CTRL-Binary objectives, compared to their corresponding
original input X. As shown in the Figure A1, for the CTRL-Binary objective, it can generate
clean digit-like images but the decoded X̂ might resemble digits from similar but different
classes to the input data X since the CTRL-Binary tends to only align the distribution of
all digits.

In contrast, with the CTRL-Multi objective, the decoded X̂ not only are coherent with
the correct class with the input data X, but also show very clear one-to-one mapping
between individual samples x and x̂, although the objective (12) does not enforce that.
Comparing with the results from VAE-GAN [34] and BiGAN [38], our decoded images
make less errors in reconstruction and preserve much better the individual characteristics
of the original samples.

(a) Original X (b) VAE-GAN X̂ (c) BiGAN X̂ (d) CTRL-Binary X̂ (e) CTRL-Multi X̂

Figure A1. The comparison of the reconstruction results of different methods with the input data.

Images decoded from random samples on the learned multi-class LDR. Since our
CTRL-Multi objective function maps input data of each class into a different (orthogonal)
subspace in the feature space, we can generate images conditioned on each class by random
sampling z in the subspace of each class and then decode them back to the input space as x̂.

To perform random sampling in the learned subspace, we first calculate the mean
feature z̄j and the singular vectors vi

j from the SVD (or principal components) of the learned
features Zj of the training data in the class j, where index i represents the ith principal
components. We only use the top r = 8 principal components of each class on MNIST
dataset. These statistics of the subspace can be used for guiding the random sampling.
Then, we sample z randomly along the principal components and around the mean feature
as

zrandom_j = z̄j + α
r

∑
i=1

ni ∗ σi
j ∗ vi

j, (A1)
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where z̄j is the mean feature of class j, σi
j and vi

j are the i-th singular value and principal
component of class j, ni are i.i.d. Gaussian N (0, 1) random variables. That is, the feature in
each subspace/class is modeled by an r-dimensional multivariate Gaussian, with variances
σi

j which characterize variances of the training data in the feature space. Here, α is a hyper-
parameter that controls the sampling range. As for the visualization of random generated
images g(zrandom_j) conditioned on the given class, we compare our method with some
other conditional generation methods such as ACGAN [25] and InfoGAN [21] (for ACGAN
and InfoGAN, we generate images conditioned on class labels with randomly sampled
latent z according the procedures mentioned in their respective works). Our model can
give realistic and correct conditional generation results with high diversity in each class,
while other methods may make mistakes in the generation between some similar classes
such as classes 3 and 5 for InfoGAN.

(a) ACGAN (b) InfoGAN (c) CTRL-Multi

Figure A2. Comparison of randomly generated images conditioned on each class.

Interpolation between samples in different classes. We randomly sample some
images from each class. For each image x1, we randomly sample another image x2 from
a different class. For such a pair of images x1 and x2, we reconstruct them based on their
linearly interpolated feature representations by x̂ = g(α f (x1) + (1− α) f (x2)), α ∈ [0, 1],
the results of which are shown in the Figure A3. For each row in the figure from left to
the right, the reconstructed images continuously morph from one digit to a different digit
with a natural transition in shape rather than a simple superposition of the two images.
This also confirms that space between subspaces for the digits does not represent valid
digits but only shapes with digit-like strokes. Hence for generative purposes, knowing the
supports of valid digits is extremely important.

Figure A3. Images generated from the interpolation between samples in different classes.
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Appendix A.3. Transformed MNIST

Settings. In this experiment, we verify that the CTRL-Multi objective can preserve
diverse data modes in the learned feature embeddings. We construct a transformed MNIST
dataset with five modes: normal, large (1.5×), small (0.5×), rotate 45◦ left, and rotate
45◦ right. Each image data point will be randomly transformed to one of the modes.
Representative examples of such training data can be found in Figure A4a. We train the
model with learning rate 1 × 10−4 and batch size 2048 for 15,000 iterations.

