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Abstract: In this paper, we propose an end-to-end deep learning approach to realize channel state in-
formation (CSI) feedback and hybrid precoding for millimeter wave massive multiple-input multiple-
output systems in the frequency division duplexing mode. Different from conventional approaches
that treat the CSI reconstruction and hybrid precoding as separate components, we propose a new
end-to-end learning method bypassing the channel reconstruction phase, and design the hybrid
precoders and combiners directly from the feedback codewords (a compressed version of the CSI).
More specifically, we design a neural network composed of the CSI feedback and hybrid precoding.
Experiment results show that our proposed network can achieve better performance than conven-
tional hybrid precoding schemes that reserve channel reconstruction, especially when the feedback
resources are limited.

Keywords: deep learning; massive MIMO; CSI feedback; hybrid precoding; millimeter wave

1. Introduction

Hybrid precoding is a promising technique for millimeter wave (mmWave) massive
multiple-input multiple-output (MIMO) systems [1–5], thanks to its merit of reducing the
number of RF chains while achieving a similar performance of fully digital architecture [1].
Many algorithms for hybrid precoding design have been proposed [2,3,6–10], e.g., the
simultaneous orthogonal matching pursuit (SOMP) algorithm [2] and the manifold opti-
mization based alternate minimization (MO-AltMin) algorithm [6]. In these works, it is
critical for the base station (BS) to acquire accurate downlink channel state information
(CSI) [11]. In frequency division duplexing (FDD) communication systems, however, it
is challenging for the BS to acquire the downlink CSI since the uplink-downlink channel
reciprocity does not hold. Hence, the user equipments (UEs) need to estimate the downlink
CSI and report it to the BS through feedback links. Conventional CSI feedback schemes
utilize techniques such as codebook design [12,13] and compressive sensing (CS) [14]. There
are also some works that jointly optimize CSI feedback and hybrid precoding [15,16]. The
authors in [15] proposed a two-stage approach based on long-term and instantaneous CSI to
realize hybrid precoding design and reduce feedback overhead for FDD multiuser massive
MIMO systems. The paper [16] investigated the performance of hybrid precoding based on
quantized CSI feedback for multi-user massive MIMO systems. However, these approaches
introduce an additional implementation cost and overhead to the system, especially when
the number of users and the number of BS antennas are large.

In recent years, with the rapid development of deep learning technologies, many new
approaches have been realized successfully in CSI feedback [11,17–21] and hybrid precod-
ing [22–25]. As for the CSI feedback, a deep learning-based CSI compression and recovery
scheme, named CsiNet, has been proposed in [11]. The CSI reconstruction accuracy of the
CsiNet significantly outperforms existing CS algorithms [26]. Stemming from the CsiNet,
more sophisticated architectures have been further developed to enhance the performance,
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e.g., CsiNet-LSTM [17], CsiNet+ [18]. The paper [20] further reduced the feedback over-
head by feeding back bit streams instead of floating point numbers. Considering the noise
in the practical feedback link, the authors in [21] proposed a denoising network to reduce
the effect of noise on CsiNet. As for the hybrid precoding, the authors of [22] utilized the
multi-layer perceptrons (MLP) to design the precoders. In [23,24], convolutional neural
network (CNN) frameworks were proposed to estimate the analog precoders and com-
biners for the single-user and multi-user scenarios, respectively. The authors in [27] use
the quantized received signal strength indicators for hybrid precoding design. In [28], the
authors proposed a deep learning framework for hybrid precoding and channel estimation
without instantaneous CSI feedback for mmWave massive MIMO systems.

Most of the aforementioned works realize CSI feedback and hybrid precoding in
separate modules. However, such a separate design may not fully explore the capabilities
and advantages that can be provided by end-to-end deep learning [29,30]. In this regard,
several recent works focus on exploring end-to-end deep learning that bypasses different
intermediate components of communication systems [29–32]. The authors in [29,32] pro-
posed an end-to-end design that bypasses the channel estimation, and designs the hybrid
precoders directly from the received pilots in TDD massive MIMO systems. Refs. [30,31]
proposed the idea of bypassing channel reconstruction in FDD massive MIMO systems.
In [30], considering a point-to-point MIMO system, the authors jointly train the DNNs
at the transmitter (TX) and the receiver (RX) where the DNN in the receiver is used to
map the pilot-aided signals into quantized vectors, and the DNN in the transmitter is
used to map the quantized vectors into precoding vectors. In [31], the authors treats the
end-to-end precoding design problem as a distributed source coding (DSC) problem and
jointly designs the downlink pilot training, channel feedback, and precoding. However,
Refs. [30,31] only consider the design of fully-digital precoding. The end-to-end design of
CSI feedback and hybrid precoding that bypasses channel reconstruction in FDD mmWave
massive MIMO is less understood in the literature and is still open for investigation.

