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Abstract: Missing covariates in regression or classification problems can prohibit the direct use of
advanced tools for further analysis. Recent research has realized an increasing trend towards the
use of modern Machine-Learning algorithms for imputation. This originates from their capability
of showing favorable prediction accuracy in different learning problems. In this work, we analyze
through simulation the interaction between imputation accuracy and prediction accuracy in regres-
sion learning problems with missing covariates when Machine-Learning-based methods for both
imputation and prediction are used. We see that even a slight decrease in imputation accuracy can
seriously affect the prediction accuracy. In addition, we explore imputation performance when
using statistical inference procedures in prediction settings, such as the coverage rates of (valid)
prediction intervals. Our analysis is based on empirical datasets provided by the UCI Machine
Learning repository and an extensive simulation study.

Keywords: missing covariates; imputation accuracy; prediction accuracy; prediction intervals;
bagging; boosting

1. Introduction

The presence of missing values in data preparation and data analysis makes the use
of state-of-the art statistical methods difficult to apply. Seeking a universal answer to
such problems was the main idea of [1], who introduced (multiple) imputation. Through
imputation, one provides data analysts (sequences) of completed datasets, based on which,
various data analysis procedures can be conducted. An alternative to imputation is the
use of so-called data adjustment methods: statistical methods that directly treat missing
instances during training or parameter estimation, such as the full-information-maximum-
likelihood method (see, e.g., [2]) or the expectation-maximization algorithm (cf. [3]).

A large disadvantage of these methods is the expertise knowledge on theoretical model
construction, where the likelihood function of parameters of interest needs to be adopted
appropriately in order to account for missing information. Such examples can be found
in [4–6], where whole statistical testing procedures were adjusted to account for missing
values. It is already well-known that more naive methods, such as list-wise deletion or
mean imputation can lead to severe estimation bias, see, e.g., [1,7–10]. Therefore, we do not
discuss these approaches further.

In the current paper, we focus on regression problems, where we do not have complete
information on the set of covariates. Missing covariates in supervised regression learning
have been part in a variety of theoretical and applicative research fields. In [10], for exam-
ple, a theoretical analysis based on maximum semiparametric likelihood for constructing
consistent regression estimates was conducted. While in [11,12] or [13], for example,
multiple imputation is used as a tool in medical research for variable selection or bias-
reduction in parameter estimation. More recent research has focused on Machine-Learning
(ML)-based imputation.
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In [14–17], for example, the Random Forest method was used to impute missing
values in various datasets with mixed variable scales under the assumption of independent
measurements. Other ML-based methods, such as the k-nearest neighbor method, boosting
machines and Bayesian Regression in combination with classification and regression trees,
have been part of (multiple) imputation, see, e.g., [18–22].

Modeling dependencies in imputation methods for multi-block time series data or
repeated measurement designs is, however, a non-trivial underpinning. Imputation meth-
ods for such time series data can be found in, e.g., [23,24] or [25], for example. Therein, a
special focus has been placed on (data) matrix factorization methods, such as the singular
value decomposition. In our setting, however, a focus is placed on matrix completion
methods using ML-approaches, such as tree-based algorithms.

Choosing an appropriate imputation method for missing data problems usually de-
pends on several aspects, such as the capability to treat mixed-type data, to impute rea-
sonable values in variables of, e.g., bounded support, and to provide a fast imputation
solution. Imputation accuracy can usually be assessed through the consideration of perfor-
mance measures. Here, depending on the subsequent application, one may focus on the
data reproducibility measured through the normalized root mean squared error (NRMSE)
and proportion of false classification (PFC) or distribution preserving measures, such as
Kolmogorov–Smirnov based statistics, see, e.g., [14,21,26].

It is important to realize that these two classes of performance measures for the
evaluation of imputation do not always agree, see, e.g., [26,27]. In fact, one could be
provided by an imputation scheme with comparably low NRMSE values, for which
subsequent statistical inference can have highly-inflated type-I error rates. Therefore,
choosing imputation methods by solely focusing on data reproducibility will not always
lead to correct inference procedures. To control for the latter, [1] coined the term proper
imputation: a property that guarantees correct statistical inference under the (multiple)
imputation scheme.

While imputation accuracy can be accessed through data reproducibility or distribu-
tional recovery, the prediction performance of subsequently applied ML methods (i.e., after
imputation) is often evaluated using the mean-squared error (MSE) or the misclassification
error (MCE). Under missing covariates, however, the sole focus on these measures is
not sufficient, as the disagreement between data reproducibility and statistical inference
has shown. In fact, beyond point-prediction, we may also be interested in uncertainty
quantifiation in the form of prediction intervals. The effect of missing covariates on the
latter remains mostly unknown. In this paper, we aim to close this gap in empirical and
simulation-based scenarios.

We thereby place a special focus on the relation between data reproducibility and
correct statistical inference for post-imputation prediction. While the latter could also be
measured by distributional discrepancies as in [26], we aim to place a special focus on
coverage rates and prediction interval lengths in post-imputation prediction instead. The
reason for this is the rise in ML-based imputation methods and their competitive predictive
performance for both imputation and prediction. Taking into account that data reproducibil-
ity and statistical inference are not always in harmony under the missing framework, an
interesting question remains whether appropriate data reproducible imputation schemes
lead to favourable prediction results after imputation.

Furthermore, it is unknown whether imputation schemes with comparably low
NRMSE values will lead to accurate predictive machines in terms of delivering appropriate
point predictions for future outcomes while also correctly quantifying their uncertainty.
Therefore, based on different ML methods in supervised regression learning problems, we

(i) aim to clarify the interaction between NRMSE and MSE as measures for data re-
producibility and predictive post-imputation ability. We estimate both measures on
various missing rates, imputation methods and prediction models to account for
potential interactions between the NRMSE and MSE.
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(ii) Furthermore, we aim to enlighten the general issue whether imputation methods with
comparably low imputation errors also lead to correct predictive inference. That is, we
analyze the impact of accurate data-reproducible imputation schemes on predictive,
post-imputation statistical inference in terms of correct uncertainty quantification. To
measure the latter, we take into account correct coverage rates and (narrow) interval
lengths of point-wise prediction intervals in post-imputation settings obtained through
ML methods.

2. Measuring Accuracy

Measuring imputation accuracy can happen in many ways. A great deal of research
has been focused on the general idea of reconstructing missing instances and being as close
as possible to the true underlying data (cf. [14,21]).

Although this approach seems reasonable, several disadvantages have been discovered
when using data reproducible measures, such as squared error loss, especially for later
statistical inference; see, e.g., [1,26,27]. Therefore, we discuss several suitable measures
for assessing prediction accuracy in regression learning problems with missing covariates.
In the sequel, we assume that we have access to iid data collected in Dn = {[X>i , Yi]

> ∈
Rp+1 : i = 1, . . . , n}, where

Yi = m(X i) + εi. (1)

Here, m(x) = E[Y1|X1 = x] is the regression function, {εi}n
i=1 is a sequence of iid ran-

dom variables with E[ε1] = 0 and Var(ε1) = σ2 ∈ (0, ∞) and we assume continuous
covariates X i. Missing positions in the features {X i}n

i=1 are modeled by the indicator
matrix R = {Rij}ij ∈ {0, 1}n×p, where Rij = 0 indicates that the i-th observation of feature
j ∈ {1, . . . , p} is not observable. Focusing on the general issue of predicting outcomes in
regression learning for new feature outcomes, we restrict our attention to data reproducible
accuracy measures and model prediction accuracy measures. In order to cover statistical
inference correctness for prediction, we use ML-based prediction intervals as proposed
in [28–30] to account for coverage rates and interval lengths.