Auto-encoding results. Figure A4b gives the decoded results of the training data with
different modes. Even though the data are now much more diverse for each class, decoder
learned from the CTRL-Multi objective can still achieve high sample-wise similarity to the
original images.

(a) Original X (b) Decoded X̂

Figure A4. Original (training) data X and their decoded version X̂ on the transformed MNIST.

Identifying different modes. Similar to the earlier experiments of Figure 6 for CIFAR-
10 in the main paper, we find the top principal components of features of each class Zj (via
SVD) and generate new images using the learned decoder g from features of the training
images aligned the best with these components.

In Figure A5, we select three classes 0, 1, 2 and visualize samples from the top r =
8 principal components for each class. Each row represents one principal component
direction. As can be seen in the figure, the decoded images along each principal component
shows a similar mode and the modes along different component directions are rather
incoherent. All major modes of the original data can be identified as one of these principal
component directions. This clearly shows that the CTRL-Multi objective can keep the
different modes within each class of the data Xj as the principal component directions of
Zj, and these modes can also be retained in the decoded images X̂j.

(a) Components of class “0” (b) Components of class “1” (c) Components of class “2”

Figure A5. The reconstructed images X̂ from the features Z best aligned along top-8 principal
components on the transformed MNIST dataset. Each row represents a different principal component.
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Appendix A.4. CIFAR-10

Settings. For all experiments on CIFAR-10, we follow the common training hyper-
parameters in Appendix A.1. Beyond that, for each experiment, we run 450,000 iterations
with batch size 1600.

Images decoded from random samples on the CTRL-Multi. We sample z in the
feature space randomly along the principal components and around the mean feature of
each class Zj as in the MNIST case, according to Equation (A1). The generated images
from the sampled features are illustrated in Figure A6, one row per class. As we see,
the generator learned from the CTRL-Multi objective is capable of generating diverse
images for each class.

Further, for visualization of random generated images g(zrandom_j) conditioned on the
given class, we compare our method with some other conditional generation method such
as ACGAN [25] and InfoGAN [21]. For all three experiments, we have randomly sampled 8
images per class in CIFAR-10. For more complex datasets such as CIFAR-10, our model can
give more realistic conditional generation results for different classes with high diversity
within each class.

(a) ACGAN (b) InfoGAN (c) CTRL-Multi

Figure A6. Comparison of randomly generated images conditioned on each class.

Generating images along different PCA components for each class. For each class,
we first compute the top 10 principal components (singular vectors of the SVD) of Z and
then for each of the top singular vectors, we display in each row the top 10 reconstructed
image X̂ whose Z are closest to the singular vector using methods described in the main
body of the paper, Section 3.3. The results are given in Figure A7. Notice that images in each
row are very similar as they are sampled along the same principal component, whereas
images in different rows are very different as they are orthogonal in the feature space. These
results indicate that the features learned by our method can not only disentangle different
classes as orthogonal subspaces but can also disentangle different visual attributes within
each class as (orthogonal) principal components within each subspace.
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(a) Airplane (b) Automobile (c) Bird

(d) Cat (e) Deer (f) Dog

(g) Frog (h) Horse (i) Ship

(j) Truck

Figure A7. Reconstructed images X̂ from features Z close to the principal components learned for
the 10 classes of CIFAR-10.

Appendix A.5. STL-10

Settings. For all experiments on STL-10, we follow the common training hyper-
parameters in Appendix A.1. For the CTRL-Binary setting, we train 150,000 iterations.
For the CTRL-Multi setting, we initialize the weights from the 20,000-th iteration of CTRL-
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Binary checkpoint and train for another 80,000 iterations (with the CTRL-Multi objective).
The IS and FID scores on the STL-10 dataset are reported in Table A10, on par or even better
than existing methods such as SNGAN [31] or DC-VAE [42].

Visualizing auto-encoding property for the CTRL-Binary. We visualize the original
images x and their decoded x̂ generated by the LDR model learned from the CTRL-Binary
objective. The results are shown in Figure A8 for STL-10.