In this paper, we investigate the joint design of CSI feedback and hybrid precoding for
FDD massive MIMO systems. We propose a new neural network structure and an end-to-
end learning framework, which bypasses channel reconstruction and directly designs the
hybrid precoders and combiners from the feedback codewords. Specifically, our proposed
neural network consists of two parts: CSI feedback and hybrid precoding. In order to train
the network, we generate the input-output pairs where the input is the channel matrices
and the output is the hybrid precoders and combiners. The main contributions of this paper
are summarized as follows:

• A new deep learning-based end-to-end method of joint CSI feedback and hybrid
precoding for FDD massive MIMO systems is proposed. Differing from the existing
works that jointly optimize CSI feedback and hybrid precoding by using traditional
algorithms, we adopt end-to-end deep learning techniques to solve the problem.
Meanwhile, our proposed method bypasses channel reconstruction and directly de-
signs the hybrid precoders and combiners from the feedback codewords for FDD
massive MIMO systems, which is different from prior works that treat the CSI recon-
struction and hybrid precoding as separate components and has been less investigated
in the latest end-to-end works;

• A new end-to-end neural network structure for FDD mmWave massive MIMO sys-
tems is proposed in this paper. It consists of two parts: CSI feedback and hybrid
precoding. The former, realized by CNN, transforms the channel matrices into feed-
back codewords and the latter, realized by DNN, transforms feedback codewords into
hybrid precoders and combiners;

• The simulation results illustrate that compared with conventional approaches, which
reserve channel reconstruction, our proposed method can significantly reduce the
feedback overhead and achieve better performance, especially when the feedback
resources are limited.
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Notation 1. We use (·)T , (·)H , (·)−1, which denote transpose, conjugate transpose and inverse,
respectively. IN denotes the identity matrix whose size is N × N. (A

B) represents the number of
all combinations of B elements taken from A different elements. <{·} and ={·} denote the real
and imaginary parts of a variable. ∠{·} denotes the angle of complex quantity. E{·} denotes the
statistical expectation. [Y]i,j denotes (i-th, j-th) element of matrix Y. [Y]:,j denotes j-th column of
matrix Y. |Y| denotes the determinant of matrix Y.

2. System Model

We consider a point-to-point FDD mmWave MIMO system in which the TX with
NT antennas serves the RX with NR antennas. NS is the number of the data streams to
be transmitted. The TX and the RX are equipped with NRF

T and NRF
R RF chains such

that NS ≤ NRF
T ≤ NT and NS ≤ NRF

R ≤ NR. This hybrid structure enables the TX
to apply a baseband precoder Fb ∈ CNRF

T ×NS to the transmit signal s ∈ CNS such that
E[ssH ] = INS /NS, followed by an analog precoder Fa ∈ CNT×NRF

T . The TX has the power
constraint as ‖FaFb‖2

F = NS. Since the analog precoder Fa is implemented using analog
phase shifters, its elements have equal norm, i.e., [[Fa]:,i[Fa]H:,i ]i,i = N−1

T . Therefore, the
transmitted signal is given by x = FaFbs.