2.1. Imputation and Prediction Accuracy

In our setting, (missing) covariates are continuously scaled leading to the use of
accuracy measures for continuous random variables. Regarding imputation accuracy, we
consider the NRMSE formally given by

NRMSE =

√
∑

(i,j)∈Nmis

(Ximp
ij − Xmis

ij )2

√
∑

(i,j)∈Nmis

(Ximp
ij − X̄mis·· )2

, (2)

where Nmis = {(i, j) ∈ {1, . . . , n} × {1, . . . , p}|Rij = 0} is the set of all observations and

features with missing entries in those positions. Here, Ximp
ij denotes the imputed value of

observation i for variable j, while Xmis
ij is the true, unobserved component of those positions.

Xmis
·· is the mean of the sequence {Xij : Rij = 0}. Regarding the overall model performance

on prediction, we make use of the mean squared error

MSE = E[(Y− m̂n(X))2], (3)

where m̂n is an ML-based estimator of m on Dn and [X>, Y]> is an independent copy of
[X>1 , Y1]

>. Note that, in the missing framework, m is estimated on the imputed dataset
Dimp

n , while the MSE is (usually) estimated using cross-validation procedures.
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2.2. Prediction Intervals

Based on the methods for uncertainty quantification proposed in [28–31], we make use
of Random-Forest-based prediction intervals. In an extensive simulation study in [30], it
could be seen that other, ML-based prediction intervals, such as the (stochastic) gradient tree
boosting (cf. [32]) or the XGBoost method (cf. [33]) did not perform well under completely
observed covariates. Therefore, we restrict our attention to those already indicating accurate
coverage rates in completely observed settings. Meinshausen’s Quantile Regression Forest
(see [28]), for example, delivers a point-wise prediction interval for an unseen feature point
X = x, which is formally given by

PIQRF,n = [Q̂n,α/2(x); Q̂n,1−α/2(x)], (4)

where Q̂n,α/2(x) = inf{y|F̂n(y|x) ≥ α/2} and F̂n(y|x) is a Random-Forest-based estimator
for the conditional distribution function F(y|x) of Y|X = x. Other prediction intervals
based on the Random Forest are, e.g., given in [29,30]. Following the same notation as
in [30], we refer with m̂n,M(x) to a Random Forest prediction at x, trained on Dn using M
decision trees, while z1−α is the corresponding quantile of the standard normal distribution.
We consider the same residual variance estimators as in [30], where σ̂n,M is the trivial
residual variance estimate, σ̂n,Mcorrect is the residual variance estimate with finite-M bias
correction and σ̂n,M;W is a weighted residual variance estimator, see also [31]. Moreover,
we denote with D̂RF

n,α/2 the empirical quantile of the Random Forest Out-of-Bag residuals.
With this notation, we obtain four more prediction intervals:

PIn,empQ(x) = [m̂n,M(x) + D̂RF
n,α/2; m̂n,M(x) + D̂RF

n,1−α/2], (5)

PIn,ResVar(x) = [m̂n,M(x)− z1−α/2 · σ̂n,M; m̂n,M(x) + z1−α/2 · σ̂n,M], (6)

PIn,Mcorrect(x) = [m̂n,M(x)− z1−α/2 · σ̂n,Mcorrect; m̂n,M(x) + z1−α/2 · σ̂n,Mcorrect], (7)

PIn,weighted(x) = [m̂n,M(x)− z1−α/2 · σ̂n,M;W ; m̂n,M(x) + z1−α/2 · σ̂n,M;W ]. (8)

For benchmarking, we additionally consider a prediction interval obtained under the
linear model assumption. Imputation accuracy in inferential prediction under missing
covariates is then assessed by considering Monte-Carlo estimated coverage rates and
interval lengths.

3. Imputation and Prediction Models

We made use of the following state-of-the-art ML regression models for prediction

• the Random Forest as implemented in the R-package ranger (c.f [17]),
• the (stochastic) gradient tree boosting (SGB) method from the R-package gbm (cf. [32]) and
• the XGBoost method, also known as Queen of ML (cf. [34]), as implemented in the

R-package xgboost.

For each of them, we fit a prediction model to the (imputed) data. Both boosting
methods rely on additive regression trees that are fitted sequentially using the principles
of gradient descent for loss minimization. XGBoost, however, is slightly different by
introducing extra randomization in tree construction, a proportional shrinkage on the leaf
nodes and a clever penalization of trees. We refer to [32,33,35] for details on the concrete
algorithms. For benchmarking, a linear model is trained as well.

Although several imputation models are available on various (statistical) software
packages, we place a special focus on Random-Forest-based imputation schemes and
the multivariate imputation using chained equations (MICE) procedure (cf. [11,14,21]).
The reasons for this are twofold, but both have roots in the same theoretical issue called
congeniality, see [36] for a formal definition. In its core, congeniality in (multiple) imputation
refers to the existence of a Bayesian model such that

1. the posterior mean and posterior variance of the parameter of interest agrees with the
point estimator resp. its variance estimator calculated under the analysis model and
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2. the conditional distribution of the missing observations given the observed points
under the considered Bayesian model agrees with the imputation model.

Therefore, congeniality builds a bridge between the imputation and analysis procedure
by assuming the existence of a larger model that is compatible with both—the analysis and
imputation model. If ML methods are used during the analysis phase, the compatibility
in terms of congeniality is non-trivial. Using the same methods during the imputation
and analysis phase, however, can ease the verification through the use of the same model
during imputation and analysis.

Hence, a potential disagreement of imputation and prediction models, however, can
result in uncongenial (multiple) imputation methods. The latter yields to invalid (multiple)
imputation inference, as can be seen in [37] or [36], for example. Secondly, focusing on
Bayesian models for imputation, such as the MICE procedure, is in line with the general
framework of congeniality and the idea of (multiple) imputation. Although we do not
directly compute point-estimates during the analysis phase, interesting quantities in our
framework are Random-Forest-based prediction intervals and estimators of the MSE.

missForest in R is an iterative algorithm developed by [14] that imputes continuous
and discrete random variables using trained Random Forests on complete subsets of the
data and imputes missing values through prediction with the trained Random-Forest model.
The process iterates in imputing missing values until a pre-defined stopping criterion is
met. Similar to the missForest algorithm, we substituted the core learning method with
other ML-based methods, such as the SGB method (in the sequel referred to as the gbm for
the algorithmic implementation) and the XGBoost method (in the sequel referred to with
xgboost for the algorithmic implementation).

Both methods are implemented in R using the same algorithmic framework as missFor-
est, while substituting the Random Forest method with the SGB resp. XGBoost. That means
that we train the SGB resp. XGBoost on (complete) subsets of the data and impute missing
values through the prediction of the trained model in an iterative fashion.

MICE is a family of Bayesian imputation models developed in [38,39]. Under the nor-
mality assumption (i.e., MICE NORM), the method assumes a (Bayesian) linear regression
model, where every parameter in that model is drawn from suitable priors. The predictive
mean matching approach (MICE PMM) is similar to MICE NORM but does not impute
missing values through the prediction of those points using the Bayesian linear model and
instead randomly selects among observed points that are closest to the same model predic-
tion as MICE NORM. In addition to these methods, MICE enables the implementation of
Random-Forest-based methods, referred to as MICE RF, see, e.g., [40].