(a) Original X (b) Decoded X̂

Figure A8. Visualizing the original x and corresponding decoded x̂ results on STL-10 dataset. Note
the model is trained from the CTRL-Binary objective hence sample- or class-wise correspondence is
relatively poor, but the decoded image quality is very good.

Appendix A.6. Celeb-A and LSUN

To verify that our formulation works on images of higher resolution, we conduct
experiments on the Celeb-A and LSUN datasets, which have a resolution of 128× 128.

Settings. For all experiments on these datasets, we follow the common training hyper-
parameters in Appendix A.1. We choose a 300 batch size for Celeb-A and LSUN. Both of
them are trained with the CTRL-Binary objective and for 450,000 iterations.

Generating images along different PCA components. We calculate the principal
components of the learned features Z in the latent subspace. We manually choose three
principle components which are related to hat, hair color, and glasses (see Figure A9).
The three components are 9th, 19th, and 23rd respectively from the overall 128 principal
components. These principal directions seem to clearly disentangle visual attributes/factors
such as wearing a hat, changing hair color, and wearing glasses.

Images generated from random sampling of the feature space. We sample z ran-
domly according to the following Gaussian model:

zrandom = z̄ + α
r

∑
i=1

ni ∗ σi ∗ vi, (A2)

where z̄ is the mean feature, σi and vi are the ith singular value and singular vector,
respectively, ni are i.i.d. Gaussian N (0, 1) random variables. As before α is a hyper-
parameter to control the sampling range. We use the top r = 100 principle components for
random sampling. The random generated images are realistic and diverse (see Figure A10).

Visualizing auto-encoding property for CTRL-Binary. We visualize the original
image x and their decoded x̂ using the LDR model learned from the CTRL-Binary objective.
The results are shown in Figures A11 and A12 for the Celeb-A dataset and the LSUN
dataset, respectively. The CTRL-Binary objective can give very good visual quality for
x̂ but cannot ensure sample-to-sample alignment. Nevertheless, the decoded x̂ seems to
be very similar to the original x in some main visual attributes. We believe the binary
objective manages to align only the dominant principal component(s) associated with the
most salient visual attributes, say, pose of the face for Celeb-A or layout of the room for
LSUN, between features of X and X̂.
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(a) Hat (b) Hair Color (c) Glasses

Figure A9. Sampling along the 9th, 19th, and 23rd principal components of the learned features Z
seems to manipulate the visual attributes for generated images on the CelebA dataset.

Figure A10. Images decoded from randomly sampled features, as a learned Gaussian distribution
(A2), for the CelebA dataset.

(a) Original X (b) Decoded X̂

Figure A11. Visualizing the original x and corresponding decoded x̂ results on Celeb-A dataset.
The LDR model is trained from the CTRL-Binary objective.
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(a) Original X (b) Decoded X̂

Figure A12. Visualizing the original x and corresponding decoded x̂ results on LSUN-bedroom
dataset. The LDR model is trained from the CTRL-Binary objective.

Appendix A.7. ImageNet

Settings. To verify that the CTRL works on large-scale datasets, we train it on the
ImageNet. For all experiments on the ImageNet, we follow the common training hyper-
parameters in Appendix A.1.

We first train our model with the CTRL-Binary objective with batch size of 1800 on the
whole ImageNet ILSVRC 2012 dataset. The number of training iterations is 450,000.

After that, we fine-tune the pretrained model with the CTRL-Multi objective, on 10
selected classes. Information about the 10 classes can be found in Table A9. The fine-tune
batch size is 1024, and we train another 35,000 iterations for it. This experiment takes
120 GPU hours on 8 A100-SXM4 GPUs. Note that our choice of batch size is substantially
larger than those commonly adopted in other works while training on the ImageNet
(e.g., 128 in [31]). We empirically observe that training with a larger batch size generates
images of better quality and clearer class alignment. This is consistent with the proposed
CTRL-Multi objective as it explicitly encourages alignment of class distributions, therefore
benefiting from a larger batch that better captures overall data distributions. We leave a
more rigorous study of the effect of batch size for future work.