We consider a narrowband block-fading channel and the received signal can be written as

ỹ =
√

ρHFaFbs + n, (1)

where ỹ ∈ CNR×1, ρ is the average received power, H ∈ CNR×NT is the channel matrix,
n ∈ CNR×1 is the additive white Gaussian noise (AWGN) with n ∼ CN (0, σ2INR). The
mmWave channel H, which consists of Nc clusters with Nray propagating rays [2], can be
written as

H = γ
Nc

∑
i=1

Nray

∑
l=1

αilΛR(Θ
(il)
R )ΛT(Θ

(il)
T )aR(Θ

(il)
R )aH

T (Θ(il)
T ), (2)

where γ =
√

NT NR/
(

NcNray
)

is a normalization factor. αil is the complex channel gain of

the lth propagation path in the ith scattering cluster. φ
(il)
T (θ

(il)
T ) and φ

(il)
R (θ

(il)
R ) represent the

azimuth (elevation) angles of departure and arrival, respectively. Θ(il)
T = (φ

(il)
T , θ

(il)
T ) and

Θ(il)
R = (φ

(il)
R , θ

(il)
R ) represent the angle of departure (AoD) and the angle of arrival (AoA),

respectively. ΛT(Θ
(il)
T ) and ΛR(Θ

(il)
R ) denote the gains of transmit and receive antenna

element that correspond to different AoDs and AoAs. aT(Θ
(il)
T ) ∈ CNT and aR(Θ

(il)
R ) ∈ CNR

are the array response vectors at the TX and the RX. Considering the uniform planar array
(UPA) with U elements on the y-axis and V elements on z-axis, the array response vector
can be expressed as

a(φ, θ) =
1√
N
[1, . . . , ej 2π

λ d(u sin(φ) sin(θ)+v cos(θ)), . . . , ej 2π
λ d((U−1) sin(φ) sin(θ)+(V−1) cos(θ))]T , (3)

where 0 ≤ u < U, 0 ≤ v < V and N = UV. λ denotes the wavelength of mmWave and d is
the space between adjacent antennas.

The decoded data streams y, after being processed by analog and baseband combiners,
can be written as

y = WH
b WH

a ỹ

=
√

ρWH
b WH

a HFaFbs + WH
b WH

a n,
(4)

where Wa ∈ CNR×NRF
R and Wb ∈ CNRF

R ×NS denote the analog and baseband combiners,
respectively. Similar to Fa, Wa is subject to [[Wa]:,i[Wa]H:,i ]i,i = N−1

R .
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Our objective is to design the hybrid precoders and combiners Fa, Fb, Wa, Wb at the
TX so as to maximize the spectral efficiency of the system. Assuming that the symbol vector
s follows Gaussian distribution, the spectral efficiency can be written as

R = log2

(∣∣∣INS + ρN−1
S R−1

n WH
b WH

a HFaFbFH
b FH

a HHWaWb

∣∣∣), (5)

where Rn = σ2
nWH

b WH
a WaWb is the covariance matrix of the noise after receive processing.

It is necessary for the TX to obtain the instantaneous CSI for optimal precoders and
combiners design. For simplicity, we assume that the perfect downlink CSI has been
obtained at RX via pilot-based training and only focus on the design of joint CSI feedback
and hybrid precoding.

To reduce feedback overhead, the RX first compresses H into a M-dimensional code-
word c, then feeds back c (other than H) to the TX. This is described as

c = F (H), (6)

where c ∈ CM×1 and F (·) represents the CSI compression scheme adopted at the RX.
The TX receives c and designs the downlink precoders and combiners accordingly.

Note that, as illustrated in Figure 1, conventional hybrid precoding design schemes assume
that the TX conducts design based on CSI feedback, i.e., CSI reconstruction from c is required,
which may induce additional errors in this process. Differently, we design the precoders
and combiners directly from c without requiring a CSI reconstruction process (the TX needs
extra overhead to transmit the designed combiners to the RX). This is described as

{Fa, Fb, Wa, Wb} = P(c), (7)

where P(·) denotes the hybrid precoding scheme.

Channel

Compression

Channel

Reconstruction

Hybrid Precoders and 

Combiners Design
H

c Ĥ

CSI Feedback Hybrid Precoding

RX TX

(a)

Channel

Compression

Hybrid Precoders and 

Combiners DesignH
c

RX TX

(b)

{ }, , ,
a b a b

F F W W

{ }, , ,
a b a b

F F W W

Figure 1. (a) The architecture of the traditional hybrid precoding methods that reserve channel
reconstruction. (b) Our proposed hybrid precoding method that bypasses channel reconstruction
(assuming that the RX has obtained the perfect CSI through the pilot training in both architectures).