The latter assumes a modified Random Forest, where additional randomization is
applied compared to the missForest. For example, instead of simply predicting missing
values through averaging observations in leaf nodes, the method randomly selects them.
In addition, in the complete subset of the data determined for training the Random Forest,
potential missing values are not initially imputed by mean or mode values but by random
draws among observed values. In the sequel, we refer to the algorithmic implementation
in R of all these methods using the terms mice_norm, mice_pmm and mice_rf.

4. Simulation Design

Our simulation design is separated in two parts. In the first part, empirical data
from the UCI Machine Learning Repository covering regression learning problems are
considered for the purpose of measuring imputation and prediction accuracy. We focused
on selecting datasets from the repository that reveal a high amount of continous variables,
while reflecting both time series data and observations measured as independent and
identical realizations of random variables with different dimensions. Summary statistics of
every dataset can be found in Appendix A. The following five datasets are considered:

1. The Airfoil Data consists of (p + 1) = 6 variables measured in n = 1503 observations,
where the target variable is the scaled sound pressure level measured in decibels. The
aim of this study conducted by NASA was to detect the impact of physical shapes
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of airfoils on the produced noise. The data consists of several blades measured in
different experimental scenarios, such as various wind attack angles, free-stream
velocities and frequencies. We may assume iid observations [X>i , Yi]

>, i = 1, . . . , n for
every experimental setting.

2. In the Concrete Data, (p + 1) = 7 variables are measured in n = 1030 observations.
The target variable is the concrete compressive strength measured in MPa units. Dif-
ferent mixing components, such as cement, water and fly ash, for example, are used
to measure the concrete strength. It is reasonable to assume iid realizations from
[X>i , Yi]

> for i = 1, . . . , n.
3. The aim in the QSAR Data is to predict aquatic toxicity for a certain fish species. It

consists of (p + 1) = 9 variables measured in n = 546 observations. The n = 546
observations can be considered as iid realizations of [X>i , Yi]

> for i = 1, . . . , n, while
all features and the response are continuous.

4. The Real Estate Data has (p + 1) = 7 variables and n = 413 observations. The aim is
to build a prediction model for house price developments in the area of New Taipei
City in Taiwan. Different features, such as the house age or the location measured as a
bivariate coordinate vector, for example, are measured for building a prediction model.
In our simulation, we dropped the variable transaction date and assumed an row-wise
iid structure. The dataset, however, can also be considered as time series data.

5. The Power Plant Data consists of n = 9568 observations with (p + 1) = 5 variables.
The actual dataset is much larger in terms of observations; however, only the first
9568 are selected to speed the computations. The aim of this dataset is to predict the
electric power generation of a water power-plant in Turkey. This dataset is different
from the previous ones due to its time series structure. The dataset can be considered
as multiple time series measured in five different variables.

For each dataset, missing values under the MCAR scheme were inserted to the (n× p)-
dimensional dataset with r ∈ {0.1, 0.2, 0.3, 0.5, 0.6, 0.8}missing rates. Hence, missing values
are randomly spread across cases and variables in the dataset. Then, missing values were
(once) imputed with the imputation methods mentioned in Section 3.

Although multiple imputation can be very beneficial when analyzing coverage rates
for prediction intervals (see, e.g., [41] or [1]) in terms of more accurate uncertainty reflection
of the missing mechanism itself, our considered methods, however, are partly limited to be
applied within the multiple imputation framework. In [42], for example, the missForest
procedure was shown to be not multiple imputation proper making its direct usage in the
multiple imputation scheme limited. Once missing values are imputed, the whole process
is then iterated using MCimp = 500 Monte-Carlo iterates.

Based on each imputed dataset, all of the above mentioned prediction models are
trained and their prediction accuracy is measured using a five-fold cross-validated MSE.
Regarding hyper-parameter tuning of the various prediction models, we conducted a grid-
search using a ten-fold cross-validation procedure with ten replications on the completely
observed data, prior to the generation of missing values. This was conducted using the
R-function trainControl of the caret-package [43].

In the second part of our simulation study, synthetic data was generated with miss-
ing covariates to detect the effect of imputation accuracy on prediction interval cover-
age rates. Here, we have focused on point-wise prediction intervals. For sample sizes
n ∈ {100, 500, 1000}, regression learning problems of the form {[X>i , Yi]

>}n
i=1 were gener-

ated using a p = 10 dimensional covariate space and model (1), where X i
iid∼ Np=10(0, Σ)

and εi
iid∼ N (0, σ2) were simulated independent of each other. Missing values were inserted

under the MCAR scheme using various missing rates rPI ∈ {0.1, 0.2, 0.3}. Regarding the
functional relationship between features and response, different regression functions with
coefficient β0 = [2, 4, 2,−3, 1, 7,−4, 0, 0, 0]> were used, such as

1. a linear model: m(xi) = x>i β0,
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2. a polynomial model: m(xi) =
p
∑

j=1
β0,jx

j
i,j,

3. a trigonometric model: m(xi) = 2 · sin(x>i β0 + 2) and
4. a non-continuous model:

m(xi) =

{
β0,1xi,1 + β0,2xi,2 + β0,3xi,3, if xi,3 > 0.5,
β0,4xi,4 + β0,5xi,5 + 3 if xi,3 ≤ 0.5.

In order to capture potential dependencies among the features, various choices for the
covariance matrix Σ were considered: a positive auto-regressive, negative auto-regressive,
compound symmetric, Toeplitz and the scaled identity structure. In addition, we aimed to
take care of the systematic variation originating from m(X1), and the noise ε1, by choosing
σ2 in such a way that the signal-to-noise ratio SN := Var(m(X1))/σ2 = 1. Finally, using
MCPI = 1000 Monte-Carlo iterations, prediction interval performance of the intervals
proposed in Section 2 are evaluated by approximating coverage rates and (average) interval
lengths over the Monte-Carlo iterates.

5. Simulation Results

In the sequel, the simulation results for both parts, the empirical datasets obtained
through the UCI Machine Learning repository and the simulation study are presented.
Note that additional results can be found in Appendix A and in the supplement of [44].

5.1. Results on Imputation Accuracy and Model Prediction Accuracy

In this section, we present the results for the empirical data analysis based on the Airfoil
dataset using the imputation and prediction accuracy measures described in Section 2 for
evaluation. We thereby focus on the Random Forest and the XGBoost prediction model.
The results of the linear and the SGB model as well as the results for all other datasets are
given in the supplement in [44] (see Figures 1–19 therein) and summarized at the end of
this section.

Random Forest as Prediction Model. Figures 1 and 2 summarize for each imputa-
tion method the imputation error (NRMSE) and the model prediction error (MSE) over
MCimp = 500 Monte-Carlo iterates using the Random Forest method for prediction on the
imputed dataset. On average, the smallest imputation error measured with the NRMSE
could be attained when using missForest and the gbm imputation method. In addition,
these methods yielded low variations in NRMSE across the Monte-Carlo iterates. In
contrast, the mice_norm, mice_pmm and mice_rf behaved similarly resulting into largest
NRMSE values across the different imputation schemes with an increased variation in
NRMSE values.

The xgboost method performed slightly worse than missForest and gbm, when fo-
cusing on imputation accuracy. In addition, all methods seemed to be more or less robust
towards an increased missing rate. Interesting is the fact that volatility decreases, as missing
rates increase for the MICE procedures. The prediction accuracy measured in terms of cross-
validated MSE using the Random-Forest model was the lowest under the missForest,
xgboost and gbm, which corresponds with the NRMSE results.