Due to the heavy computation of such large batch size, we present the intermediate
result obtained at the early iteration 35,000 whereas most existing methods run with
significantly larger number of iterations. Nevertheless, the intermediate result already
verify the efficacy of our framework. In addition, we present the full version of the
comparison with existing generative methods in Table A10. We see the IS and FID scores
for CTRL-Multi degraded a little after the finetuning. This is expected as learning a more
refined separation and alignment of 10 classes is a more challenging task than 2 classes.
This is consistently observed from experiments on other datasets too.

Visualizing feature similarity for CTRL-Multi. We visualize the cosine similarity
among features Z of different classes learned from the CTRL-Multi objective in Figure A13.
In addition, we provide the visualization of alignment between features Z and decoded
features features Ẑ. These results demonstrate that not only the encoder has already learnt
to discriminate between classes, but also the learned Z and Ẑ are aligned clearly within
each class.
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Table A10. Comparison on CIFAR-10, STL-10, and ImageNet. ↑ means higher is better. ↓ means
lower is better.

Method CIFAR-10 STL-10 ImageNet

IS↑ FID↓ IS↑ FID↓ IS↑ FID↓

GAN based
methods

DCGAN
[63] 6.6 - 7.8 - - -

SNGAN
[31] 7.4 29.3 9.1 40.1 - 48.73

CSGAN
[28] 8.1 19.6 - - - -

LOGAN
[29] 8.7 17.7 - - - -

VAE/GAN
based

methods
VAE [5] 3.8 115.8 - - - -

VAE/GAN
[64] 7.4 39.8 - - - -

NVAE [41] - 50.8 - - - -
DC-VAE

[42] 8.2 17.9 8.1 41.9 - -

CTRL-
Binary
(ours)

8.1 19.6 8.4 38.6 7.74 46.95

CTRL-
Multi
(ours)

7.1 23.9 7.7 45.7 6.44 55.51

(a) |Z>Z| (b) |Z>Ẑ|

Figure A13. Visualizing feature alignment: (a) among features |Z>Z|, (b) between features and
decoded features |Z>Ẑ|. These results obtained after 200,000 iterations.

Visualizing auto-encoding property for CTRL-Multi. We visualize the original im-
ages X and their decoded X̂ using the LDR model fine-tuned with the CTRL-Multi objective.
The results are shown in Figure A14 for the selected 10 classes in ImageNet. The CTRL-
Multi objective can give good visual quality for X̂ as well as sample-to-sample alignment.
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(a) Original X (b) Decoded X̂

Figure A14. Visualizing the original X and corresponding decoded X̂ results on ImageNet (10 classes).
The LDR model is fine-tuned using the CTRL-Multi objective. These visualizations are obtained after
35,000 iterations.

Appendix A.8. Ablation Study on Closed-Loop Transcription and Objective Functions

To empirically validate the necessity and respective roles of the closed-loop transcrip-
tion and the rate reduction (∆R) objective, we conduct two sets of experiments. For the
first set of experiments, we modify our closed-loop architecture by instantiating more than
two networks while keeping the objective function (12) unchanged. For the second set of
experiments, we keep the closed-loop architecture but replace all rate reduction (∆R) terms
in (12) with corresponding cross-entropy, or remove some of the terms. Experiments here
shed insight onto how the closed-loop transcription and the rate reduction affect separately
the performance, including sample-wise reconstruction, the alignment of Z and Ẑ space,
and the diversity of intra-class features.

Appendix A.8.1. The Importance of the Closed-Loop

To evaluate the importance of the closed-loop transcription, we experiment on mod-
ified versions of the closed-loop architecture (A3). Notice that many architectures have
been proposed and experimented before to promote the encoder f and decoder g to be
mutually inverse or cycle consistent (at least for mappings between the data and feature
distributions), such as BiGAN [38], VAE-GAN [34], and CycleGAN [56]. However, the cycle
consistency is typically enforced through a third discriminator network. (In the case of
CycleGAN [56], one needs two additional discriminator networks, one for each domain).

