
����������
�������

Citation: Gallus, C.; Blasiak, P.;

Pothos, E.M. Quantifying and

Interpreting Connection Strength in

Macro- and Microscopic Systems:

Lessons from Bell’s Approach.

Entropy 2022, 24, 364. https://

doi.org/10.3390/e24030364

Academic Editors: Andrei

Khrennikov and Karl Svozil

Received: 31 January 2022

Accepted: 28 February 2022

Published: 3 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Quantifying and Interpreting Connection Strength in Macro-
and Microscopic Systems: Lessons from Bell’s Approach
Christoph Gallus 1,* , Pawel Blasiak 2 and Emmanuel M. Pothos 3

1 THM Business School, Technische Hochschule Mittelhessen, D-35390 Gießen, Germany
2 Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Kraków, Poland; pawel.blasiak@ifj.edu.pl
3 Psychology Department, University of London, London EC1V 0HB, UK; emmanuel.pothos.1@city.ac.uk
* Correspondence: christoph.gallus@w.thm.de

Abstract: Bell inequalities were created with the goal of improving the understanding of foundational
questions in quantum mechanics. To this end, they are typically applied to measurement results
generated from entangled systems of particles. They can, however, also be used as a statistical tool
for macroscopic systems, where they can describe the connection strength between two components
of a system under a causal model. We show that, in principle, data from macroscopic observations
analyzed with Bell’ s approach can invalidate certain causal models. To illustrate this use, we describe
a macroscopic game setting, without a quantum mechanical measurement process, and analyze it
using the framework of Bell experiments. In the macroscopic game, violations of the inequalities
can be created by cheating with classically defined strategies. In the physical context, the meaning
of violations is less clear and is still vigorously debated. We discuss two measures for optimal
strategies to generate a given statistic that violates the inequalities. We show their mathematical
equivalence and how they can be computed from CHSH-quantities alone, if non-signaling applies. As
a macroscopic example from the financial world, we show how the unfair use of insider knowledge
could be picked up using Bell statistics. Finally, in the discussion of realist interpretations of quantum
mechanical Bell experiments, cheating strategies are often expressed through the ideas of free choice
and locality. In this regard, violations of free choice and locality can be interpreted as two sides of the
same coin, which underscores the view that the meaning these terms are given in Bell’s approach
should not be confused with their everyday use. In general, we conclude that Bell’s approach also
carries lessons for understanding macroscopic systems of which the connectedness conforms to
different causal structures.

Keywords: Bell statistic; CHSH inequality; free choice; locality; propagation of information; causality;
machine learning

1. Introduction

John Bell’s seminal work [1–6] has triggered a rich tradition of experimental studies [7–13]
as well as theoretical and interpretational work [14–30]. To derive his famous inequalities, he
has taken a realist worldview, making the additional assumption of free choice and locality,
as formally defined by precise equations in a hidden variable model. The debate about
the meaning of these assumptions and the experimental findings is still ongoing, with great
intensity. This is partly due to the fact that the terms realism, free will and locality are cherished
notions about which people hold passionate beliefs, based on their everyday experiences in
the macroscopic world or assumptions about nature.

Assuming realism, the mathematical equivalence between violations of the free choice
assumption and violations of the locality assumption was demonstrated in [27]. The present
paper applies the approach in [27] to the setting of a macroscopic game. This has the
advantage that it is fully describable in the language of everyday experiences, without
the need to, e.g., specify what constitutes a measurement. The description of the game
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rounds is operational using terms that are neutral with respect to a particular philosophical
worldview. On this basis, the mathematical equivalence of the resource consumption by
optimal strategies that seek to generate a given statistical distribution can be shown.

The game, as presented here, uses four parties–Alice and Bob, a Quiz-Master posing
questions and a separate Verifier, who has access to the complete statistics of the questions
and answers. The description of the game allows two possible causes for violations of Bell
inequalities at the level of the Verifier, namely, bribes and hidden communication devices.
We use the neutral term connection strength to describe the close connection between the
decisions by Alice and Bob (or alternatively the measurement results for entangled particles)
as it manifests itself in the joint statistic in the hands of the Verifier.

Quantum entanglement provides a resource to achieve statistical distributions, which
classically would require the use of cheats. Bell’s work and the CHSH quantities can be
seen as providing statistical tools to investigate general causal models equally on the micro-
and macroscopic level. We will use this point of view in two ways. On the one hand, we
will discuss the possible use of Bell inequalities and CHSH quantities in macroscopic real
life situations, outside the artificial game set-up. Here we will look at a situation from
the financial world, where the dissemination and use of private information is regulated
by laws to prevent insider trading and front running. In such cases, information barriers
play a role and the behavior of market participants can be analyzed statistically using
Bell’s approach. Interestingly, we will discuss how particular data patterns may be used to
infer specific possible regulatory breaches. We will also briefly consider the role of causal
mechanisms in social and financial set-ups, where contexts change over time, which makes
the straightforward application of machine learning tools difficult. On the other hand, we
will use the comparison with the macroscopic game to discuss interpretations of violations
of Bell inequalities in quantum mechanical experiments, with a view to explicate concepts
such as free choice, locality, contextuality and predictive completeness.

The present paper is organized as follows. In Section 2, we describe the macroscopic
game in detail, including methods for the determination of the CHSH values and the
situation where only a finite number of rounds can be played. In Section 3, we give
examples of strategies where cheats are used selectively in some of the rounds. On this
basis, two measures are defined based on optimal strategies, using cheats selectively to
generate a statistic that wins the game. The equivalence of the measures is subsequently
shown and a formula to compute their value from the CHSH-values alone is provided in a
situation where non-signaling applies. Section 4 points to the use of entangled particles
as an alternative resource offered by nature, which allows one to win the game without
using the macroscopic cheats of communication or bribes. In Section 5, the possible use of
CHSH values for discovering insider trading and front running in a financial set-up are
discussed, as a macroscopic application of Bell’s approach. We conclude by discussing
different terminologies and interpretations of connection strength with Bell’s approach in
macro- and microscopic situations.

2. A Macroscopic Game

Bell statistics and the violation of CHSH inequalities can be explained in a game
with two players, called Alice and Bob, as well as a Quiz-Master and a Verifier. Such
presentations of Bell tests are often referred to as a CHSH game and have been given for
different situations, such as hypothetical TV quizzes, polls or trials [24,31–34], in which
the Verifier and the Quiz-Master are often seen as one person. In addition to allowing a
description in everyday language using familiar macroscopic situations, games settings
also have interesting applications, because CHSH games are rigid, so that strategies with
maximum success probability are isomorphic [35–37].

