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Abstract: How the complexity or irregularity of heart rate variability (HRV) changes across different
sleep stages and the importance of these features in sleep staging are not fully understood. This study
aimed to investigate the complexity or irregularity of the RR interval time series in different sleep
stages and explore their values in sleep staging. We performed approximate entropy (ApEn), sample
entropy (SampEn), fuzzy entropy (FuzzyEn), distribution entropy (DistEn), conditional entropy
(CE), and permutation entropy (PermEn) analyses on RR interval time series extracted from epochs
that were constructed based on two methods: (1) 270-s epoch length and (2) 300-s epoch length. To
test whether adding the entropy measures can improve the accuracy of sleep staging using linear
HRV indices, XGBoost was used to examine the abilities to differentiate among: (i) 5 classes [Wake
(W), non-rapid-eye-movement (NREM), which can be divide into 3 sub-stages: stage N1, stage N2,
and stage N3, and rapid-eye-movement (REM)]; (ii) 4 classes [W, light sleep (combined N1 and
N2), deep sleep (N3), and REM]; and (iii) 3 classes: (W, NREM, and REM). SampEn, FuzzyEn, and
CE significantly increased from W to N3 and decreased in REM. DistEn increased from W to N1,
decreased in N2, and further decreased in N3; it increased in REM. The average accuracy of the three
tasks using linear and entropy features were 42.1%, 59.1%, and 60.8%, respectively, based on 270-s
epoch length; all were significantly lower than the performance based on 300-s epoch length (i.e.,
54.3%, 63.1%, and 67.5%, respectively). Adding entropy measures to the XGBoost model of linear
parameters did not significantly improve the classification performance. However, entropy measures,
especially PermEn, DistEn, and FuzzyEn, demonstrated greater importance than most of the linear
parameters in the XGBoost model.300-s270-s.

Keywords: entropy; heart rate variability (HRV); complexity; sleep stage

1. Introduction

The autonomic nervous system (ANS) plays an important role in regulating sleep
cycles [1–4]. There are mainly two types of sleep: non-rapid eye movement (NREM) sleep
and rapid eye movement (REM) sleep [5]. NREM can be further divided into three stages,
i.e., stage 1, 2, and 3, which are usually named N1, N2, and N3, respectively. The four sleep
stages (i.e., N1, N2, N3, and REM) are cycled through multiple times smoothly within a
regular night of sleep. The parasympathetic (vagus) nerve has been found to be important
in organizing sleep and wakefulness [6]. During NREM sleep, parasympathetic activity
predominates, and the heart rate decreases. In contrast, sympathetic nerve activity results in
heart rate acceleration in REM sleep [1]. Therefore, understanding the changes of the ANS
in different stages of sleep is essential for accurately assessing an individual’s sleep quality.

Heart rate variability (HRV), the tiny variation of RR intervals from an electrocar-
diogram (ECG), has been widely applied as a non-invasive method to evaluate ANS
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modulation [7,8]. Danguolė et al. demonstrated that the heart rate decreased during sleep
stages N1, N2, and N3 and increased in REM sleep [9]. By using spectral components
of HRV, Toscani et al. showed that the power of the high-frequency (HF) component of
HRV significantly increased in NREM [10] and was particularly elevated in N3 [11]. The
ratio of low-frequency and HF (LF/HF) reduced in NREM [12,13]. In addition, the total
power of the HRV spectrum and the power of the very low frequency component were
both significantly higher in REM sleep [14].

Physiological systems are complex, nonlinear, and nonstationary partially due to
the mutual coupling between multiple subsystems [15,16]. The cardiovascular control
system also has complex dynamical behavior and nonlinear characteristics. The nonlinear
and nonstationary information hidden in the ECG signals and RR interval time series
cannot be obtained by traditional linear methods [17]. Nonlinear measures may provide
valuable insights in addition to the time- and frequency-domain features by evaluating the
complexity or irregularity of time series [18]. Among others, entropy indices are commonly
used, such as approximate entropy (ApEn) [19], sample entropy (SampEn) [20], fuzzy
entropy (FuzzyEn) [21], conditional entropy (CE) [22], distribution entropy (DistEn) [18],
and permutation entropy (PermEn) [23]. In prior studies, the SampEn of HRV in the REM
stage was shown to be similar to that during wakefulness, whereas it was increased during
deep sleep [24]. Based on a multiscale analysis framework using entropy, it was shown that
the complexity of HRV during wakefulness and REM was lower than that in NREM [25]. In
another study, ApEn decreased from W to NREM and decreased further in REM, whereas
SampEn decreased from W to N2, then increased at N3 and decreased again in REM [26].