Here, we experiment on whether similar ideas work with the rate-reduction objective.
First, we break the closed-loop and use a separate encoder network f 2 : X̂ → Ẑ to replace
the original encoder f . The revised architecture is summarized in the diagram (A4). Second,
to emulate the architecture of VAE-GAN [34], we also instantiate an extra encoder network
f 2 and compute the CTRL-Multi objective using Z̃ and Ẑ. The resulting architecture is also
summarized in the diagram (A5).

X
f (x,θ)−−−−−→ Z

g(z,η)−−−−−→ X̂
f (x,θ)−−−−−→ Ẑ; (A3)

X
f 1(x,θ1)−−−−−−→ Z

g(z,η)−−−−−→ X̂
f 2(x,θ2)−−−−−−→ Ẑ; (A4)

X
f 1(x,θ1)−−−−−−→ Z

g(z,η)−−−−−→ X̂, X
f 2(x,θ2)−−−−−−→ Ẑ, Z̃. (A5)
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We run experiments on MNIST with the three different architectures, and choose the
network from Table A1 for the encoder and Table A2 for the decoder, and the training hyper-
parameters follow Appendix A.1. The qualitative results are shown in Figure A15. Both
architectures (A4) and (A5) failed to generate meaningful images. These experiments show
that directly applying rate-reduction objectives without the closed-loop or architectures
that loosely enforcing cycle consistency fails to work. Instead, the closed-loop formulation
allows us to use only two networks, without the need of any extra network.

(a) Input (b) X̂ from CTRL-Multi (A3)

(c) X̂ from architecture (A4) (d) X̂ from architecture (A5)

Figure A15. Qualitative results for ablation study with alternative architectures to the
proposed CTRL.

Appendix A.8.2. The Importance of Rate Reduction

By replacing the rate reduction (∆R) terms in the objective function (12) with cross-
entropy, we introduce a linear mapping W ∈ Rd×k to map Z ∈ Rd×n from feature space to
logits γ = Z>W . We then calculate the softmax cross-entropy function on logits γ and one

hot label matrix Y . HereH(γ, Y) = ∑n
i=1 ∑k

j=1 Yij log eγij

∑k
j=1 eγij is the formulation of softmax

cross-entropy function and Y ∈ Rn×k is one hot label matrix. Then, we can replace the first
two terms of (12) (∆R

(
Z
)

and ∆R
(
Ẑ
)
) with H(Z>W , Y) and H(Ẑ>W , Y). For the third

term of (12), we extract j-th class one hot feature γj = Z>j W , γ̂j = Ẑ>j W from Z and Ẑ,

and define the distance D(γj, γ̂j) =
eγj

eγj+eγ̂j
of them. For the third term of (12), we further

introduce k linear layers as discriminators {Dj}k
j=1 for each class. Then, we replace the

third term with the GAN’s objective function as ∑k
j=1 E[logDj(Zj)] +E[log(1−Dj(Ẑj))]

(E[X] denote the expectation of X). Now, we have the cross-entropy version objective
function (A6) for the closed-loop framework. We denote the closed-loop framework with
cross-entropy as Closed-loop-CE.

min
η

max
θ,W ,D

TX(θ, η, W ,D) .
= H

(
Z>W , Y

)
+H

(
Ẑ>W , Y

)
+

k

∑
j=1

E[logDj(Zj)] +E[log(1−Dj(Ẑj))]. (A6)

We run the experiments on MNIST and CIFAR10. The architectures of MNIST and
CIFAR10 are given in Tables A1–A4 (In the context of this section, we use the term Decoder
and Generator interchangeably; similarly for Encoder and Discriminator).

Results on MNIST. The training hyper-parameters of CTRL-Multi and Closed-loop-
CE on MNIST are following Appendix A.1. Comparisons between CTRL-Multi and Closed-
loop-CE are listed in Figures A16–A18.