In the following, we aim to jointly design F (·) in (6) and P(·) in (7), to maximize the
spectral efficiency of the system (described in (5)). Such a problem is in general difficult to
tackle with conventional optimization techniques. Alternatively, we seek a deep learning
framework for handling this problem.

3. Proposed Deep Learning Framework For CSI Feedback and Hybrid Precoding

In this section, we describe the details of our proposd deep learning framework for
the joint design of CSI feedback and hybrid precoding. Then, we describe how to generate
the training dataset.
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3.1. Deep Learning-Based Scheme

Figure 2 shows the architecture of our proposed neural network. It consists of a CSI
feedback phase and a hybrid precoding phase. We build a CNN model to compress the
channel matrices into the feedback codewords at the RX. At the TX, we build a DNN model
to design the hybrid precoders and combiners from the feedback codewords. It is worth
mentioning that in the deployment phase, the RX has stringent requirements on response
latency and energy consumption, which is challenging for neural network design and
provides a new research direction. We can use neural network quantization [33] to reduce
model size and optimize the trade-off between accuracy and efficiency.

Figure 2. The architecture of the proposed neural network that represents the end-to-end CSI feedback
and hybrid precoding.

3.1.1. CSI Feedback

As assumed, the RX has obtained perfect CSI and needs to compress the downlink
channel matrix H into a M-dimensional codeword. This module is built with H as input,
c as output, and with multiple-layer CNNs to realize the function F (·) in (6). The input
of the proposed CNN framework, named X, are the real and imaginary parts of H, i.e.,
[X]:,:,1 = <{H} and [X]:,:,2 = ={H}. The first and second layers are both convolutional
layers with 64 filters to generate feature maps. The size of each filter is 2× 2 and the stride
is 1. Batch normalization is introduced to each convolutional layer. Following the second
layer, we use a fully connected layer with 1024 units. The rectified linear unit (ReLU) is
adopted at the first three layers, where ReLU(x) = max(x, 0). Finally, a fully connected
layer, whose size is M× 1, is used to generate the codeword c.

3.1.2. Hybrid Precoding

Under the assumption of an error-free feedback channel between the TX and the RX,
the TX obtains the codewords c fed back from the RX and designs the hybrid precoders
and combiners accordingly. We design a DNN model to realize the function P(·) in (7).
The codeword c is the input vector and z is the output vector whose size is Q× 1. Note that
because Fa and Wa are analog precoder and combiner matrices, we only need to extract the
angle information of the elements in Fa and Wa. The vector z is the vectorized version of
Fa, Fb, Wa, Wb and can be formed as

z = [vecT(∠Fa), vecT(∠Wa),<(vecT(Fb)),=(vecT(Fb)),<(vecT(Wb)),=(vecT(Wb))], (8)

where Q = NT NRF
T + NRNRF

R + 2NRF
T NS + 2NRF

R NS. The first and second layers of the
DNN are both fully connected layers with 1024 units. The activation function ReLU and
the dropout layer with 50% probability are placed after the first and second layers. The
third layer is a fully connected layers with Q units, which is used to generate the vector z.
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3.2. Dataset Generation

The dataset of the proposed network is denoted as D, and a sample in D is an input-
output pair written as (X, z). In this paper, we need to design Fa, Fb, Wa, Wb from H to
maximize the spectral efficiency. The optimization problem can be formulated as

maximize
Fa ,Fb ,Wa ,Wb

R

s.t. Fa ∈ Fa,
Wa ∈ Wa,

||FaFb||2F = NS,

(9)

where Fa andWa are the sets including all the feasible candidates of analog precoders and
combiners, respectively. It is difficult to obtain the optimal solution of (9). To solve the
problem and obtain the sub-optimal solution, Fa andWa need to be predefined. Because
the analog precoder Fa is related to the array responses aT(ΘT) [2], Fa can be defined as

Fa =
{

F(1)
a , . . . , F(cF)

a , . . . , F(CF)
a

}
, (10)

where cF = 1, 2, . . . , CF. CF = (
Npath

NRF
T

) is the number of the analog precoder candidates

and Npath = Nc × Nray. F(cF)
a = [aT(Θ

(1)
T ), . . . , aT(Θ

(t)
T ), . . . , aT(Θ

(NRF
T )

T )] ∈ CNT×NRF
T is the

candidate of Fa in Fa, where t = 1, . . . , NRF
T . Similarly, the set of feasible analog combiners

Wa can be defined as
Wa =

{
W(1)

a , . . . , W(cW )
a , . . . , W(CW )

a

}
, (11)

where cW = 1, 2, . . . , CW . CW = (
Npath

NRF
R

) is the number of the analog combiner candidates.