In recent years, HRV measures have also been combined with computer learning
models for sleep staging [27–32]. In these studies, mainly linear HRV features were used as
inputs. Moreover, the classification was usually based on a 300-s epoch, and only the 300-s
windows that covered a single sleep stage were used; the 300-s windows that involved more
than one sleep stage were excluded [31]. In other words, many epochs would be removed
because they failed to meet the criterion, and the chosen epochs were discontinuous.

The complexity of HRV in different sleep stages is not fully understood. It is yet to
be determined how HRV complexity changes with 30-s as the step size, an approach that
is recommended in sleep staging by the American Academy of Sleep Medicine (AASM).
In the current study, we sought to: (1) study the complexity of HRV in different sleep
stages by entropy algorithms; (2) investigate whether adding entropy features to models
including only linear measures can improve the accuracy of sleep staging; and (3) compare
the performance of two difference analysis schemes using respectively a 300-s epoch length
and a 270-s epoch length270-s300-s. Based on a prior study [24], the RR interval time series
at NREM has the highest SampEn (i.e., highest irregularity or lowest complexity). We
thus hypothesized that the complexity of heartbeats during NREM sleep is lower than that
during W and REM. We further hypothesized that during N3 sleep, the complexity of RR
interval time series would be the lowest (i.e., the irregularity would be the highest). In
addition, we also expected to observe better performance in general using the 300-s epoch
approach since the structure of the 300-s epoch should be relatively consistent.

2. Materials and Methods
2.1. Materials

The MIT-BIH Polysomnographic Database was used, which is publicly available from
the PhysioBank Archives [33,34]. It consists of 18 recordings of multiple physiologic signals
during sleep collected from 16 male subjects (age: 32–56, weight: 89–152 kg). The database
contains over 80 h of polysomnographic recordings with sleep stages scored already. All
recordings were digitized at a sampling frequency of 250 Hz and the ECG signals were
annotated beat-by-beat. Each recording comes from a separate participant except that
the files “slp01a” and “slp01b”, and “slp02a” and “slp02b” were collected from the same
person. “slp01a” and “slp01b” were merged, as were “slp02a” and “slp02b”. Therefore, the
data used in this paper was 16 independent recordings.
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The RR intervals to be analyzed were constructed with the annotated R waves in this
database. The time series was constructed as follows.

• For 270-s epoch length:

Nine consecutive sub-epochs, each of 30-s in length, were concatenated to make one
epoch of 270-s. The sleep stage of the 270-s epoch was set to the same as the middle 30-s
sub-epoch270-s. The window slid forward in a 30-s time step to construct the next 270-s
epoch with an overlap of 240-s with the preceding window. The method is summarized in
Figure 1a.

• For 300-s epoch length:

A 300-s sliding window that moved forward in steps of 30-s with an overlap of 270-s
between consecutive windows was used. The sleep stage of the current epoch was defined
based on which sleep stage dominated the ten 30-s sub-epochs300-s, i.e., if more than 8 of
the ten 30-s sub-epochs belonged to the same stage, the 300-s epoch was labeled with this
specific stage. Otherwise, the 300-s epoch was excluded from the analysis. The method is
summarized in Figure 1b.
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Figure 1. The schematic of 270-s and 300-s epoch construction. Each small square represents a 30-s
epoch, and the content in the square represents the sleep stage annotation. The sub-epochs painted in
orange constitute the currently constructed epoch. (a) A window of 270-s in length slides forward
with 30-s as the step length. The red box represents the middle 30-s sub-epoch, which represents the
annotation of the current 270-s epoch. (b) A window of 300-s in length slides forward with 30-s as the
step length. The red boxes indicate the current 300-s epoch was reserved, while purple boxes indicate
that it has been excluded. The RR interval series corresponding to the current 270-s or 300-s epoch is
the time series to be analyzed.
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Every RR interval with a length of 270-s or 300-s was preprocessed to eliminate the
effect of anomalous intervals on entropy analysis based on the algorithm used in a previous
study [34]. Firstly, if an RR interval was greater than the median value of five surrounding
RR intervals, it would be identified as a spike. The spikes were corrected by an impulse
rejection filter [35]. Secondly, any RR intervals that were greater or less than the global
average ± three standard deviations (moving standard deviations with window length
100 RR intervals) were removed [36].