Figure A16b,c show the reconstructed images X̂ from Closed-loop-CE and CTRL-
Multi. Both methods can give sample-wise reconstruction results due to the closed-loop
transcription framework. However, comparing training images whose features are best
aligned with the principal components of class ‘2’ in Figure A17, we see that the principal
components of CE features do not correspond to consistent visual attributes of the images,
whereas ours do.
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From the heatmaps in Figure A18a,b, we see the features learned by rate reduction
possess clear orthogonal subspace structures, whereas those learned by Closed-loop-CE do
not. Moreover, Figure A18c,d shows that the learned features of CTRL-Multi have higher
singular values for the top principal components of each class, corresponding to a more
linearized and diverse feature distribution, whereas those by Closed-loop-CE do not.

(a) Original X (b) X̂ by Closed-loop-CE (c) X̂ by CTRL-Multi

Figure A16. The comparison of sample-wise reconstruction between the Closed-loop-CE objective
and the CTRL-Multi objective.

(a) Closed-loop-CE (b) CTRL-Multi

Figure A17. Training samples along different principal components of the learned features of digit ‘2’.

Figure A18. Cont.
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Figure A18. Comparison Closed-loop-CE and CTRL-Multi on |Z>Ẑ| and PCA singular values.
(a) |Z>Ẑ| from Closed-loop-CE. (b) |Z>Ẑ| from CTRL-Multi. (c) PCA of learned features by the
Closed-loop-CE objective for each class. (d) PCA of learned features by the CTRL-Multi objective for
each class.

Failed Attempts on CIFAR-10 with Cross Entropy. The training hyper-parameters
of Closed-loop-CE on CIFAR10 follow Appendix A.1. We perform the grid search on
three hyper-parameters: learning rate {1.5× 10−2, 1.5× 10−3, 1.5× 10−4}, batch size (800
or 1600), and inner loop (1,2,3,4), conducting 24 experiments in total. All cases of the
Closed-loop-CE fail to converge or experience model collapse on the CIFAR-10 dataset.

Appendix A.8.3. Ablation Study on the CTRL-Multi Objectives

In this section, we investigate the influence of each term of the objective function (12)
and see how they affect the learned features Z, Ẑ and sample-wise reconstruction. We follow
the same experiment setting with CTRL-Multi on MNIST (Appendix A.1), and conduct
three experiments, each with a modified version of the original objective. Objective I is
the original objective with all three terms, Objective II removes the second term ∆R(Ẑ),
and Objective III keeps only the third term ∆R(Z, Ẑ). The results in Figure A19 show that
using Objective II we can still maintain the sample-wise reconstruction property, but the
image quality is lower when compared those constructed by Objective I (Figure A19b vs.
Figure A19c). Objective III loses the sample-wise reconstruction property (Figure A19a vs.
Figure A19d). Finally, the results from Figures A20 and A21 show that without the first two
terms, the learned features Z and Ẑ have poor class-to-class alignment and their principal
components do not show clear subspace structure with higher singular values within each
class.

Table A11. Three different objective functions for CTRL.

Objective I:
minη maxθ TX (θ, η) = ∆R

(
Z(θ)

)
+

∆R
(
Ẑ(θ, η)

)
+ ∑k

j=1 ∆R
(
Zj(θ), Ẑj(θ, η)

)
.

Objective II:
minη maxθ TX (θ, η) =

∆R
(
Z(θ)

)
+ ∑k

j=1 ∆R
(
Zj(θ), Ẑj(θ, η)

)
.

Objective III:
minη maxθ TX (θ, η) =

∑k
j=1 ∆R

(
Zj(θ), Ẑj(θ, η)

)
.
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(b) Input (c) X̂ from objective I (d) X̂ from objective II (e) X̂ from objective III

Figure A19. The influence of the choice of objective functions on the reconstruction: decoded images
X̂ from the objective I, II, or III.

(a) Objective I (b) Objective II (c) Objective III

Figure A20. Correlation |Z>Ẑ| between features Z and Ẑ learned with Objective I, II, or III.

(a) Objective I (b) Objective II (c) Objective III

Figure A21. PCAs of the features learned with Objective I, II, or III.