W(cW )
a = [aR(Θ

(1)
R ), . . . , aR(Θ

(p)
R ), . . . , aR(Θ

(NRF
R )

R )] ∈ CNR×NRF
R is the candidate of Wa in

Wa, where p = 1, . . . , NRF
R . Therefore, the optimization problem in (9) can be rewritten as

maximize
ĉF ,ĉW

R

s.t. Fa ∈ Fa,
Wa ∈ Wa,

Fb = (FH
a Fa)

−1FH
a Fopt,

Wb = (WH
a AWa)

−1
(WH

a AWopt),

(12)

where A = ρ
NS

HFaFbFH
b FH

a HH + σ2
nINR is the covariance of the array output in (1). Fopt,

Wopt represent the optimal fully-digital precoder and combiner that can be obtained from
singular value decomposition (SVD) of H [2,23].

To reduce the complexity, the problem (12) can be decomposed into the sub-problems
of precoder and combiner designs. The precoder design problem (13) and combiner design
problem (14) can be written as [23]

maximize
ĉF

log2

(∣∣∣∣INS +
ρ

NSσ2
n
(WoptH

Wopt)
−1

WoptH
HFaFbFH

b FH
a HHWopt

∣∣∣∣)
s.t. Fa ∈ Fa,

Fb = (FH
a Fa)

−1FH
a Fopt,

(13)

maximize
ĉW

log2

(∣∣∣INS +
ρ

NSσ2
n

(
WH

b WH
a WaWb

)−1WH
b WH

a HFoptFoptH
HHWaWb

∣∣∣)
s.t. Wa ∈ Wa,

Wb = (WH
a AWa)

−1
(WH

a AWopt).

(14)
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In this case, the Euclidean distance between the optimal fully-digital precoder (com-
biner) and the hybrid precoders (combiners) is minimized, which will maximize the spectral
efficiency of hybrid precoding. Once we solve (13) and (14) and obtain ĉF, ĉW , Fa, Fb, Wa, Wb
can be constructed and the dataset D can be generated.

4. Implementation Details

In data generation, we generate the channel matrix H according to (2). We consider
the UPA with NT = 36 and NR = 36 for the TX and RX, respectively. The number of the RF
chains at the TX and the RX are both set as 4, i.e., NRF

T = NRF
R = 4. For each channel matrix,

the propagation environment is modeled with Nc = 4 and Nray = 4 for each clusters with
σ2

Θ = 5◦ for all transmit and receive azimuth and elevation angles, which are uniform
and randomly selected from the interval [−60◦, 60◦] and [−30◦, 30◦], respectively. The
frequency is set as 28 GHz, and the antenna spacing is half the wavelength.

We implement the proposed neural network using MATLAB as a simulation environ-
ment. Notably, the channel matrices have been normalized before inputting the neural
network. The typical mean squared error (MSE) between the label z and the actual output
ẑ is computed as the loss function, which is described as

Loss =
1
J

J

∑
j=1

∥∥zj − ẑj
∥∥2

2, (15)

where J denotes the size of the dataset. Stochastic gradient descent with momentum
(SGDM) optimizer is used to reduce the loss and update the weight of the network. The
epoch, batch size, and initial learning rate are set as 200, 400, and 0.0005, respectively. The
learning rate is decreased after 20 epochs by a factor of 0.9.

5. Experiment Results

In this section, we evaluate the spectral efficiency of the proposed neural network and
compare the performance with the following benchmarks:

Benchmark 1: SVD with perfect CSI [2]: Considering that the TX has obtained the
perfect CSI, the TX performs hybrid precoding using a fully-digital precoder and combiner,
which can be obtained from the SVD of the channel matrix H. In this case, the upper bound
of spectral efficiency can be obtained.