We present the story from the view point of Alice and Bob, who have been invited to
participate in a game over many rounds, with the possibility of winning a sizeable prize
at the end. The game works as follows: Alice and Bob are locked up in separate rooms
without any means of communication. They are confined therein for a long time to play
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numerous rounds of the game. In each round, the Quiz-Master poses a question x to Alice
and a question y to Bob. These questions are generally taken from a list L = {0, 1, 2, . . . , L}
of possible questions. The Quiz-Master may, for example, pose a question by slipping
a piece of paper with the question written on it under the door. Alice gives her answer
a by pressing one of two buttons that are in front of her. So, we have a ∈ {±1} in each
round and the answers are electronically sent to the Verifier. Similarly, Bob gives his answer
b ∈ {±1}, which is also electronically transmitted to the Verifier. Alice and Bob have to
give an answer in each round within a given time span, otherwise they lose automatically.
During the game, Alice should not be informed about y, b and Bob should not be informed
about x, a. Note that Alice and Bob may give different answers, if they receive the same
question in different rounds.

Alice and Bob work as a team to try to win the game, by creating a high absolute
number for a statistical quantity, called S, that is generated from their answers and the
questions of the Quiz-Master. The precise definition of S is given below. Alice and Bob may
meet before the commencement of the game and discuss a response strategy, for example,
they may agree that “in round n = 15 Alice will answer a = 1 if the Quiz-Master has written
question x = 0 with blue ink on the paper”. They may also use randomized strategies or
other means to decide which button to press. However, Alice and Bob are not allowed to
communicate during the game.

In this set-up, we distinguish between the Quiz-Master and the Verifier. The latter may
be thought of as an objective and unbribable individual, like a public notary. The Verifier
sees all questions and answers, whereas the Quiz-Master can freely choose x, y in each
round, but does not see the answers a, b. The Verifier announces, after a finite number of
rounds, whether Alice and Bob have won, possibly awarding attractive prizes. The number
of rounds N is fixed and known to Alice and Bob before the start of the game. The flow of
information is illustrated in Panel (a) of Figure 1.

Figure 1. (a) The flow of information in the macroscopic game is shown by dotted lines in Panel (a).
The flow of information does not necessarily represent causal influences as Alice and Bob may
generate their answers a, b by using strategies that ignore information that they receive. (b) The
right-hand panel shows the intended separation between private (insider) information (which should
only be available for a) by a Chinese Wall in the financial example described in Section 5. Public
information is not shown as it is available to all participants. The red arrow shows a breach of the
Chinese Wall.

After all electronic communication has been received (possibly with some significant
delay), the Verifier has a list of quadruplets (a, b, x, y) from which he computes the statis-
tic P(ab | xy) for the product value ab, conditional on different pairs of questions xy (in
physical applications xy would be referred to as measurement settings). Here, we use the
conventional notation of writing xy as shorthand for the question pair (x, y) and ab ∈ {±1}
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for the product value of a and b. Given these definitions, we can compute expectation
values for the product ab, corresponding to different question pairs, xy:

〈ab〉xy = ∑
ab

ab P(ab | xy)

We will focus on the well-known case with just two possible questions L = {0, 1}.
Under this assumption, there are four possible cases xy ∈ {00, 01, 10, 11}. The list of
answers (a, b) is thus partitioned into four sets (regimes) and in each regime an expectation
value 〈ab〉xy can be computed for the product ab. We will assume that each question
regime occurs at least once in the game, so that all four expectation values are well defined.
Following the CHSH approach [38], the combination of these four expectation values yield
four S-values

S1 = 〈ab〉00 + 〈ab〉01 + 〈ab〉10 − 〈ab〉11 , (1)

S2 = 〈ab〉00 + 〈ab〉01 − 〈ab〉10 + 〈ab〉11 , (2)

S3 = 〈ab〉00 − 〈ab〉01 + 〈ab〉10 + 〈ab〉11 , (3)

S4 = −〈ab〉00 + 〈ab〉01 + 〈ab〉10 + 〈ab〉11 . (4)

It is agreed that Alice and Bob win the game if Si exceeds 2 for one i = 1, 2, 3, 4, after all
rounds have been played.

The four expectation values used in the expressions above are essentially correlations
between the answers a, b measured in the four different regimes. What makes winning the
game hard is the fact that in the expression for any Si, one of the correlations is subtracted
from the other three. It is this feature of the Si-values which precludes success using a
simple strategy of agreeing, prior to the game, to answer questions in a specific way.

We will use these Si-values when quantifying connection strength. Technically, some
information is discarded by moving from the full statistic P(a, b | xy) to the S-values, as the
value of the answer pair (a, b) is compressed into the product ab. However, we can do this
without the loss of generality in relation to the issues which are the focus of the present
work.

Typically, it is assumed that the number of rounds played is arbitrarily large, so that
the empirically observed S-values are equal to their mathematical expectation. Then, it can
be shown that in the game outlined above, without quantum resources, it has to hold that

|Si| 6 2 for i = 1, . . . , 4 . (5)

For a realist macroscopic game, we assume that the number of rounds N is finite. For
simplicity we focus on S1. In a game with a finite number of rounds it is possible that Alice
and Bob produce an S1-value above 2 by pure luck, even if their strategy consists of nothing
more than generating all their answers a, b from random coin tosses. As shown in [39], by
choosing answers at random, the probability of generating S1-values above 2 is

Pr{S1 6 2 + η} > 1− 8e−N(η/16)2
(6)

for any η > 0. The right-hand side of the inequality requires a larger number of rounds
to give meaningful bounds, so Alice and Bob will need to spend some time playing.
Equation (6) implies that in a game of, e.g., N = 10,000 rounds, with a Verifier demanding
S1 > 2.5 to declare Alice and Bob winners, choosing answers at random, will get them a
winning chance of less than 0.05%. This follows from using η = 0.5 and N = 10,000 in
Equation (6), which yields Pr{S1 6 2.5} > 0.99954.

3. Winning by Cheating

After the game is explained to them, Alice and Bob realize that their chances of
winning are very slim. Without knowing what question the other partner gets during
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the game, it seems impossible to win. After all, to score a high S1-value, Alice and Bob
should strive to generate a positive value for ab in the regimes xy = 00, 01, 10 but a negative
value for ab in the regime xy = 11. As briefly noted above, the minus sign in the fourth
term makes it impossible to achieve, e.g., S1 > 2.5 by simply offering perfectly correlated
answers. A regime-dependent strategy seems to be needed. However, when Alice only has
the information x = 1, when sitting in her room, how should she know which question
regime xy ∈ {10, 11} is used in the current round?