2.2. Entropy Analysis of HRV Time Series

An RR time series x = x(i), 1 ≤ i ≤ N, can be reconstructed by:

u(m)(i) = {x(i), x(i + τ), . . . , x(i + (m− 1)τ)}, (1)

with the embedding dimension, m, and time delay parameter, τ, where 1 ≤ i ≤ N −mτ.
The Chebyshev distance between two vectors in the stated space is usually used to

quantify whether the two vectors are similar. The distance can be calculated by:

d[um(i), um(j)] = max(|um(i)− um(j)|), 1 ≤ i, j ≤ N −mτ, (2)

(1) Approximate entropy (ApEn).
If we use N(m)

i (r) to represent the number of pairs of vectors um(i) and um(j) that

meet d[um(i), um(j)] ≤ r, then its probability will be C(m)
i (r) = N(m)

i (r)
N−mτ . The ApEn of the

time series x can be calculated by [37]:

ApEn(m, τ, r) = Φ(m)(r)−Φ(m+1)(r), (3)

where Φ(m)(r) = 1
N−mτ ΣN−mτ

i=1 lnC(m)
i (r) and Φ(m+1)(r) is the counterpart of Φ(m)(r) when

the embedding dimension is equal to m + 1.
(2) Sample entropy (SampEn).

Define A(m)
i (r) =

N(m)
i (r)

N−mτ−1 as the percentage of the number of pairs that meet
{d[um(i), um(j)] < r, 1 ≤ i, j ≤ N −mτ, j 6= i}. The SampEn can be calculated by [20]:

SampEn(m, τ, r) = −ln
Ψ(m+1)(r)

Ψ(m)(r)
, (4)

where Ψ(m)(r) = 1
N−mτ ΣN−mτ

i=1 A(m)
i (r) (i.e., the average of A(m)

i (r) over 1 ≤ i ≤ N −mτ),
and Ψ(m+1)(r) is the counterpart of Ψ(m)(r) when the embedding dimension is equal to
m + 1.

(3) Fuzzy entropy (FuzzyEn).
FuzzyEn replaces A(m)

i (r) (i.e., the percentage of the vector pairs that meet
d[um(i), um(j)] < r) with the average degree of membership. Specifically, for a given fuzzy
membership function e−ln(2)(x/r)2

, A(m)
i = ΣN−mτ

j=1,j 6=ie
ln(2)(d/r)2

is used [38,39]. FuzzyEn can

be obtained by plugging A(m)
i (r) into the calculation of Ψ(m)(r) and Ψ(m+1)(r) in SampEn.

(4) Distribution entropy (DistEn).
The DistEn calculates the Shannon entropy of all distances to take full advantage of the

inter-vector distances {d[um(i), um(j)], 1 ≤ r, j ≤ N −mτ}. In DistEn, a histogram-based
approach is used to estimate the empirical probability density function of the distance
matrix (with the main diagonal elements excluded). If we denote the probability of each
bin by {pt, t = 1, 2, . . . , B} wherein B is the bin number in the histogram, then DistEn can
be defined by the following formula [18]:

DistEn(m, τ, B) = − 1
log2(B) ∑B

t=1 ptlog2(pt) (5)
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(5) Conditional entropy (CE).
The full range of x is coarse-grained with a fixed number of ξ values marked from

0 to ξ − 1. It renders x(i) sequences of symbols x̂(i), i = 1, 2, . . . , N. Here, ξ represents the
quantization level. um(i) and um(j) are defined by:

um(i) = [x̂(i), x̂(i− τ), . . . x̂(i− (m− 1)τ)]
um+1(j) = [x̂(j), um(j− τ)]