Appendix A.9. Ablation Study on Sensitivity to Spectral Normalization

It is known that spectral normalization is important to improve the stability of training
GANs. Here, we test our formulation with and without the spectral normalization. We fol-
low the setting from Appendix A.1 and test on CIFAR10, using the network architecture
from Tables A3 andA4. All settings of two experiments are exactly same except with or
without spectral normalization. We see that our formulation is stable in both settings and
generate similar images. The only difference is that the quantitative scores in terms of IS
and FID is higher with the spectral normalization.

Table A12. Ablation study the influence of spectral normalization. ↑means higher is better. ↓means
lower is better.

CTRL-Binary CTRL-Multi
Backbone = SNGAN SN = True SN = False SN = True SN = False

CIFAR-10 IS ↑ 8.1 6.6 7.1 5.8
FID ↓ 19.6 27.8 23.9 41.5
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Appendix A.10. Ablation Study on Trade-Off between Network Width and Batch Size

Empirically, we observed that for our formulation, the larger the batch size, the better
the results. To justify our use of batch size that is larger than those adopted in previous
works such as [31], we conduct the following experiment which studies the training
behavior of our proposed CTRL-Multi objective. Specifically, we train on the selected 10
classes of ImageNet with varying number of widest channels in our chosen architecture
(specified in Appendix A.1) and batch size. We train both the encoder and decoder from
scratch without fine-tuning. Other hyper-parameter settings detailed in Appendix A.7
are fixed. We present the results in Table A13. In the table, we denote training sessions
that do not produce meaningful images as “failure” and those that do as “success”. In the
“failure” scenario, we noticed that the second term in the CTRL-Multi objective (12) would
collapse to near 0 and could not be recovered, implying the decoder has essentially lost
in the minimax game. In the “success” scenario, both the first terms of (12) stay close to
each other and neither would collapse to near 0. The results present an interesting diagonal
pattern that captures the relationship between batch size and network width. With a wider
network and more channels, the network contains a greater capacity but would require a
larger batch to stabilize training. This experiment justifies our use of a larger batch in our
experiment in Appendix A.7 and also presents an interesting trade-off between network
capacity and batch size for training.

Table A13. Ablation study on ImageNet about trade-off between batch size (BS) and network width
(Channel #).

Channel# = 1024 Channel# = 512 Channel# = 256

BS = 1800 success success success
BS = 1600 success success success
BS = 1024 failure success success
BS = 800 failure failure success
BS = 400 failure failure failure

Appendix A.11. Ablation Study on Feature Dimension

In this paper so far, for simplicity and uniformity, we have chosen the feature di-
mension d = nz to be 128 for all experiments. In practice, however, the choice of feature
dimension may affect the performance of the learned features: common practices suggest
the larger the model, the better the performance could be. Hence, in this last section, we
conduct experiments to show how the feature dimension affects the performance. It is not
our intention to find the best feature dimension (nor the best network) with this work. We
only want to show that there is room to improve the results presented in this paper.

The baseline experiment is conducted on CIFAR-10 with architectures from Table A2
and Table A1, training hyper-parameters are following the setting in Appendix A.1. Here,
we change the feature dimension nz, batch size, and learning rate to 512, 8196, and 0.5×
10−4 respectively. Figure A22 shows the comparison of (randomly selected, not cherry-
picked) reconstructed images with the original ones. We observe a significant improvement
in visual quality over the results with a lower feature dimension. The IS and FID scores
reported in Table A14 also confirm the improvement.

Table A14. IS and FID scores of images reconstructed by LDR models learned with different fea-
ture dimensions. ↑means higher is better. ↓means lower is better.

dim = 128 dim = 512
CTRL-
Binary CTRL-Multi CTRL-

Binary CTRL-Multi

CIFAR-10 IS ↑ 8.1 7.1 8.4 8.2
FID ↓ 19.6 23.6 18.7 20.5
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Figure A22. Reconstruction results by LDR models learned with different feature dimensions.
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