The questions arrive at Alice and Bob’s rooms without forewarning and each player
has no way of informing their partner what question they have received and what answer
they want to give. The problem is that Alice and Bob have no apparent capacity to
communicate during the game, because they are isolated in their respective rooms. What
can they do? With a classical understanding of the world and not believing in telepathy,
they need to cheat and create a way to connect and infer the question regime, if they are to
have a way of winning. Two cheating strategies come to mind:

Cheat 1: A secret communication device, such as a smart phone, is smuggled into their isolated
rooms.

Receiving question x = 1, Alice may, for example, send a clandestine text message to
Bob telling him what question she received. With this cheating method, they can pre-agree
on an answer strategy. For example, Alice may always answer a = +1 and send a text
message in every round, in which she has received the question x = 1. Bob will answer
b = +1 except for those rounds in which Bob receives the message “x = 1” from Alice.
When he gets that message, and therefore knows the applicable question regime for the
current round, Bob will press the button b = +1, if y = 0, but b = −1, if y = 1. We assume
that Bob receives all messages sent by Alice, but never sends a message himself. With this
specific cheating strategy, Alice and Bob create the behavior shown in Table 1 at the level of
the Verifier. The value of the product ab is always constant in each of the question regimes,
so Bob and the Verifier will always compute S1 = 〈ab〉00 + 〈ab〉01 + 〈ab〉10 − 〈ab〉11 =
1 + 1 + 1− (−1) = 4.

Table 1. The following table illustrates a specific strategy, using Cheat 1 and communication in
each round.

x Message Regime a b ab

0 None xy ∈ {00, 01} +1 +1 +1
1 Yes xy = 10 +1 +1 +1
1 Yes xy = 11 +1 −1 −1

Cheat 2: Although the Verifier is assumed to be untouchable, the Quiz-Master may be open
to bribes.

The Quiz-Master may, for example, be bribed to let Alice and Bob have the complete
list of questions that will be asked over the entire game in advance. If Alice and Bob have
that list in their rooms, they know which question regime applies in any given round.
They can then easily achieve S1 = 4 by ensuring ab = +1 in the rounds with regimes
xy = 00, 01, 10 and ab = −1 in regime xy = 11. Alice and Bob can, for example, create the
behavior shown in Table 2, at the level of the Verifier. Here the value of the product ab is
always constant in each of the question regimes, so the players and the Verifier will always
compute S1 = 〈ab〉00 + 〈ab〉01 + 〈ab〉10 − 〈ab〉11 = 1 + 1 + 1− (−1) = 4.
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Table 2. The following table illustrates a specific strategy using Cheat 2, where both Alice and Bob
know the regime in each round.

x y Regime Known a b ab

0 0 yes +1 +1 +1
0 1 yes +1 +1 +1
1 0 yes +1 +1 +1
1 1 yes +1 −1 −1

Possibly, things are not that easy and the Quiz-Master has to use a random number
generator to generate the questions during the game, so there is no list of questions that
could be shared in advance. Alternatively, the Verifier may send questions to the Quiz-
Master, which he has to ask during the game. In this case, the cheating trio has to operate
more subtly and the Quiz-Master has to clandestinely inform the players during the game
about the other question posed in the current round. To achieve this he may use different
ink or pre-agreed bit combinations in an electronic message to let, e.g., Bob know what
question he has just given to Alice.

All these versions of Cheat 2 create knowledge with Alice and Bob regarding the
question regime xy.

3.1. Measure µ1

Let us assume that Cheat 1 is a possibility, but bribing the Quiz-Master is impossible.
Therefore, Alice and Bob have no prior knowledge of the question regimes in any round
and cannot influence them. Let us also assume that using a smartphone is possible, but this
has a certain risk of discovery, so that Alice and Bob will try to use it as rarely as possible.
We define µ1 as the maximal percentage of rounds in which Alice and Bob do not need to use the
communication device when trying to create a desired statistic P(a, b | xy) at the level of the Verifier.

Example 1. To illustrate this approach, we give an explicit example. We use the pre-agreed answer
strategy described for Cheat 1 above, but such that it only applies in certain rounds, e.g., when Alice
receives question x = 1 and feels safe to send a text.

We can divide the number of rounds Λ = {1, 2, . . . , N} = T ∪ T into two sets. For the round
belonging to set T Alice will send a text, but in the rounds T no text is sent. Note that this partition
is only fully known to Alice after all rounds have been played. It is never known to the Quiz-Master,
who does not know about the secret communication device.

This strategy with restricted communication yields the distribution of values for the product
ab shown in Table 3. It is an extension of Table 1, but now the value of the product ab is no longer
constant in each question regime. For xy = 11 the value ab = 1 occurs when no text message is
sent, but ab = −1 occurs in the case of a text message. This yields

S1 = 〈ab〉00 + 〈ab〉01 + 〈ab〉10 − 〈ab〉11

= 1 + 1 + 1− (1 · P(ab = +1 | 11) + (−1) · P(ab = −1 | 11))

= 3− P(ab = +1 | 11T) · P(T | 11)− P(ab = +1 | 11T) · P(T | 11)

+ P(ab = −1 | 11T) · P(T | 11) + P(ab = −1 | 11T) · P(T | 11)

= 3− P(T | 11) + P(T | 11) = 3− (1− P(T | 11)) + P(T | 11)

= 2(1 + P(T | 11)),

because P(ab = +1 | 11T) = 0 and P(ab = −1 | 11T) = 1, as Bob will always change his answer
to −1, if he receives a text, whereas P(ab = +1 | 11T) = 1 and P(ab = −1 | 11T) = 0, as Bob
will stick with his answer +1, if he does not receive a text.

Therefore, the amount by which S1 exceeds the bound of 2 is merely dependent on how often
Alice sent a text in the question regime xy = 11. Note that Alice can control how often she sends
a text, i.e., P(T) = P(T|10) + P(T|11), but not the probability P(T | 11), because Alice does not
know the question that Bob has received, when she has to decide whether to send a text or not.
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Table 3. The following table shows the different situations for a specific strategy using Cheat 1, where
Alice sends text messages in some rounds in which she has received the question x = 1.

x Message Regime a b ab Round In

0 None xy ∈ {00, 01, 10, 11} +1 +1 +1 T
1 Yes xy = 10 +1 +1 +1 T
1 Yes xy = 11 +1 −1 −1 T

3.2. Measure µ2

Let us assume that Cheat 2 is a possibility, but using communication devices during
the game is out of question. Let us also assume that using Cheat 2 has a certain risk of
discovery for the Quiz-Master, so Cheat 2 should not be used in every round. We define µ2
as the maximal percentage of rounds in which Alice and Bob do not need knowledge of the applicable
question regime when trying to create a desired statistic P(a, b | xy) at the level of the Verifier.