As expected, the estimated MSE suffered from missing covariates and the effect
became worse with an increased missing rate. For example, an increase in the missing rate
from 10% to 50% yielded an increase of the NRMSE by 8.4%, while the MSE realized an
increase of 127.6%. Hence, model prediction accuracy heavily suffered from an increased
amount of missing values, independent of the used imputation scheme. In addition, if
the NMRSE increases by 0.1 units, it is expected that the MSE will increase by 122.1%.
Although congeniality was defined for valid statistical inference procedures, the effect of
using the same method for imputation and prediction seemed to also have a positive effect
on model prediction accuracy.
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Figure 1. Imputation accuracy measured by NRMSE using the Random-Forest method for predict-
ing scaled sound pressure in the Airfoil dataset under various missing rates. The dotted lines refer to
95% empirical Monte-Carlo confidence, while the solid lines are Monte-Carlo means of the NRMSE.

XGBoost as Prediction Model. In switching the prediction method to XGBoost, we
realized an increase in model prediction accuracy for missing rates up to 20% as can be seen
in Figure 3. In addition, for those missing rates, the xgboost imputation was competitive
to the missForest method but lost in accuracy for larger missing rates compared to the
missForest. Different from the Random Forest, the XGBoost prediction method was more
sensitive towards an increased missing rate.

For example, an increase of the missing rate from 10% to 50% yields to an increase
of the NRMSE by 8.1%, while the MSE suffered by an increase of 300% on average. In
addition, an increase of the imputation error by 0.1 points, can yield an average increase
of prediction error by 189.9% Although under the completely observed framework the
XGBoost method performed best in terms of estimated MSE, the results indicate that
missing covariates can disturb the ranking. In fact, for missing rates r ≥ 30%, the Random
Forest exhibited a better prediction accuracy.
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Figure 2. Prediction accuracy measured in MSE using the Random-Forest method for predicting
scaled sound pressure in the Airfoil dataset under various missing rates. The MSE is estimated
based on a five-fold cross-validation procedure on the imputed dataset. The dotted lines around the
solid curves refer to 95% empirical Monte-Carlo intervals. The solid lines are Monte-Carlo means of
the cross-validated MSE. The horizontal dotted line in red refers to the cross-validated MSE of the
Random Forest fitted to the Airfoil dataset without any missing values.

Other Prediction models. Using the linear model as the prediction model resulted in
worse prediction accuracy with MSE values ranging from 25 (r = 10%) to 45 (r = 50%).
For all missing scenarios, using the missForest or the gbm method for imputation before
prediction with the linear model resulted in the lowest MSE. The results for the SGB
method were even worse with MSE values between 80 and 99.

As a surprising result, the prediction accuracy measured in terms of cross-validated
MSE decreased with an increasing missing rate. A potential source of this effect could be
the general weakness of the SGB in the Airfoil dataset without any missing values. After
inserting and imputing missing values, which can yield to distributional changes of the
data, it seems that the SGB method benefits from these effects. However, model prediction
accuracy is still not satisfactory, see Figure 2 in the supplement in [44].

Other Datasets. For the other datasets, similar effects were obtained. The Random
Forest and the XGBoost showed the best prediction accuracy, see Figures 4–19 in the
supplement in [44]. Again, larger missing rates affected model prediction accuracy for the
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XGBoost method, but the Random Forest was more robust to them overcoming XGBoost
prediction performance measured in cross-validated MSE for larger missing rates. Overall,
NRMSE and cross-validated MSE seem to be positively associated to each other. Hence,
more accurate imputation models seemed to yield better model prediction measured
by MSE.

missForest xgboost

mice_pmm mice_rf

gbm mice_norm

r=10% r=20% r=30% r=40% r=50% r=60% r=80% r=10% r=20% r=30% r=40% r=50% r=60% r=80%
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Figure 3. Prediction accuracy measured in MSE using the XGBoost method for predicting scaled
sound pressure in the Airfoil dataset under various missing rates. The MSE is estimated based on
a five-fold cross-validation procedure on the imputed dataset. The dotted lines around the solid
curves refer to 95% empirical Monte-Carlo intervals. The solid lines are Monte-Carlo means of the
cross-validated MSE. The horizontal dotted line in red refers to the cross-validated MSE of the
XGBoost method fitted to the Airfoil dataset without any missing values.

5.2. Results on Prediction Coverage and Length

Using the prediction intervals in Section 2, we present coverage rates and interval
lengths of point-wise prediction intervals in simulated data. Both quantities were computed
using 1000 Monte-Carlo iterations with sample sizes n ∈ {100, 500, 1000}. The boxplots
presented here (see Figures 4–7) and in the supplement in [44] (see Figures 19–30 therein)
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spread over the different covariance structures used during the simulation. Every row
corresponds to one of the simulated missing rates r ∈ {0.1, 0.2, 0.3}, while the columns
reflect the different Random-Forest-based prediction intervals.

The left column summarizes the results for the Random-Forest-based prediction in-
terval using empirical quantiles (PIn,empQ), the center column reflects the Random Forest
prediction interval using the simple residual variance estimator on Out-of-Bag errors
(PIn,ResVar), while the right column summarizes the Random-Forest-based prediction in-
terval using the weighted residual variance estimator (PIn,weighted). We shifted the results
of PIQRF,n, PIn,MCorrect and the prediction interval based on the linear model to the sup-
plement in [44] (see Figures 19–22, 24, 26, 28 and 30 therein). Under the complete case
scenarios, the latter methods did not show comparably well coverage rates as PIn,emQ,
PIn,ResVar and PIn,weighted. For imputed missing covariates, the methods performed with
less accuracy in terms of correct coverage rates, when comparing them with PIn,emQ,
PIn,ResVar and PIn,weighted.

Although the interval lengths of PIQRF,n, PIn,MCorrect and the linear model were, on
average smaller, the coverage rate was not sufficient to make them competitive with
PIn,emQ, PIn,ResVar and PIn,weighted. For prediction intervals that underestimated the 0.95
threshold in the complete case scenario, we observed more accurate coverage rates for
larger missing rates. It seems that larger missing rates increase coverage rates for the
PIQRF,n and PIn,MCorrect methods, independent of the used imputation scheme.

In Figure 4, the boxplots of the linear regression model are presented. In general, the
use of Random-Forest-based prediction intervals with empirical quantiles (PIn,empQ) or
simple variance estimation (PIn,ResVar) show competitive behavior in the complete case
scenario. When considering the various imputation schemes, under the different missing
rates, it can be seen that coverage rate slightly suffered compared to the complete case.
To be more precise, larger missing rates lead to slightly larger coverage rates for PIn,emQ,
PIn,ResVar and PIn,weighted.

For the Random-Forest-based prediction interval with weighted residual variance,
this effect seems to be positive, i.e., larger missing rates will lead to better coverage rates
for PIn,weighted. Comparing the results with the previous findings, we see that the xgboost
yields, on average, the best coverage results across the different imputation schemes. While
the MICE procedures did not reveal competitive performance in model prediction accu-
racy, the mice_norm method under the linear model performed similar to the missForest
procedure when comparing coverage rates.

Figure 5 summarizes coverage rates of point-wise prediction intervals under the
trigonometric model. Similar to the linear case, all three methods PIn,empQ, PIn,ResVar
and PIn,weighted yielded accurate coverage rates showing better approximation to the
0.95 threshold when the sample size increase under the complete observation case. On
average, the xgboost imputation method remains competitive compared to the other
imputation methods.