Benchmark 2: MO-AltMin with perfect CSI [6]: Given the perfect CSI at the TX,
the TX performs hybrid precoding by using the MO-AltMin algorithm. The MO-AltMin
algorithm is one of the alternate minimization hybrid precoding schemes. It is based on
manifold optimization and has the best performance in [6].

Benchmark 3: SOMP with perfect CSI [2]: Given the perfect CSI at the TX, the SOMP,
which is a greedy-based algorithm, is used by the TX to design the hybrid precoders
and combiners.

Benchmark 4: MO-AltMin with CsiNet [11]: In this benchmark, no prior perfect CSI
is initially assumed at the TX. The RX needs to feed the CSI back to the TX over finite-
capacity links. To compare the performance of our proposed scheme that the TX designs the
precoders and combiners from the codewords directly, and conventional schemes that the
TX designs the precoders and combiners from the channel matrices reconstructed from the
codewords, we implement a scheme that uses a deep learning approach to perform channel
feedback and reconstruction, followed by a conventional hybrid precoding algorithm. We
choose CsiNet, which is a classical CSI sensing and recovery mechanism, to realize the
channel feedback and reconstruction. The TX uses MO-AltMin algorithm to design the
hybrid precoders and combiners after reconstructing the channel matrices.

Figure 3 presents the spectral efficiency comparison of different schemes versus SNRs.
The number of data streams NS is set as 2 and the length of codewords M is set as 25. It can
be observed that the spectral efficiency of all considered algorithms increases monotonically
with increasing SNR. The SVD with perfect CSI has the best performance. We observe that
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our proposed method can approach the performance of the MO-AltMin with perfect CSI,
which means that our end-to-end neural network can effectively generate the precoders
and combiners, which maximizes the spectral efficiency. In addition, our proposed scheme
also has better performance than the MO-AltMin with CsiNet in the same codeword length,
which verifies that our proposed end-to-end method can get better performance than
the traditional separate design method in this situation. The SOMP with perfect CSI has
the worst performance because it cannot select the optimal set of array responses from
the dictionary.
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Figure 3. Spectral efficiency versus SNRs for NR = NT = 36, NS = 2, M = 25.

We further investigate the performance of our proposed method and conventional
hybrid precoding design approaches versus the length of codewords. In Figure 4, as the
length of codewords increases, the spectral efficiency of our proposed scheme can gradually
approach and eventually exceed the MO-AltMin with perfect CSI when M = 30. Note
that the MO-AltMin with perfect CSI suffers from very high feedback overhead, which
means that our proposed scheme has lower feedback overhead with similar performance.
In addition, it can be observed that our proposed scheme outperforms the MO-AltMin with
CsiNet in the same codeword length and the gap is significantly large when M is small, e.g.,
M = 5. This observation indicates the superior performance of the proposed end-to-end
neural network approach for FDD mmWave massive MIMO systems in the case of very
low CSI feedback overhead.
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Figure 4. Spectral efficiency versus the length of codewords M.

Finally, we compare the computational complexity for our proposed method and
different benchmarks. Table 1 shows that our proposed method has much lower running
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time than other benchmarks. It means that our proposed method can be executed with a
relatively lower overhead and is more suitable for practical scenarios.

Table 1. Comparison of Computational Complexity

Methods Running Time

Proposed method 0.0046 s
MO-AltMin with perfect CSI 1.2999 s

MO-AltMin with CsiNet 1.3007 s

6. Conclusions

In this paper, we consider the joint design of CSI feedback and hybrid precoding
for FDD massive MIMO systems. We propose a new deep learning-based end-to-end
method that bypasses channel reconstruction and directly designs the hybrid precoders
and combiners from the feedback codewords for FDD massive MIMO systems. We propose
a new neural network that jointly optimizes CSI feedback and hybrid precoding. In
order to train the network, we generate the input-output pairs, where the input is the
channel matrices and the output is the hybrid precoders and combiners. Numerical
results indicate the ability of the proposed network in reducing the feedback overhead and
boosting the system performance in terms of spectral efficiency, especially in the case of the
limited feedback resources. Future research directions include some other transmission
modules, e.g., the downlink pilot transmission and quantized CSI feedback. Moreover, the
performance of our proposed method in terms of energy efficiency is another promising
direction for future works.
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