Example 2. To illustrate this approach we also give an explicit example. We use the pre-agreed
answer strategy described for Cheat 2 above but assume that the Quiz-Master lets Alice and Bob
know the question regime only in certain rounds. The standard answer for Alice and Bob is thus
+1, but if they know that in the current round xy = 11 applies, Bob will change his answer to −1,
whereas Alice will not change hers.

Similarly to Example 1, we can divide the number of rounds Λ = {1, 2, . . . , N} = K ∪ K into
two sets. For the round belonging to set K, both Alice and Bob will know the value of xy, but in the
rounds K none of the partners have that knowledge. This division can be known in advance, if the
Quiz-Master has a pre-generated list of questions that he is willing to share.

This strategy yields the distribution of values for the product ab shown in Table 4. Again, the
value of the product ab is no longer constant in the regime xy = 11. The formal computation is
isomorphic to the computation in Example 1:

S1 = 〈ab〉00 + 〈ab〉01 + 〈ab〉10 − 〈ab〉11

= 1 + 1 + 1− (1 · P(ab = +1 | 11) + (−1) · P(ab = −1 | 11))

= 3− P(ab = +1 | 11K) · P(K | 11)− P(ab = +1 | 11K) · P(K | 11)

+ P(ab = −1 | 11K) · P(K | 11) + P(ab = −1 | 11K) · P(K | 11)

= 3− P(K | 11) + P(K | 11) = 3− (1− P(K) | 11)) + P(K | 11)

= 2(1 + P(K | 11)).

Therefore, the amount by which S1 exceeds the bound of 2 is merely dependent on the number
of rounds in which the question regime xy = 11 is known. Note that if the Quiz-Master does not
share information in all rounds, then the above strategy may be suboptimal. This is because with the
above strategy, knowing the question regime is only valuable to the players in the case of xy = 11.
If the Quiz-Master deliberately shares the regime xy mainly in rounds with xy 6= 11, Alice and Bob
have to think about a different answering strategy.

Table 4. The following table illustrates a specific strategy using Cheat 2, where Alice and Bob know
the regime in some rounds.

x y Regime Known a b ab Round In

0 0 irrelevant +1 +1 +1 K ∪ K
0 1 irrelevant +1 +1 +1 K ∪ K
1 0 irrelevant +1 +1 +1 K ∪ K
1 1 no +1 +1 +1 K
1 1 yes +1 −1 −1 K
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3.3. Measuring Connection Strength

Both cheats create a connection between Alice’s and Bob’s side in certain rounds and
the Examples 1 and 2 have a similar formal structure. Are the cheats equivalent?

At first glance, both Cheat 1 and 2 somehow imply that at least either Alice or Bob
knows what question their partner has received in a certain round. However, the cheats are
not equivalent. Cheat 1 is subject to the speed limit for classical communication, whereas
Cheat 2 is not. Imagine Alice, Bob and the Quiz-Master living on three different space
stations sitting on a straight line (the Quiz-Master’s space station being in the middle).
Cheat 1 may now become useless if Alice and Bob only have a short time to press the
answer button after receiving the question. Cheat 2, with a pre-disclosed list of questions
or with the Quiz-Master secretly sharing the entire regime in the message that contains the
question, is not dependent on the speed-of-light limit.

Furthermore, Cheat 1 means that, e.g., x, a may be revealed to Bob. By contrast, Cheat
2 allows Alice to know y and Bob to know x, whereas the answers a, b cannot be shared
without a communication device between Alice and Bob, because the Quiz-Master does not
have information about the given answers, as illustrated in Panel (a) of Figure 1. Under the
Cheat 2 scenario, Alice and Bob may, of course, pre-agree upon the answers for each round
when the regime is fully known to at least one of them, so if Alice and Bob trust each other
to follow the strategy, the answers a, b can be inferred by both players. However, in the case
that Alice or Bob gets confused and deviates from the strategy, the inferred answers will
not be equal to the answers that were actually given to the Verifier, which is another way of
saying that Cheat 2 is not equivalent to having a communication device in the rooms.

Despite the fact that the cheats are not equivalent, it is possible to prove the mathemat-
ical equivalence of the two measures µ1 and µ2. Assuming an arbitrarily large number of
rounds N, so that the empirically observed S-values equal the mathematical expectation,
the following theorem can be proved:

Theorem 1. (a) For any statistic P(a, b | xy) that shall be created at the level of the Verifier, the
two measures are fully equivalent, that is, µ1 = µ2.
(b) For any statistic P(a, b | xy) satisfying the so-called non-signaling condition

P(a|x0) = ∑
b∈{±1}

P(a, b|x0) = ∑
b∈{±1}

P(a, b|x1) = P(a|x1) for all a, x, (7)

P(b|0y) = ∑
a∈{±1}

P(a, b|0y) = ∑
a∈{±1}

P(a, b|1y) = P(b|1y) for all b, y, (8)

that shall be created at the level of the Verifier in the case of a game with two questions and two
answers, we have that

µ1 = µ2 =

{
1
2 (4 − max{|S1|, |S2|, |S3|, |S4|}) , if Si > 2 for one i ,

1 , otherwise .

Proof. We present a short sketch of the proof (details are given in [27]), where the presenta-
tion is made in terms of physical Bell experiments, using the notions of Bell locality and
free choice. The formal argument works equally well for the macroscopic game presented
here. It is based on the decomposition of the desired statistic into

P(a, b|xy) = ∑
λ∈Λ

P(a, b|xyλ) · P(λ|xy) , (9)

assuming some a priori unknown hidden variable set Λ. For a given statistic, writing
Equation (9) is always formally possible; see [24,40,41].

Not every formal way of writing Equation (9) can be translated into a strategy that is
executable by Alice and Bob, but the generic Equation (9) includes all conceivable strategies
that Alice and Bob may have agreed upon, before the commencement of the game. The
expression P(a, b|xyλ) means that the probability of a certain value ab results not only from
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the question regime but also from an unknown cause λ, which can be one of the cheats
described above or something else.