Slightly different from the linear case, the mice_norm approach gains in correct cover-
age rate approximation compared to the missForest, together with the mice_pmm approach.
Nevertheless, the approximations between mice_norm, mice_pmm and missForest are close
to each other. As mentioned earlier, PIn,weighted turns more accurate in terms of correct
coverage rates, when the missing rate increases. Similar results compared to the linear and
trigonometric case could be obtained for the polynomial model and the non-continuous
model. Boxplots of the coverage rates can be found in Figures 24 and 28 of the supplement
in [44].

Regarding the length of the intervals for the linear model (see Figure 6), the prediction
interval PIn,empQ and the parametric interval PIn,ResVar yielded similar interval lengths.
Under imputed missing covariates, however, the PIn,empQ interval led to slightly smaller
intervals than PIn,ResVar. Nevertheless, the prediction interval based on the weighted
residual variance estimator PIn,wighted had the smallest intervals on average. This comes
with the cost of less accurate coverage rates as can be seen in Figure 4.
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In addition, independent of the used prediction interval, an increased missing rate
yielded larger intervals making the learning methods, such as Random Forest, more
insecure about future predictions. Regarding the used imputation method, almost all
imputation methods resulted in similar interval lengths. On average, the missForest
method had slightly smaller intervals comparable to the xgboost imputation.

Figure 4. Boxplots of prediction coverage rates under the linear model. The variation is over
the different covariance structures of the features. Each row corresponds to one of the missing
rates r ∈ {0.1, 0.2, 0.3}, while each column corresponds to the following prediction intervals:
PIn,empQ, PIn,ResVar and PIn,weighted. The triple (red, green and blue) correspond to the sample
sizes n ∈ (100, 500, 1000).
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Figure 5. Boxplots of prediction coverage rates under the trigonometric model. The variation
is over the different covariance structures of the features. Each row corresponds to one of the
missing rates r ∈ {0.1, 0.2, 0.3}, while each column corresponds to the following prediction intervals:
PIn,empQ, PIn,ResVar and PIn,weighted. The triple (red, green and blue) correspond to the sample sizes
n ∈ (100, 500, 1000).

Similar results on prediction lengths were obtained with other models. Considering
the trigonometric function as in Figure 7, it can be seen that PIn,empQ results in slightly
smaller intervals than PIn,ResVar. However, the interval lengths for the empirical quantiles
under the trigonometric model were more robust towards dependent covariates.
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Figure 6. Boxplots of prediction interval lengths under the linear model. The variation is over
the different covariance structures of the features. Each row corresponds to one of the missing
rates r ∈ {0.1, 0.2, 0.3}, while each column corresponds to the following prediction intervals:
PIn,empQ, PIn,ResVar and PIn,weighted. The triple (red, green and blue) correspond to the sample
sizes n ∈ (100, 500, 1000).

Comparably to the linear case, PIn,weighted results in the smallest interval lengths, but
suffers from less accurate coverage. Furthermore, all imputation methods behave similar
with respect to prediction interval lengths under the trigonometric case and other models
(see Figures 21 and 22 in the supplement in [44]) . It can be seen that Random-Forest-based
prediction intervals are, more or less, universally applicable to the different imputation
schemes used in this scenario yielding similar interval lengths.
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Figure 7. Boxplots of prediction interval lengths under the trigonometric model. The variation
is over the different covariance structures of the features. Each row corresponds to one of the
missing rates r ∈ {0.1, 0.2, 0.3}, while each column corresponds to the following prediction intervals:
PIn,empQ, PIn,ResVar and PIn,weighted. The triple (red, green and blue) correspond to the sample sizes
n ∈ (100, 500, 1000).

In summary, Random-Forest-based prediction intervals with imputed missing co-
variates yielded slightly wider intervals compared to the regression framework without
missing values. For prediction intervals that underestimated the true coverage rate, such
as PIQRF,n, PIn,MCorrect and PIn,weighted, an increased missing rate had positive effects on
the coverage rate. Overall, missForest and xgboost were competitive imputation schemes
when considering accurate coverage rates and interval lengths using the PIn,empQ and
PIn,ResVar intervals. mice_norm resulted in similar, but slightly less accurate, coverage
compared to missForest and xgboost.
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6. Conclusions

Missing covariates in regression learning problems are common issues in data analysis
problems. Providing a general approach for enabling the application of various analysis
models is often obtained through imputation. The use of ML-based methods in this
framework has obtained increased attention over the last decade, since fast and easy to use
ML methods, such as the Random Forest, can provide us with quick and accurate fixes for
data analysis problems.

In our work, we placed a special focus on variants of ML-based methods for im-
putation, which mainly rely on decision trees as base learners, and their aggregation is
conducted in a Random-Forest-based fashion or a boosting approach. We aimed to shed
light into the general issue when and which imputation method should be used for missing
covariates in regression learning problems that provide accurate point predictions with
correct uncertainty ranges. To provide an answer to this, we conducted empirical analyses
and simulations, which were led by the following questions:

Does an imputation scheme with a low imputation error (measured with the NRMSE)
automatically provide us with accurate model prediction performance (in terms of cross-
validated MSE)? How do ML-based imputation methods perform in estimating uncertainty
ranges for future prediction points in form of point-wise prediction intervals? Are the
results in harmony; that is, does an accurate imputation method with a low NRMSE
provide us with good model prediction accuracy measured in MSE while delivering
accurate and narrow prediction interval lengths?

By analyzing empirical data from the UCI Machine Learning repository, we found that
imputation methods with low imputation error measured with the NRMSE yielded better
model prediction measured by cross-validated MSE. In our analysis, we could see that an
increased missing rate had a negative effect on both the MSE and the NRMSE, while on
the latter, the effect was less expressive. Particularly, for larger missing rates, the use of the
same ML method for both imputation and prediction was beneficial. This is in line with
the congeniality assumption; a theoretical term that (partly) guarantees correct inference
after (multiple) imputation.

In particular, the missForest and our modified xgboost method for imputation
yielded preferable results in terms of a low imputation error and good model predic-
tion. It is expected that ML methods with accurate model prediction capabilities measured
in MSE can be transformed to be used as an imputation method yielding low imputation
errors as well. Regarding statistical inference procedures in prediction settings, such as
the construction of valid prediction intervals, Random-Forest-based imputation schemes,
such as the missForest and the xgboost method, yielded competitive coverage rates and
interval lengths.

In addition, the MICE procedure with a Bayesian linear regression and normal as-
sumption was under the aspect of correct coverage rates and interval lengths competitive
as well. However, the method did not reveal low imputation error and overall good
model prediction.

Hence, based on our findings, the missForest and the xgboost method in combination
with Random-Forest-based prediction intervals using empirical quantiles resp. Out-of-Bag
estimated residual variances are competitive in three aspects: providing low imputation
errors measured with the NRMSE, yielding comparably low model prediction errors
measured by cross-validated MSE and providing comparably accurate prediction interval
coverage rates and narrow widths using Random-Forest-based intervals. Regarding the
latter, our results also indicate that these intervals are competitively applicable to a wide
range of imputation schemes.

In summary, data analysts that fully rely on prediction accuracy after imputing missing
data should focus on imputation schemes with comparably low NRMSE as a prior indicator,
especially when using tree-based ML methods. In addition, the same or more general
imputation methods should be used. However, when moving to predictive statistical
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inference in terms of accurate prediction coverage rates, the NRMSE is not a direct measure
indicating good coverage results.

Future research will focus on a theoretical exploration of the interaction between the
NRMSE and MSE and the effect of the considered imputation methods on uncertainty
estimators in multiple imputation scenarios. The aim is to discover the type of impact
several factors have on the interactions between both measures, such as the missing rate,
the missing structure and the used prediction method on more general imputation schemes
accounting for multiple imputation as well. Insights into their theoretical interaction will
provide additional information to the general issue that imputation is not only prediction.
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Appendix A. Supplementary Results

This work contains supplementary material amending additional simulation results
on the empirical and simulation based analysis. Due to its extensive length, supplemental
results are shifted to the arXiv version of this work and can be found in supplementary
materials of [44].