, (6)

respectively, where (m− 1)τ + 1 ≤ i, j ≤ N. The vectors um(i) and um(j) can be rewritten
in decimal format as:

{um(i)}10 = x̂(i)ξm−1 + x̂(i− τ)ξm−2 + . . . + x̂(i− (m− 1)τ)ξ0 = wi
{um+1(i)}10 = x̂(j)ξm + {um(j− τ)}10 = zi

, (7)

thus rendering um(i) a series of integer numbers, wi, ranging from zero to (ξ − 1)∑m−1
i=1 ξ i

and um(j) a series of integer numbers, zj, ranging from zero to (ξ − 1)∑m
j=1 ξ j. CE can be

computed by [38,40]:

CE(m, τ) = SE
(
zj
)
− SE(wi) + perc(m)SE(1), (8)

where SE(·) calculates the Shannon entropy of a specific distribution; perc(m) is the per-
centage of wi pattens found only once in the data set and SE(1) means the Shannon entropy
of the quantized series x̂(i).

(6) Permutation entropy (PermEn).
PermEn evaluates the irregularity based on a comparison of neighboring values in the

state space. Each vector in the state space is re-arranged in ascending order to produce a
permutation vector π. The frequency of each element πj, 1 ≤ j ≤ m! is denoted as pj(m, τ).
Then, the PermEn can be calculated by [23,38]:

PermEn(m, τ) = − 1
log2m! ∑m!

j=1 pj(m, τ)log2
[
pj(m, τ)

]
(9)

For ApEn [20], SampEn [20], and FuzzyEn [39], the following parameters were used:
m = 2, r = 0.2σ, wherein σ was the standard deviation of the time series, and τ = 1. The
parameters were set at m = 2, τ = 1, and B = 64 for DistEn [41]; m = 2, τ = 1, and ξ = 6
for CE [40]; and m = 3 for PermEn [42]. The ApEn, SampEn, FuzzyEn, PermEn, and CE
are direct measures of the irregularity, whereas the DistEn is sensitive to the change of
complexity of time series [18]. The preprocessed RR intervals were used to calculate the six
entropy measures.

2.3. Linear Measures of HRV Time Series

Many of the traditional methods commonly used in HRV studies are also used to
investigate sleep staging. They are the mean of RR intervals (mRR), standard deviation
of RR intervals (SDNN), root mean square of successive RR interval differences (RMSSD),
standard deviation of successive RR interval differences (SDSD), percentage of successive
RR intervals that differ by more than 50-ms (pNN50), percentage of successive RR intervals
that differ by more than 30-ms (pNN30), Poincaré plot standard deviation perpendicular to

the line of identity (SD1, SD1 =
√

VAR RRi−RRi+1√
2

, where VAR is the variance), Poincaré

plot standard deviation along the line of identity (SD2, SD2 =
√

VAR RRi+RRi+1√
2

), ratio

of the SD1-to-SD2 ratio (SD1/SD2 = SD1
SD2 ), area of the ellipse that represents the total

HRV (S = π × SD1 × SD2), total power (TP), power of the very low frequency band
0.0033–0.04 Hz (VLF), power of the low-frequency band 0.04–0.15 Hz (LF), power of the
high-frequency band 0.15–0.4 Hz (HF), normalized low frequency (nLF), normalized high
frequency (nHF), and ratio of LF-to-HF power (LF/HF) [43]. Using the preprocessed RR
intervals, the linear measures were computed.
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2.4. Statistical Analysis

Almost everyone’s sleep data contains five sleep stages, which are W, N1, N2, N3,
and REM, and a sleep stage with the same label can also correspond to multiple people.
Therefore, the values of different entropies belonging to the same sleep stage were averaged
within each participant. Linear mixed-effect models were performed to examine the
differences in the six entropy measures across different sleep stages. The mixed model is
a generalized model of linear regression by allowing random effects with respect to each
subject. We treated subject as a random effect to allow a subject-specific intercept. The
sleep stage was used as a fixed effect (reference level: W). The statistical significance was
accepted at an alpha level of 0.05. All statistical analyses were performed using the Matlab
software (Ver. R2020a, The MathWorks Inc., Natick, MA, USA) with the fitlme function.