The model implicitly describes the distribution of questions chosen by the Quiz-Master
for the different rounds through the standard formula

P(xy) = ∑
λ∈Λ

P(xy|λ) · P(λ) . (10)

The set Λ can be partitioned into two sets depending on whether

P(a, b|xyλ) = P(a|xλ) · P(b|yλ) (11)

holds or not. Defining

Λ1 = {λ ∈ Λ |Equation (11) holds for all x, y}

we obtain a partition Λ = Λ1 ∪ (Λ \Λ1). Here, Λ1 corresponds to the rounds where no
communication and no bribes are used, and Λ \Λ1 corresponds to rounds where Cheat 1
was applied. A different partition is built on the question whether

P(xy|λ) = P(xy) (or equivalently P(λ|xy) = P(λ)), (12)

holds or not. Defining

Λ2 = {λ ∈ Λ |Equation (12) holds for all x, y}

we get a different partition Λ = Λ2 ∪ (Λ \Λ2). Here, Λ2 corresponds to the rounds where
no communication and no bribes are used, and Λ \Λ2 corresponds to rounds where Cheat 2
was applied.

To prove (a) we can employ a bijective construction, writing the desired statistic
P(a, b|xy) as a convex combination of a statistic that does not use cheats and a statistic
where either Cheat 1 or Cheat 2 is used. Formally, this is expressed by λ being in different
parts of the partition, with the condition that the desired statistic is retained as the marginal
distribution. This gives

P(a, b|xy) = p1 · P1(a, b|xy) + (1− p1) · P̃1(a, b|xy)

= p2 · P2(a, b|xy) + (1− p2) · P̃2(a, b|xy),

where P1 is a statistic that can be created without using any cheats and P̃1 is a statistic that
can be created by Cheat 1 alone without bribing the Quiz-Master, whereas P2 is a statistic
that can be created without using any cheats and P̃2 is a statistic that can be created by
Cheat 2 alone, without the need of a communication device. The numbers p1, p2 ∈ [0; 1]
have to be chosen suitably; see the Proof of Theorem 1 in [27].

To show (b), the desired statistic is written as a convex combination between the
statistics of a PR-box and a statistic that can be created without using any cheats; see [42],
Section 9.4 in [24] and the proof of Lemma 3 in [27].

Part (a) of Theorem 1 is a formal, model-independent equivalence concerning optimal
strategies to generate a given distribution at the level of the Verifier. It shows that the mea-
sure µ1, i.e., the number of rounds in which the players can work without communication
assuming an unbribable Quiz-Master, gives the same result as the measure µ2, i.e., the
number of rounds in which the Quiz-Master can keep the question regime xy hidden from
Alice and Bob, assuming that communication between Alice and Bob is impossible.

Part (b) of Theorem 1 allows the explicit computation of the values for the two mea-
sures from the S-values alone, assuming an additional condition. This additional condition
stated in Equations (7) and (8) in part (b) of Theorem 1 is often referred to as the non-signaling
condition. In particular, part (b) of Theorem 1 implies that in order to create a PR-box,
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that is a non-signaling statistic for which one of the CHSH expressions in Equations (1)–(4)
reaches the maximal algebraic value of |Si| = 4, see [42], the players have to cheat in every
round. However, note that in the examples of Tables 3 and 4 non-signaling is violated,
because 0 = P(b = −1|01) 6= P(b = −1|11). Alice and Bob may, of course, resort to
randomization and the use of more complex strategies in their use of Cheat 1 or Cheat 2 to
generate a statistic that looks less suspicious to the Verifier.

4. Winning with Additional Resources from Nature: Entangled Particles

Let us again assume L = 1 for simplicity, so there are just two possible questions. We
assume that Alice and Bob are allowed to take a measurement device and a number of
systems of pairwise entangled particles, each described by a two-qubit Bell state

|φ〉 = 1√
2
(|0〉A|0〉B + |1〉A|1〉B), (13)

into their room. The first component shall be in the room with Alice and the second in
the room with Bob. Here, 0 and 1 are the two basis states used; see [24,43]. The entangled
particles give a resource to Alice and Bob that allows them to win the game without using
Cheat 1 or 2; see, for example, [33].

The availability of entangled particles does not mean that Alice and Bob have a
communication device, because under the non-signaling condition a shared quantum
state does not provide a means of communication. The availability of entangled particles
is therefore not a use of Cheat 1, but a separate resource that needs to be understood
differently. Of course, there are interesting classical strategies if some communication,
consisting of one classical bit per round between Alice and Bob, is allowed, to simulate the
statistics of the maximally entangled state in Equation (13), see [44]. So far, the challenge
issued to Bell deniers in [24,39] to write a program for two computers, which would take
the roles of Alice and Bob and which can win the CHSH game by producing significant
violations of Bell Inequalities without cheating, has not been met by anyone.

As the collaboration of the Quiz-Master is not required for the use of entangled
particles, winning with qubits is not a case of Cheat 2 either. However, with the additional
resources at their disposal (assuming that they have an entangled pair of particles for
each round of the game), Alice and Bob may pre-agree on a winning strategy, pushing the
S1-value at the level of the Verifier up to S1 = 2

√
2 ≈ 2.828. Under this set-up, Alice and

Bob become operators who configure their measurement device according to the question
which they have received and who subsequently read out the result of the measurement
and then press the answer button according to the measurement result shown by the
apparatus.

Although the existence of such a resource has been shown experimentally [8–12], the
open question is, of course, how to explain the inner workings (if any) of this resource from
a realist worldview. This will be discussed briefly in Section 6.

5. Social and Financial Systems

Bell’s approach can also be useful to analyze connection strength in the macroscopic
world. To do this, we move away from the somewhat artificial game presented in Section 2
and give an example from the financial world. The following example could be re-phrased
for different social and strategic situations; cf. [45].

In the financial world, information and its dissemination play a key role. Information
that is not known to other market participants may give a significant and possibly unfair
advantage to some market participants. Knowledge about the financial data of a company,
prior to the official release of such data to the public, would, for example, allow buying and
selling with advantageous risk-return characteristics. Knowledge about the execution of a
large order would allow traders to position themselves accordingly in advance, usually to
the detriment of the economic beneficiary, who is behind the large order. To foster trust
in the capital market mechanism and to ensure a fair playing field, many countries have
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adopted laws and regulations against insider trading or front running to prevent such
practices.

These unfair practices can, for the purpose of this work, be characterized as a situation
where an outside trader acquires private information about company data or a large order
and acts upon it, by performing some specific market activity. To prevent such activities,
asset managers and banks use so-called Chinese walls to separate people with legitimate
access to private information from those that should not obtain private information. It
is important to ensure that information does not leak across those Chinese walls. We
would like to illustrate how information leaks that are exploited leave traces in an observed
statistic, using the S-value by means of an analogy with the macroscopic game set-up
presented in Section 2.