Appendix A.1. Descriptive Statistics

Regarding the empirical data used from the UCI Machine Learning Repository, we
provide summary statistics for all five datasets. The tables can be extracted in the following:

Table A1. Summary statistics of the Real Estate Dataset.

Real Estate Dataset

Variable Scales of Measurement Range Mean/Median Variance/IQR

Transaction Date ordinal between 2012 & 2013 −−/−− −−/−−
House Price per m2 continuous [7.6; 117.5] 37.98/38.45 185.14/18.9

House Age continuous [0; 43.8] 17.71/16.1 129.79/19.13

Distance to the nearest
MRT station

continuous [23.38; 6488.02] 1083.87/492.23 1,592,921/1164.95

Coordinate (latitude) continuous [24.93; 25.01] 24.97/24.97 0.00015/0.0144

Coordinate (longitude) continuous [121.47; 121.56] 121.53/121.54 0.00026/0.015

https://archive.ics.uci.edu/ml/index.php
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Table A2. Summary statistics of the Airfoil Dataset.

Airfoil Dataset

Variable Scales of Measurement Range Mean/Median Variance/IQR

Scaled Sound Pressure continuous [103.38; 140.99] 124.84/125.72 47.59/9.80

Frequency discrete—ordinal {200, 250, 315, 400, 500,
630, 800, 1000, 1250,
1600, 2000, 2500, 2500,
3150, 4000, 5000, 6300,
8000, 10, 000, 12, 500,
16, 000, 20, 000}

−−/1600 −−/−−

Angle of Attack discrete—ordinal {0, 1.5, 2, 2.7, 3, 3.3, 4, 4.2,
4.8, 5.3, 5.4, 6.7, 7.2, 7.2,
7.3, 8.4, 8.9, 9.5, 9.9, 11.2,
12.3, 12.6, 12.7, 15.4, 15.6,
17.4, 19.7, 22.2}

−−/5.4 −−/−−

Chord length discrete—ordinal {0.0254, 0.0508, 0.1016,
0.1524, 0.2286, 0.3048}

−−/0.1016 −−/−−

Free-stream velocity discrete—ordinal {31.7, 39.6, 55.5, 71.3} −−/39.6 −−/−−
Suction side displace-
ment thickness

continuous [0.000400682; 0.0584113] 0.01113988/
0.00495741

0.00017/0.01304

Table A3. Summary statistics of the Power Plant Dataset.

Power Plant Dataset

Variable Scales of Measurement Range Mean/Median Variance/IQR

Electric Energy Output continuous [420.26; 495.76] 454.37/451.55 291.28/28.68

Temperature continuous [1.91; 37.11] 19.65/20.35 55.54/12.21

Exhaust Vaccuum continuous [25.36; 81.56] 54.31/52.08 161.49/24.8

Ambient Pressure continuous [992.89; 1033.3] 1013.26/1012.94 35.27/8.16

Relative Humidity continuous [25.56; 100.16] 73.31/74.98 213.17/21.50

Table A4. Summary statistics of the Concrete Dataset.

Concrete Dataset

Variable Scales of Measurement Range Mean/Median Variance/IQR

Compressive Strength continuous [2.33; 82.6] 35.82/34.45 279.08/22.43

Cement Component continuous [102; 540] 281.17/272.9 10,921.58/157.625

Blast Furnance Slag Component continuous [0; 359.4] 73.90/22 7444.125/142.95

Fly Ash Component continuous [0; 200.1] 54.19/0 4095.62/118.3

Water Component continuous [121.8; 247] 181.57/185 456/27.1

Super- plasticizer continuous [0; 32.2] 6.205/6.4 35.67/10.2

Coarse Aggregate Component continuous [801; 1145] 972.92/968 6045.68/97.4

Fine Aggregate Component continuous [594; 992.6] 773.58/779.5 6428.19/93.05

Age in Days continuous [1; 365] 46.66/28 3990.44/49
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Table A5. Summary statistics of the QSAR Dataset, after removing nominal variables. These are
H-050, nN and C-040.

QSAR Dataset

Variable (Molecular Description) Scales of Measurement Range Mean/Median Variance/IQR

LC50 continuous [0.12; 10.05] 4.66/4.52 2.73/2.01

TPSA(Tot) continuous [0; 347.32] 48.47/40.46 2186.87/54.23

SAacc continuous [0; 571.95] 58.87/42.68 4646.68/66.49

MLOGP continuous [−6.45; 9.15] 2.31/2.27 3.03/2.16

RDCHI continuous [1; 6.46] 2.49/2.34 0.66/0.94

GATS1p continuous [0.28; 2.5] 1.05/1.02 0.163/0.53

Appendix A.2. More Detailed Results

We furthermore provide tables for Figures 1–7, covering both imputation error and
prediction coverage rates.

Appendix A.2.1. Imputation and Prediction Error

Table A6. Monte-Carlo mean of the NMRSE for the Airfoil Dataset summarizing the same informa-
tion as in Figure 1.

Mean Monte-Carlo NRMSE of the Airfoil Dataset

Imputation Method r = 10% r = 20% r = 30% r = 40% r = 50% r = 60% r = 80%

missForest 0.729 0.741 0.762 0.782 0.805 0.819 0.841

mice_pmm 1.028 1.032 1.039 1.043 1.054 1.065 1.093

mice_norm 1.046 1.044 1.049 1.059 1.063 1.075 1.098

mice_rf 1.040 1.042 1.054 1.058 1.068 1.072 1.080

gbm 0.724 0.740 0.759 0.789 0.813 0.830 0.869

xgboost 0.843 0.939 0.992 1.001 0.978 0.951 0.940

Table A7. Monte-Carlo mean of the MSE for the Airfoil Dataset summarizing the same information
as in Figure 2 Using the Random Forest prediction method.

Mean Monte-Carlo MSE of the Airfoil Dataset Using Random Forest

Prediction Method r = 10% r = 20% r = 30% r = 40% r = 50% r = 60% r = 80%

missForest 15.339 20.288 25.810 30.974 36.024 39.679 45.458

mice_pmm 19.722 26.118 32.024 37.191 41.433 44.384 47.487

mice_norm 17.799 24.411 30.271 35.412 39.534 42.735 58.684

mice_rf 20.029 26.667 32.581 37.550 41.662 44.541 47.972

gbm 14.881 19.576 24.870 30.091 35.295 39.387 45.498

xgboost 15.021 20.866 27.193 32.960 37.745 41.412 46.276

Fully observed 13.582
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Table A8. Monte-Carlo mean of the MSE for the Airfoil Dataset summarizing the same information
as in Figure 2 Using the XGBoost prediction method.

Mean Monte-Carlo MSE of the Airfoil Dataset Using XGBoost

Prediction Method r = 10% r = 20% r = 30% r = 40% r = 50% r = 60% r = 80%

missForest 10.342 19.538 29.366 49.054 46.262 64.705 61.934

mice_pmm 17.886 31.541 42.823 52.425 60.276 66.325 74.428

mice_norm 12.910 22.596 31.275 39.078 45.623 50.780 58.684

mice_rf 19.303 33.487 44.539 53.246 59.839 64.895 71.973

gbm 9.705 18.905 28.625 37.793 45.518 50.977 53.598

xgboost 10.383 20.300 31.008 46.056 48.145 60.292 59.109

Fully observed 1.691

Appendix A.2.2. Prediction Coverage Rates

Table A9. Triple of simulated prediction coverage rates averaged over the five different covariance
structures for the linear model and r = 10% missing rates. The triple covers the sample sizes
(n1; n2; n3) = (100, 500, 1000) using a significance level of α = 0.05.