2.5. Sleep Staging

The XGBoost, a classification tool commonly used in sleep studies [44,45], was selected
as the classifier for sleep staging. We developed three distinct XGBoost classifiers to
evaluate the performance of the six entropy measures for three different classification tasks,
respectively, as shown below:

(1) a three-class classification task to differentiate among W, NREM, and REM;
(2) a four-class classification task to differentiate among W, light sleep (LS, combined N1

and N2), deep sleep (DS, or N3), and REM;
(3) a five-class classification task to differentiate among W, N1, N2, N3, and REM. Differ-

ent models were trained for each classification task and then tested.

The classification accuracy (Acc) and Cohen’s kappa (κ) were used to evaluate the
performance of sleep staging using the six entropy measures as well as the commonly used
linear indices. Acc is defined as Acc = n/N, where n is the number of correct stages and N
is the number of all annotations of the test set. The Cohen’s kappa (κ) can be computed by

κ = (po − pe)/(1− pe) (10)

where po is the overall classification accuracy that is equal to Acc; pe = ∑
q
k=1 pk+p+k, where

pk+ and p+k indicate the percentage of data classified into the k category and the percentage
of data with the true label, respectively.

A total of 23 features were used for training, including 6 entropy measures as well
as the 17 commonly used linear methods. An 8-fold cross validation was performed with
14 people for training, and the remaining 2 were used for testing. During the training
process, in every iteration of the eight-fold cross validation, we set aside two people
from the training set for model validation and hyperparameter optimization. Model
hyperparameters, i.e., the max depth, learning rate, subsample, subsample ratio of columns
when constructing each tree, and regularization coefficients, were tuned using a Bayesian
optimizer [46]. We used an early stopping strategy to avoid overfitting, i.e., the training
would stop when the performance on validation set was not improved for 20 consecutive
rounds. We also applied a class weight for controlling the balance of positive and negative
weights during training to handle class imbalances. In order to explore what features
contributed most and assess whether entropy-based analyses were important for each
classification task, we additionally used a model explanation method called the SHapley
Additive exPlanation (SHAP) value to explain the XGBoost models and to quantify the
importance (i.e., the weight or contribution) of each feature on each sleep stage classification.
SHAP is a game-theoretic approach that provides a theoretically justified method for the
allocation of the coalition output among the members of the coalition using the classic
Shapley values [47]. The exact Shapley values were computed by estimating the change in
the expected prediction output of the model when specific input features were missing.
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3. Results
3.1. The Results of Entropy Indices Using 270-s Epochs

The irregularity of RR interval time series showed a tendency of increasing from W to
sleep and with the depth of sleep. Specifically, CE was higher in N1 than in W (Figure 2e;
p < 0.01); SampEn, FuzzyEn, and CE were all higher in N2 than those in N1 (Figure 2b,c,e;
all p < 0.05); SampEn and FuzzyEn were both higher in N3 than those in N2 (Figure 2b,c;
both p < 0.001). The irregularity decreased from N3 to REM, as suggested by ApEn, SampEn,
FuzzyEn, and CE (Figure 2a–c,e; all p < 0.01). The complexity of the RR intervals, as shown
by DistEn, was the lowest during N3 (Figure 2d; compared with other stages: all p < 0.01).
Note that PermEn did not show significant differences, except that it was higher in REM
than in W or N1 (Figure 2f; p < 0.05).
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Figure 2. Entropy results of the RR intervals computed based on 270-s epochs. (a) ApEn. (b) SampEn.
(c) FuzzyEn. (d) DistEn. (e) CE. (f) PermEn. The error bars indicate the standard error in each stage.
*: W vs. N1, N2, N3, and REM; †: N1 vs. N2, N3, and REM; §: N2 vs. N3 and REM; ¶: N3 vs. REM.
The number of symbols indicates the degree of significant difference, e.g., *, †: p < 0.05; **, ††, §§, ¶¶:
p < 0.01; ***, †††, §§§, ¶¶¶: p < 0.0001.