When using private information in an illegitimate way, positions of extraordinary
sizes in unusual securities or atypically short holding times often arise. What is considered
extraordinary and what is considered typical depends on the context, as well as the roles
and normal activities of a market participant. In the setting of this paper, we assume that
such a distinction can be made. We denote by +1 the execution of a typical activity by a
market participant and by −1 the execution of atypical transactions on a given day. In an
analogy to the macroscopic game, the market activities of Alice and Bob are recorded by
a, b ∈ {±1} for each round of the game. A round may be an entire trading day or a shorter
timeframe.

Market participants have certain information at their disposal, which may consist of
publicly known facts, rumors and instructions from their managers. We summarize this
information in just two categories, 0 and 1, and identify it with the questions x, y that Alice
and Bob are asked in the macroscopic game. The activities a, b can, in a way, be seen as
answers to the available information x, y.

We assume that Alice works for a large investment firm and is active in the market
on a daily basis, executing only typical and permitted transactions, i.e., we have a = +1
on any day. The information that Alice receives x includes, on some days, instructions
from her boss to execute large orders. On the days with x = 0 she receives only public
information, but on days with x = 1 she also receives a large order from her boss, which
constitutes private information. Because executing orders, including large ones, is a normal
course of business for Alice, her activity would be classified as a = +1 even on days with
x = 1.

Bob does not work for the investment firm, and should not receive any private infor-
mation. His daily information y consists of well-known economic facts, as well as rumors.
On days with y = 0 he receives only public information about general economic facts, but
on days with y = 1 there are also market rumors about large orders. Those rumors may
be true or not; Bob does not know. We assume that Bob does not trade on the basis of
rumors. However, when he hears a rumor he may sometimes call a friend on the private
side at Alice’s firm, asking her whether the rumor is true. We assume that his friend does
not lie to Bob and that she sometimes gives him confirmation that a rumor is true. Such
confirmation would constitute a transfer of private knowledge (“K”). When this happens
Bob will (illegally) front-run the order and execute unusual trades in the market, i.e., create
the answer b = −1; see Panel (b) in Figure 1 for an illustration.

Can this behavior be detected? The situation described here yields the statistic shown
in Table 5, which is isomorphic to Table 4. With a conventional view, detecting Bob’s illicit
behavior is not easy. Private conversations by Bob, where private knowledge has been
transferred, are generally difficult to prove. If we statistically look only at the days on
which market rumors existed, i.e., at days with y = 1, then Bob’s behavior consists of
b = +1 as well as b = −1, so the unusual trades are washed out in the average 〈b〉y=1. If
we align this with data from Alice’s firm and look only at the days where a larger order
existed, we obtain the regimes xy ∈ {10, 11}; we can compute the averages 〈b〉10 as well as
〈b〉11, but this may not tell us much either.
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Table 5. The following table illustrates the behavior of Alice and Bob. They both conduct only typical
activities, except Bob behaves atypically on days when he receives confirmation from someone with
private information confirming that market rumors are true.

x y Situation a b ab

0 0 no large order, no rumors +1 +1 +1
0 1 no large order, but (unfounded) rumors +1 +1 +1
1 0 large order, but no rumors +1 +1 +1
1 1 large order and rumors, but no confirmation to Bob +1 +1 +1
1 1 large order and rumors and confirmation to Bob (“K”) +1 −1 −1

Clearly, the above statistic violates non-signaling, as given in Equation (8), because
Table 5 implies 0 = P(b = −1|01) 6= P(b = −1|11). Computing the S1-quantity, we obtain
the same result as in Example 2:

S1 = 〈ab〉00 + 〈ab〉01 + 〈ab〉10 − 〈ab〉11

= 2(1 + P(K | 11)).

So the amount by which the S1-value exceeds 2 is a function of the probability P(K | 11),
i.e., it depends on how often there was a transfer of private knowledge (K) to Bob on days
where Alice had a large order and where rumors about such a large order existed in the
market.

S1-values above 2 help us identify changes in Bob’s behavior. If no such changes
happen, i.e., if Bob never acts upon private information, S1 = 2 would be the result. This is
useful because legal problems typically arise when market participants act upon private
information. It is interesting that Bell’s approach and the observed S1-values are sensitive
to P(K | 11), even when there is no provable record of a direct inappropriate information
transfer. Having applied such a model, observing S1 > 2 can be seen as a warning sign.

Creating the data table with a quadruplet (x, y, a, b) for each day would, in principle,
be possible for a verifying auditor, as she can find out whether x = 1 holds from insider
lists and documentation around orders at Alice’s firm. Regarding Bob, the determination
of the value b for a given day would also be possible on the basis of potentially suspicious
trading patterns that deviate from Bob’s normal activities. The value of y depends on
whether rumors existed in the market on a given day. This can, in principle, be established
without Bob’s collaboration, by analyzing recorded news feeds and questioning other
market participants.

In practice, the Verifier could first check if the non-signaling condition of Equations (7)
and (8) is violated before looking at the S-values. However, even if non-signaling is violated,
that does not necessarily mean that a profitable violation of regulations around insider
trading and front running has taken place. It may well be that Bob is merely acting on
rumors and using his gut feeling regarding the validity of a rumor. To illustrate this
case, we may, for example, assume that in the case of an unfounded rumor Bob makes a
transaction with a probability of p but in the case of a true rumor he makes a transaction
with a probability of p′. This produces the behavior shown in Table 6.
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Table 6. The following table illustrates the behavior in the case that Bob sometimes reacts to rumors
by executing unusual transactions in the market and never receives information from the private side.

x y Situation a b ab Prob.

0 0 no large order, no rumors +1 +1 +1 100%
0 1 no large order, but (unfounded) rumors +1 −1 −1 p
0 1 no large order, but (unfounded) rumors +1 +1 +1 1− p
1 0 large order, but no rumors +1 +1 +1 100%
1 1 large order, (true) rumors +1 −1 −1 p′

1 1 large order, (true) rumors +1 +1 +1 1− p′

In case of p 6= p′, Bob behaves differently in the regime xy = 01 than in the regime
xy = 11, so the non-signaling condition (8) is violated. Based on Table 6 we compute

S1 = 〈ab〉00 + 〈ab〉01 + 〈ab〉10 − 〈ab〉11

= 1 + (−p + (1− p)) + 1− (−p′ + (1− p′)) = 2 + 2(p′ − p),

so S1 > 2 only occurs if Bob has the right gut feeling when acting on rumors, i.e., if p′ > p.
Interestingly, the probability of whether rumors are objectively true more often than not,
i.e., whether P(xy = 11) > P(xy = 01) holds, does not enter into this calculation.