Coverage Rate for the Linear Model with r = 10% Missings

Imputation Method PIn,empQ PIn,ResVar PIn,weighted

missForest (0.9398; 0.9544; 0.9542) (0.9538; 0.9574; 0.9564) (0.9402; 0.9370; 0.9340)

mice_pmm (0.9376; 0.9514; 0.9584) (0.9526; 0.9548; 0.9598) (0.9372; 0.9356; 0.9388)

mice_norm (0.9390; 0.9574; 0.9558) (0.9490; 0.9590; 0.9564) (0.9360; 0.9396; 0.9372)

mice_rf (0.9390; 0.9598; 0.9552) (0.9534; 0.9628; 0.9564) (0.9368; 0.9416; 0.9360)

gbm (0.9392; 0.9550; 0.9518) (0.9498; 0.9568; 0.9536) (0.9370; 0.9368; 0.9298)

xgboost (0.9356; 0.9486; 0.9560) (0.9524; 0.9504; 0.9556) (0.9356; 0.9298; 0.9358)

Fully observed (0.9370; 0.9468; 0.9522) (0.9492; 0.9522; 0.9526) (0.9362; 0.9288; 0.9312)

Table A10. Triple of simulated prediction coverage rates averaged over the five different covariance
structures for the linear model and r = 20% missing rates. The triple covers the sample sizes
(n1; n2; n3) = (100, 500, 1000) using a significance level of α = 0.05.

Coverage Rate for the Linear Model with r = 20% Missings

Imputation Method PIn,empQ PIn,ResVar PIn,weighted

missForest (0.9450; 0.9598; 0.9634) (0.9566; 0.9634; 0.9646) (0.9438; 0.9434; 0.9430)

mice_pmm (0.9468; 0.9586; 0.9618) (0.9596; 0.9614; 0.9622) (0.9450; 0.9448; 0.9410)

mice_norm (0.9440; 0.9626; 0.9604) (0.9562; 0.9646; 0.9616) (0.9436; 0.9516; 0.9472)

mice_rf (0.9470; 0.9628; 0.9628) (0.9606; 0.9664; 0.9644) (0.9480; 0.9474; 0.9452)

gbm (0.9418; 0.9570; 0.9566) (0.9574; 0.9598; 0.9582) (0.9440; 0.9414; 0.9372)

xgboost (0.9440; 0.9514; 0.9598) (0.9534; 0.9546; 0.9604) (0.9412; 0.9384; 0.9392)
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Table A11. Triple of simulated prediction coverage rates averaged over the five different covariance
structures for the linear model and r = 30% missing rates. The triple covers the sample sizes
(n1; n2; n3) = (100, 500, 1000) using a significance level of α = 0.05.

Coverage Rate for the Linear Model with r = 30% Missings

Imputation Method PIn,empQ PIn,ResVar PIn,weighted

missForest (0.9454; 0.9624; 0.9684) (0.9570; 0.9636; 0.9700) (0.9468; 0.9482; 0.9506)

mice_pmm (0.9478; 0.9586; 0.9648) (0.9570; 0.9628; 0.9660) (0.9444; 0.9460; 0.9478)

mice_norm (0.9460; 0.9634; 0.9654) (0.9552; 0.9672; 0.9648) (0.9448; 0.9514; 0.9490)

mice_rf (0.9430; 0.9646; 0.9666) (0.9588; 0.9674; 0.9674) (0.9474; 0.9508; 0.9506)

gbm (0.9482; 0.9562; 0.9622) (0.9602; 0.9568; 0.9634) (0.9472; 0.9406; 0.9440)

xgboost (0.9460; 0.9642; 0.9698) (0.9568; 0.9662; 0.9720) (0.9476; 0.9508; 0.9542)

Table A12. Triple of simulated prediction coverage rates averaged over the five different covariance
structures for the trigonometric model and r = 10% missing rates. The triple covers the sample sizes
(n1; n2; n3) = (100, 500, 1000) using a significance level of α = 0.05.

Coverage Rate for the Trigonometric Model with r = 10% Missings

Imputation Method PIn,empQ PIn,ResVar PIn,weighted

missForest (0.9348; 0.9492; 0.9466) (0.9522; 0.9546; 0.9528) (0.9402; 0.9416; 0.9352)

mice_pmm (0.9338; 0.9518; 0.9530) (0.9490; 0.9578; 0.9620) (0.9376; 0.9434; 0.9424)

mice_norm (0.9372; 0.9450; 0.9500) (0.9572; 0.9526; 0.9548) (0.9432; 0.9374; 0.9394)

mice_rf (0.9382; 0.9516; 0.9518) (0.9530; 0.9578; 0.9584) (0.9434; 0.9420; 0.9424)

gbm (0.9372; 0.9470; 0.9516) (0.9550; 0.9564; 0.9562) (0.9444; 0.9410; 0.9396)

xgboost (0.9350; 0.9492; 0.9494) (0.9534; 0.9556; 0.9562) (0.9430; 0.9402; 0.9396)

none (0.9364; 0.9504; 0.9490) (0.9528; 0.9570; 0.9538) (0.9448; 0.9442; 0.9372)

Table A13. Triple of simulated prediction coverage rates averaged over the five different covariance
structures for the trigonometric model and r = 20% missing rates. The triple covers the sample sizes
(n1; n2; n3) = (100, 500, 1000) using a significance level of α = 0.05.

Coverage Rate for the Trigonometric Model with r = 20% Missings

Imputation Method PIn,empQ PIn,ResVar PIn,weighted

missForest (0.9314; 0.9516; 0.9498) (0.9512; 0.9574; 0.9546) (0.9404; 0.9440; 0.9396)

mice_pmm (0.9362; 0.9476; 0.9554) (0.9518; 0.9558; 0.9620) (0.9420; 0.9416; 0.9446)

mice_norm (0.9300; 0.9542; 0.9528) (0.9510; 0.9594; 0.9590) (0.9414; 0.9464; 0.9440)

mice_rf (0.9404; 0.9488; 0.9542) 0.9572; 0.9558; 0.9606) (0.9456; 0.9412; 0.9462)

gbm (0.9346; 0.9466; 0.9520) 0.9526; 0.9526; 0.9582) (0.9408; 0.9372; 0.9396)

xgboost (0.9376; 0.9472; 0.9556) (0.9536; 0.9550; 0.9604) (0.9428; 0.9378; 0.9456)
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Table A14. Triple of simulated prediction coverage rates averaged over the five different covariance
structures for the trigonometric model and r = 30% missing rates. The triple covers the sample sizes
(n1; n2; n3) = (100, 500, 1000) using a significance level of α = 0.05.