3.2. The Results of Entropy Indices Using 300-s Epochs

Similarly, the irregularity of RR interval time series also demonstrated a tendency of
increasing from W to sleep and with the depth of sleep. Specifically, CE was higher in N1
than in W (Figure 3e; p < 0.05); SampEn and FuzzyEn were both higher in N2 than in N1
(Figure 3b,c; p < 0.01). The irregularity decreased from N3 to REM, as suggested by ApEn,
SampEn, FuzzyEn, and CE (Figure 3a–c,e; all p < 0.01). The complexity of the RR intervals,
as shown by DistEn, was increased from W to N1, decreased to N2, and was lowest during
N3 (Figure 3d; all p < 0.05). PermEn still did not demonstrate clear differences, except that
it was higher in N1, N2, and REM than in W (Figure 3f; p < 0.05).
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3.3. Sleep Staging

Based on epochs of 270-s, the accuracies of the models with entropy features improved
by 0.9%, 3%, and 1.7% for 5 classes, 4 classes, and 3 classes, respectively, as compared with
those from the models without entropy features. Based on epochs of 300-s, there were also
some improvements in terms of accuracy, i.e., the accuracy increased by 0.4%, 1.5%, and
2%, respectively, for the three classification tasks. The Cohen’s kappa, κ, also had a certain
degree of improvements, as shown in Table 1, especially for the 4- and 3-class classification
tasks. The classification performances of 5 classes and 3 classes using 300-s epochs were
much better than those using 270-s epochs. For the 4-class classification, the Cohen’s kappa,
κ, of using 300-s epochs was significantly higher than that of using 270-s epochs, whereas
the Acc did not show any significant difference between them.

Table 1. Performance of the three classification tasks using XGBoost models based on 270-s and 300-s
epochs using linear HRV features + entropy features and using only linear HRV features.

Classes

Acc (%) κ (a.u.)

Only Linear HRV
Features

Linear HRV Features +
Entropy Features

Only Linear HRV
Features

Linear HRV Features +
Entropy Features

270-s
5 41.2 ± 6.6 42.1 ± 7.4 0.17 ± 0.08 0.17 ± 0.10
4 56.1 ± 9.1 59.1 ± 8.9 0.22 ± 0.15 0.25 ± 0.16
3 59.1 ± 8.2 60.8 ± 9.5 0.23 ± 0.15 0.27 ± 0.17

300-s
5 53.9 ± 13.5 * 54.3 ± 14.3 * 0.29 ± 0.17 * 0.29 ± 0.19 *
4 61.4 ± 12.1 63.1 ± 13.3 0.35 ± 0.20 * 0.36 ± 0.24 *
3 65.5 ± 9.9 67.5 ± 11.6 * 0.37 ± 0.19 * 0.40 ± 0.21 *

Data are expressed as means ± standard deviations. Acc: accuracy; κ: Cohen’s kappa. *: p < 0.05 for the
comparison between performance using 300-s epochs and 270-s epochs.
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The importance of each feature is shown in Figure 4. Based on epochs of 270-s, PermEn,
DistEn, and FuzzyEn played important roles in all three classification tasks, especially in
distinguishing REM and N3 from other stages. Among the six entropy measures, ApEn,
SampEn, and CE had the least importance in all three classification tasks. The ApEn
and SampEn performed better when using 300-s epochs, whereas PermEn, DistEn, and
FuzzyEn still showed greater importance, and the CE still indicated the least importance.
By using 300-s epochs, PermEn and FuzzyEn had a greater ability to differentiate REM,
and DistEn was better at distinguishing N1 from other stages in the 5-class classification
and at distinguishing N3 and REM from other stages for the 4- and 3-class classification.
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Figure 4. Importance of input features on sleep stage classification. Upper panels: results using 270-s
epochs. Lower panels: results using 300-s epochs. Left panels (a1,a2) five-class classification. Middle
panels (b1,b2) four-class classification. Right panels (c1,c2) three-class classification. The abscissa
value corresponding to each feature is the weight that the feature plays in the classification.