So how can we tell whether Bob is simply an astute market participant, who has good
judgement when hearing rumors, versus someone who is making unusual transactions
based on insider information? The difference is that with Table 5, Bob never engages in
unusual transactions when a rumor is unfounded, but with Table 6 this would happen with
a probability of p.

6. Discussion: Connection Strength with Bell’s Approach

We considered Bell’s approach as a measure of connection strength in both micro- and
macroscopic systems. We use the neutral term connection strength to describe the connection
between the decisions of Alice and Bob, or alternatively the measurement results between
two entangled particles, or, more generally, the results of measurements on two components
of a micro- or macroscopic system, as shown in the joint statistic P(a, b|xy) of the Verifier.
The goal of the approach is to put testable constraints on causal models that aim to explain
or predict macro- or microscopic phenomena.

Under Bell’s approach, the Verifier starts with a full data table, i.e., a list in the
form {(n, a, b, x, y)}n=1,...,N . In creating this table, identifying rounds and dealing with
rounds in which less than two answers were recorded can be problematic. In physical
Bell experiments, e.g., with entangled photons, the time stamp is used to identify pairs
of particles and thus assign questions and answers to each round of the game. With
inefficiencies in photon detectors, it may happen that, e.g., a pair (x, a) for Alice has no
counterpart on Bob’s side, which gives rise to the detection loophole [46,47]. Depending on
the specific set-up, similar issues may arise in macroscopic systems as well. In macroscopic
systems, either time stamps or ensembles of separated events happening at the same time
can be used to generate the data table. It is desirable to ensure during the set-up process
that no gaps occur, because if gaps occur due to a systematic cause, the subsequent analysis
can be invalidated. In the macroscopic game described in Section 2, the Verifier can force
Alice and Bob to give answers to all questions by simply ruling that Alice and Bob lose
automatically if all answers are not received within a given timeframe.

In the next step, the Verifier reduces the full data table to the statistic P(a, b | xy), which
is computed based on relative frequencies. Using the statistic P(a, b | xy), with properties
as from Equations (7), (8), (11) or (12) can be tested. This is even advisable for quantum
experiments, in which the non-signaling property is usually taken for granted [48–50].
According to Theorem 1, it is always the case that the measures µ1 and µ2 are equivalent,
but computing their value on the basis of the S-values relies on the non-signaling condition,
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that is, Equations (7) and (8) have to hold. In macroscopic systems, the non-signaling
condition cannot be taken for granted. In fact, the simple strategies presented in the
examples shown in this paper violate non-signaling, but it would be possible for Alice and
Bob to randomize those strategies so that the statistic appears less suspicious to the Verifier.

In a subsequent step, the Verifier moves away from the full statistic to the expectation
values for the product ab under different regimes, i.e., to 〈ab〉xy with xy ∈ {00, 01, 10, 11} and
from there to the four S-values, S1, S2, S3, S4. The important part is that the S-values provide
the possibility of testing the validity of postulated, well-defined causal relationships. In
Bell’s approach, the inequalities (5) are derived mathematically starting from three formally
well-defined conditions, which are termed “realism”, “locality” and “freedom of choice”. The
connection between causal interaction and Bell’s approach has been noted a couple of
times [41,51]. The belief that every effect must have a cause has very strong roots in
philosophy and science. A substantial part of the discussion and excitement around the
interpretation of quantum theory comes from the expectation that locally-causal models for
observed behavior have to be possible at the microscopic level as well.

In the macroscopic domain, humans have a desire for causal understanding and are
not content with merely observing correlations. The morning cry of the rooster does not
cause the sun to rise, as Judea Pearl put it, and causal relationships are important when it
comes to understanding the consequences of human interventions [41], just as waking up
the rooster early does not result in additional hours of daylight. Today, the causal structure
behind the sunrise in the morning is known, so there is both a quantitative and qualitative
causal understanding of this macroscopic physical phenomenon. With quantum theory,
a mathematical description is known that allows the correct prediction of experimental
quantities. Does there have to be a causal structure beyond such a mathematical description?
In contrast to the precise description of macro-physical reality offered by classical mechanics
and general relativity, social and economic models are not as successful in predicting
behavior, but identifying reliable underlying causal relationships is equally important, for
example in the area of interventions and policy-making.

In this paper we focus on S-values using Bell’s approach. There are alternative mea-
sures of connection strength, for example, those provided via the approaches of Legett,
Garg, Suppes, Zanotti [14,15,17] and of Klyachko et al. [18]. Generally, instrumental in-
equalities provide bounds for given causal models, as shown by Pearl [41,52,53]. However,
the S-values seem to provide a good approach to run tests on real data for assumed causal
relationships. In a precise sense, the S-values and the corresponding CHSH inequalities
give essentially the only interesting boundary hyperplanes in the local-realist non-signaling
polytope in a situation in which we consider two parties, two possible questions and two
possible answers [24,39,40]. As shown in Part (b) of Theorem 1, when non-signaling applies,
knowing all four S-values even allows the computation of the minimum percentage of
violations that is needed under optimal strategies. Although raw data can, of course, as
a matter of principle, provide more information than data in a reduced form, essential
points about causal relationships or the propagation of information may be hard to spot
when looking at raw data, but can be seen directly using the S-values, as Bell’s approach
teaches us.

6.1. Connection Strength in Macroscopic Systems; Elements of Reality

Connection strength may, in the macroscopic game, result from pre-agreement upon
strategies and exploiting the available flow of information when implementing those
strategies. In the game presented in Section 2, the answers a, b are generated by conscious
decisions taken by Alice and Bob. In each round they have to press an answer button and
may use the available information, as well as previously agreed-upon protocols, using a
strategy such as “to determine your answer a in round n = 120 in case you receive the question 1,
toss a coin with probability of a = +1 equal to 44%”, to decide which answer button to press.
However, Alice and Bob may also decide to ignore information and previous agreements
and choose on a whim. In the example of Section 5, Bob may suddenly feel nervous and
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refrain from executing a front-running strategy in the market, even when the market rumor
was confirmed to him by an insider. In that sense, Alice and Bob are deemed to enjoy a
freedom of choice that entangled particles in quantum mechanics, bound by conservation
laws, do not possess. Nevertheless, a pre-agreed-upon strategy can be seen as a causal
mechanism to explain and predict answers. However, to a realist, who believes in free
choice, human decisions generally do not form an element of reality before they are made.
Even if Alice and Bob have pre-agreed upon a strategy on how to press their buttons and
even if we assume that Alice and Bob do not want to deviate from that strategy, so that their
answers could be predicted in advance, would we say that their behavior is an element of
reality in the sense of EPR [54], before the game was played?