Coverage Rate for the Trigonometric Model with r = 30% Missings

Imputation Method PIn,empQ PIn,ResVar PIn,weighted

missForest (0.9346; 0.9530; 0.9522) (0.9516; 0.9608; 0.9584) (0.9394; 0.9460; 0.9426)

mice_pmm (0.9354; 0.9506; 0.9552) (0.9538; 0.9582; 0.9604) (0.9428; 0.9448; 0.9460)

mice_norm (0.9364; 0.9540; 0.9558) (0.9554; 0.9618; 0.9614) (0.9464; 0.9480; 0.9464)

mice_rf (0.9394; 0.9524; 0.9558) (0.9582; 0.9598; 0.9604) (0.9480; 0.9440; 0.9434)

gbm (0.9266; 0.9518; 0.9520) (0.9490; 0.9598; 0.9588) (0.9366; 0.9442; 0.9420)

xgboost (0.9444; 0.9470; 0.9554) (0.9612; 0.9532; 0.9600) (0.9518; 0.9392; 0.9468)

Appendix A.2.3. Prediction Interval Length

Table A15. Triple of simulated prediction interval lengths averaged over the five different covariance
structures for the linear model and r = 10% missing rates. The triple covers the sample sizes
(n1; n2; n3) = (100, 500, 1000) using a significance level of α = 0.05.

Prediction Interval Length for the Linear Model with r = 10% Missings

Imputation Method PIn,empQ PIn,ResVar PIn,weighted

missForest (11.934; 11.622; 11.512) (12.421; 11.726; 11.556) (11.723; 10.827; 10.571)

mice_pmm (12.044; 11.794; 11.701) (12.540; 11.899; 11.744) (11.841; 10.998; 10.758)

mice_norm (12.048; 11.787; 11.677) (12.540; 11.884; 11.718) (11.841; 10.985; 10.733)

mice_rf (12.081; 11.831; 11.740) (12.576; 11.927; 11.775) (11.875; 11.025; 10.787)

gbm (11.938; 11.609; 11.479) (12.423; 11.713; 11.526) (11.725; 10.814; 10.542)

xgboost (11.951; 11.622; 11.506) (12.437; 11.733; 11.553) (11.739; 10.834; 10.568)

none (11.620; 11.261; 11.133) (12.097; 11.360; 11.184) (11.405; 10.467; 10.204)

Table A16. Triple of simulated prediction interval lengths averaged over the five different covariance
structures for the linear model and r = 20% missing rates. The triple covers the sample sizes
(n1; n2; n3) = (100, 500, 1000) using a significance level of α = 0.05.

Prediction Interval Length for the Linear Model with r = 20% Missings

Imputation Method PIn,empQ PIn,ResVar PIn,weighted

missForest (12.214; 11.953; 11.840) (12.701; 12.053; 11.886) (11.997; 11.149; 10.896)

mice_pmm (12.457; 12.315; 12.237) (12.969; 12.411; 12.276) (12.263; 11.503; 11.281)

mice_norm (12.420; 12.253; 12.160) (12.930; 12.344; 12.201) (12.226; 11.440; 11.210)

mice_rf (12.519; 12.347; 12.267) (13.017; 12.439; 12.297) (12.310; 11.529; 11.301)

gbm (12.283; 12.001; 11.857) (12.785; 12.099; 11.903) (12.079; 11.194; 10.913)

xgboost (12.269; 12.003; 11.875) (12.769; 12.102; 11.918) (12.063; 11.196; 10.927)
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Table A17. Triple of simulated prediction interval lengths averaged over the five different covariance
structures for the linear model and r = 30% missing rates. The triple covers the sample sizes
(n1; n2; n3) = (100, 500, 1000) using a significance level of α = 0.05.

Prediction Interval Length for the Linear Model with r = 30% Missings

Imputation Method PIn,empQ PIn,ResVar PIn,weighted

missForest (12.523; 12.323; 12.219) (13.035; 12.419; 12.264) (12.325; 11.507; 11.267)

mice_pmm (12.800; 12.745; 12.690) (13.335; 12.841; 12.726) (12.622; 11.926; 11.725)

mice_norm (12.784; 12.669; 12.598) (13.298; 12.759; 12.628) (12.587; 11.849; 11.633)

mice_rf (12.899; 12.826; 12.756) (13.434; 12.922; 12.793) (12.720; 12.004; 11.789)

gbm (12.646; 12.421; 12.273) (13.166; 12.515; 12.312) (12.453; 11.600; 11.313)

xgboost (12.648; 12.428; 12.310) (13.171; 12.526; 12.348) (12.456; 11.610; 11.348)

Table A18. Triple of simulated prediction interval lengths averaged over the five different covariance
structures for the trigonometric model and r = 10% missing rates. The triple covers the sample sizes
(n1; n2; n3) = (100, 500, 1000) using a significance level of α = 0.05.

Prediction Interval Length for the Trigonometric Model with r = 10% Missings

Imputation Method PIn,empQ PIn,ResVar PIn,weighted

missForest (7.514; 7.436; 7.349) (7.960; 7.636; 7.501) (7.630; 7.213; 7.039)

mice_pmm (7.515; 7.451; 7.373) (7.964; 7.654; 7.530) (7.635; 7.231; 7.067)

mice_norm (7.520; 7.448; 7.372) (7.969; 7.654; 7.530) (7.640; 7.231; 7.067)

mice_rf (7.535; 7.463; 7.386) (7.983; 7.668; 7.545) (7.653; 7.243; 7.081)

gbm (7.517; 7.438; 7.350) (7.965; 7.639; 7.502) (7.635; 7.216; 7.041)

xgboost (7.512; 7.436; 7.347) (7.960; 7.638; 7.502) (7.631; 7.215; 7.040)

none (7.488; 7.372; 7.253) (7.934; 7.566; 7.397) (7.606; 7.146; 6.941)

Table A19. Triple of simulated prediction interval lengths averaged over the five different covariance
structures for the trigonometric model and r = 20% missing rates. The triple covers the sample sizes
(n1; n2; n3) = (100, 500, 1000) using a significance level of α = 0.05.

Prediction Interval Length for the Trigonometric Model with r = 20% Missings

Imputation Method PIn,empQ PIn,ResVar PIn,weighted

missForest (7.543; 7.493; 7.427) (7.995; 7.700; 7.590) (7.664; 7.274; 7.123)

mice_pmm (7.560; 7.516; 7.463) (8.007; 7.725; 7.634) (7.676; 7.298; 7.165)

mice_norm (7.545; 7.514; 7.458) (8.002; 7.725; 7.629) (7.671; 7.299; 7.162)

mice_rf (7.562; 7.529; 7.474) (8.019; 7.742; 7.643) (7.687; 7.314; 7.174)

gbm (7.550; 7.492; 7.423) (8.000; 7.700; 7.588) (7.669; 7.274; 7.122)

xgboost (7.555; 7.500; 7.432) (8.006; 7.708; 7.596) (7.674; 7.281; 7.129)
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Table A20. Triple of simulated prediction interval lengths averaged over the five different covariance
structures for the trigonometric model and r = 30% missing rates. The triple covers the sample sizes
(n1; n2; n3) = (100, 500, 1000) using a significance level of α = 0.05.

Prediction Interval Length for the Trigonometric Model with r = 30% Missings

Imputation Method PIn,empQ PIn,ResVar PIn,weighted

missForest (7.581; 7.557; 7.503) (8.036; 7.769; 7.676) (7.703; 7.338; 7.204)

mice_pmm (7.577; 7.572; 7.526) (8.036; 7.787; 7.710) (7.704; 7.357; 7.237)

mice_norm (7.578; 7.567; 7.524) (8.036; 7.784; 7.707) (7.704; 7.355; 7.236)

mice_rf (7.597; 7.593; 7.548) (8.061; 7.809; 7.730) (7.728; 7.378; 7.256)

gbm (7.577; 7.552; 7.495) (8.035; 7.764; 7.667) (7.702; 7.334; 7.196)

xgboost (7.595; 7.561; 7.508) (8.047; 7.774; 7.679) (7.714; 7.344; 7.207)
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