4. Discussion

Entropy is a tool to quantify the complexity or irregularity of times series. It has
been widely used in analyzing cardiac dynamics [18,39,48,49]. Although some studies
have conducted comparisons of entropy indices of RR interval time series in certain sleep
stages [24,25], it is not well-studied how they change throughout a whole night’s sleep,
which may be helpful for sleep staging using ECG signals. In this paper, six entropy
measures, specifically, ApEn, SampEn, FuzzyEn, DistEn, CE, and PermEn, were computed
for RR interval time series based on sliding windows of 270-s or 300-s length. In addition,
how the entropy measures performed in sleep staging compared to traditional linear time-
and frequency-domain measures was examined using XGBoost models.

Based on the results from both 270-s and 300-s epochs, SampEn, FuzzyEn, or CE
significantly increased from W to N3 and decreased in REM, whereas DistEn first increased
from W to N1, decreased in N2, decreased further in N3, and, finally, increased in REM.
ApEn, SampEn, FuzzyEn, CE, and PermEn showed that the irregularity of the RR intervals
increased with the depth of sleep, and it decreased in the REM stage. However, DistEn
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demonstrated an opposite changing direction. The reason is two-fold: (1) irregularity
as assessed by ApEn-based algorithms (including SampEn, FuzzyEn, and CE) is not
equivalent to complexity. It is believed that complex systems are neither too random
nor too regular [50–52] but are at a critical state of ‘complex’. The irregularity of the system
increases with the degree of randomness whereas complexity does not. (2) DistEn is shown
to assess the complexity of the time series based on prior simulation studies [18,50]. There
has been a long debate in what exactly complexity is in the field. In general, there is not
yet a single definition of complexity; the irregularity is believed to be one aspect of it.
In the simulation study of DistEn, previous researchers demonstrated that its changing
direction was the same to the theoretical change of the complexity of the synthetic data,
and a potential explanation is that DistEn fully quantitates the distribution property of
the inter-vector distances in the state space [18,53]. Therefore, although DistEn showed a
different changing direction compared with the other five entropy measures, they were
not contradictory to each other. In addition, there are studies to quantify complexity
from another perspective, for example, multifractality [54]. Multifractality has a different
theoretical basis, which may also have important implications for studying the dynamic
characteristics of RR interval time series during sleep. Future studies are planned to further
investigate this.

Our results are also in line with the studies of Togo et al. [55] and Bunde et al. [56],
which demonstrated a perturbed fractal organization of HRV during NREM sleep. In the
current study, significant differences were indicated between W and REM by SampEn,
FuzzyEn (decreased), which is consistent with previous studies [26,57], and by PermEn
(increased), which has also been reported before [24]. By studying the continuous transition
from REM to W, a previous study has also shown that SampEn was lower in W than in
REM in sleep apnea patients [58]. Therefore, it is likely that the complexity of REM just
before waking is different from other REM stages. Besides, there may also be difference
between tonic and phasic REMs, which is worthy of further research.

The accuracy and the Cohen’s kappa, κ, for the 3-class classification task with epochs
of 300-s were significantly higher than those with 270-s epochs, whereas the accuracy for
the 4-class classification task showed no statistical significance between them. Apparently,
due to the “messy” epochs being excluded, the RR intervals with the length of 300-s almost
belonged to the same sleep stage. However, this stringent exclusion criterion may result in
low real-time performance in sleep staging. It is even possible that no data can be used for
a fairly long period of time, especially for people with unstable sleep structures or sleep
disorders. How to balance the performance and the need for real-time feedback should be
an important research topic in the future.

Table 2 summarizes the performance reported in other related works. Unfortunately,
the performance of our current study is the worst in all three classification tasks. One
apparent reason is that different databases were used. The results in this article may be
affected by the potential inclusion of people with sleep disorders, such as sleep apnea.
The features and classification methods may also lead to the differences. For instance,
Li et al. [31] used cardiorespiratory coupling and a convolutional neural network for sleep
staging, and they achieved accuracies of 75.4% and 65.9%, respectively on two databases.
Mustafa et al. [30] achieved an accuracy of 77.0% using 132 HRV features based on a long
short-term memory neural network model. The third reason may be that we did not try
to optimize the training and input features. By comparison, Surantha et al. [59] selected
different features for every sample for staging that achieved an accuracy of 71.52%. This
is, however, difficult to implement in practical applications. Ebrahimi et al. [60] did not
consider sleep stage N1 in training due to the lack of available epochs. Wei et al. [61] used
a 10-fold cross validation approach by epochs rather than by recordings, which had overfit
issues if epochs from the same subject appeared in both training and testing sets.
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Table 2. Comparison between previous studies and the current study.

Work Classes Acc (%)

Yasue et al. [28] 5 66
Our work 5 54.3

Li et al. [31] 4 75.4/65.9 a

Mustafa et al. [30] 4 77
Surantha et al. [59] 4 71.52
Ebrahimi et al. [60] 4 89.32

Tanida et al. [62] 4 56
Our work 4 63.1

Wei et al. [61] 3 77
Li et al. [31] 3 81.6/75.3 a

Yücelbaş et al. [63] 3 76.79
Our work 3 67.5

a results were achieved using two databases.

It should be noted that the aim of the current study was not to improve the accuracy
of sleep staging or to propose a sleep staging algorithm that works better than existing
approaches. We aimed to conduct a systematic study on the complexity of HRV of different
sleep stages and at the same time explore the importance of entropy measures in sleep
staging. The results showed that there were significant differences in the irregularity or
complexity of the RR interval in different sleep stages (Figures 2 and 3). The results in
Figure 4 showed that the entropy features ranked relatively high in the feature importance
sequence for sleep staging.

Although the addition of the entropy measure did not significantly improve the
classification effect, the results still suggested that entropy played an important role in sleep
staging, especially PermEn, DistEn, and FuzzyEn, as demonstrated by the importance of
these features in all three classification tasks. It could be that one or several of the time-
and frequency-domain measures have a certain degree of correlation with the entropy
metrics. Still, these results indicate that it is possible to obtain comparable results by using
only entropy or using just the first few important indicators. These observations may help
optimize the feature selection or reduce the dimension of input features for future studies.
Regarding the classification with 3, 4, and 5 classes, the order of the importance of the
features of 270-s and 300-s was different, and the importance of each feature to the same
sleep stage was also different. This may be caused by mixed stages in the 270-s epochs but
not in 300-s epochs because every feature would be affected by the information contained
in the analyzed RR interval time series. Besides, the algorithm of each entropy measure is
also subject to further improvement. For example, Liu et al. [64] and Ji et al. [65] improved
fuzzy entropy that may better account for the global similarity of vectors and the tolerance
of the degree of similarity. We will also test their performance on sleep staging in future.

Limitations of this study include: (1) The sample size was relatively small. The number
of subjects is a key factor for training machine learning models. The training data further
dropped when constructing 300-s epochs. For example, the data of “slp67x” only had
77 min of sleep data and had no REM stage. (2) The dataset was imbalanced. The imbalance
between the numbers of epochs in NREM and wake or REM was quite noticeable. To avoid
biased evaluation, the Cohen’s kappa, a measure of agreement that factors out agreement
by chance due to the imbalance in the amounts of data in different sleep stages, was used
to assess the performance of classification rather than using only the accuracy. A better
way to handle imbalanced datasets is based on either up sampling the minor class or down
sampling the major class. We will further explore this in future work. Ideally, a larger
dataset is required to verify our observations, further investigate the difference in cardiac
dynamics across different sleep stages, or to optimize the machine learning model for sleep
staging. Achieving accurate real-time sleep staging is important for future implementation
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in practice. This also calls for further improvement of the entropy algorithms towards
better handling the analysis of short-term data, for example, 30-s heartbeat intervals.

5. Conclusions

In this current study, the complexity or irregularity of RR intervals during different
sleep stages was examined, and how they could help with automatic sleep staging was
evaluated. The results suggested that during NREM sleep the complexity of RR intervals
decreased (or the irregularity increased). Besides, the complexity increased during REM (or
the irregularity decreased). The automatic sleep staging models, although they indicated
only modest increases after including entropy measures, suggested greater importance
than most of the traditional measures. Future work on automatic sleep staging using ECG
may prioritize the feature selections based on the use of entropy measures. Besides, the
current study also calls for an effort to further improve the statistical properties of the
existing entropy measures in order to accommodate the analysis of ultra-short time series
(such as 30-s) for better sleep staging.
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