With the deterministic theories of classical mechanics and general relativity the situa-
tion is different. Here, the time evolution of a macroscopic system is uniquely described
from the initial conditions and the physical laws given by differential equations. This
allows prediction with certainty and provides clear elements of reality. The experimentally
observed connection strength results from these laws.

6.2. The Hidden Variable Space

A similar description seemed desirable to Einstein for the quantum level. If the
quantum mechanical description is incomplete, it might be possible to complement it by
finding additional variables and laws so that the statistical description offered by quantum
theory is retained. In [3] Bell asks, “can we not find another hidden-variable scheme with the
desired local character?”. Bell’s approach to a completion of quantum theory rests on an
assumption called realism, which is typically identified with the mathematical assumption
of a hidden variable space Λ, like the one shown in Equation (9). This space Λ is the starting
point for discussing alternative models, as well as the concepts of locality and freedom of
choice in the sense of Bell.

Although Λ can be formally defined as an explanatory model by the Verifier in an ex
post analysis, Equation (9) does not mean that Λ is generally known in advance, as the
macroscopic game shows. Winning the macroscopic game by means of classical strategies
means that the mechanism assumed for a fair game had to be violated somewhere, but not
everything can be derived from the statistic alone; therefore, supplementary knowledge
may be required. For example, if the Verifier learns from other sources that the Quiz-Master
has been bribed, it is clear how the violation could have ocurred. If the Verifier is certain
that no communication device could have been used by Alice or Bob, because he ensured
time-space separation, and if he sees S1 = 2.5, can he conclude that the Quiz-Master has
been bribed? Not necessarily, as a resource of entangled particles would be enough to
create such a high S-value, although in Newtonian times one might have said that this can
only be achieved through bribes, communication or something like witchcraft.

Formalizing the assumption of realism through the assumption of a hidden variable
space Λ is a non-trivial step. It may require additional thought, at least with regards to the
point in time of an experimental process at which such a Λ can be meaningfully introduced.
The Newtonian concept of a universal time had to be given up, and a universal Λ may not
necessarily be possible either. Without such qualifications, the term “realism“ is extended
by making additional claims about universality, which not every realist may share.

In the proof of Theorem 1, the space Λ is partitioned into Λ1 ∪ (Λ \Λ1) as well as into
Λ2 ∪ (Λ \Λ2). However, in the situation of the macroscopic game, this partition is only
possible on an ex post basis with knowledge of the rounds in which a specific cheat has
been used. This partition could possibly be carried out by Alice and Bob once all rounds
have been played, but it would be beyond the ability of the Verifier to assign specific rounds
to Λ1 or Λ2. Even to Alice and Bob, it would only be possible ex post facto, because, for
example, Alice may decide on a whim in which round she feels safe to use her hidden
mobile phone.

In economic and social systems, ensuring space-time separation to prevent Cheat 1 is
usually unrealistic, so separation needs to rather come from information barriers such as



Entropy 2022, 24, 364 16 of 20

Chinese Walls or from the use of unbroken encryption to prevent eavesdropping and the
unintended dissemination of information. Nevertheless, Bell’s approach can be useful in
these situations as well, as described in Section 5. Under the assumption of full compliance
with Chinese Walls, certain statistical patterns should not occur. So an auditor, who comes
in ex post facto as a Verifier, can in principle pick up signs of cheating based on the statistics
alone. The space Λ can cover different models of conceivable cheating strategies.

As physicists are used to theories with impressive predictive power, there could be
hope that for quantum mechanics Λ can be fixed objectively in advance by means of a
hidden variable theory. With work on social or economic systems, one is used to lower
expectations for precise predictions. There, retroactive explanations are sometimes offered,
of which several can be designed ex post, because several Λ spaces can produce the same
observed statistics. As an additional complication, a widely accepted predictive theory,
i.e., a Λ publicized in advance, can be self-defeating, because people can choose to behave
differently when they hear about the theory. In finance, known statistically significant traits
in a market can disappear over time, when market participants try to exploit them.

6.3. Causality, Connection Strength and Explainability in Machine Learning

Finding reliable patterns to forecast the values of a given system is a task for which
machine learning algorithms are increasingly applied; see, for example, [55–61]. This works
well when the task is set in a static environment, such as optical character recognition or
the classification of pictures with animals or human faces. It also works well when applied
to games such as go or chess or when vehicles are learning to move autonomously. In these
tasks the environment changes only very slowly over time and there are many examples of
these training situations. Handwriting and printing styles and the characteristic appearance
of animals or human faces do not change much over even reasonably long time periods.
The rules of go and chess remain constant, and the physical laws and properties of a vehicle
and its engines remain constant, when one is learning autonomous driving or flying, even
if the actual surroundings are changing.

Social, economic, business and financial systems provide a greater challenge for
machine learning as they involve complex conscious human decisions and changes in
rules, often over a relatively short period. Usually for these complex systems, the training
examples are few, compared to the numerous paths that the development of the system
could take. In these cases, it can be helpful to complement the statistical learning process
through the use of human contextual knowledge. For example, financial time series data
for a company contain variables such as prices, earnings and sales, which may have a
context-dependent interpretation by market participants. A surprising increase in sales and
earnings is typically a good thing, but in regimes where market participants are concerned
about overheating, a series of strong sales figures may not be so well received. Thus,
the strength of the connection between variables will vary over time depending on the
regime. In theory, given enough time, machine learning algorithms used for the automated
processing of newsflows could learn to categorize different macro-regimes and react to
news in a regime-dependent manner. However, in the recent past only a few economic
cycles would be available for training and the distant past is generally different from today
in too many aspects to be helpful for training. Therefore, for machine learning applications
to such systems, the explicit use of human knowledge and causal relationships may be
useful. In general, humans are fast in understanding regime changes, for example, the
changes caused by the COVID-19 pandemic. In any case, a full understanding may remain
hard to achieve by machine learning, as illustrated by the Chinese room argument [62].

The explainability of machine learning and artificial intelligence is another issue.
Machine learning can be distinguished into various types, such as supervised learning,
unsupervised learning and reinforcement learning. The algorithms used may be shallow
or deep, with many free parameters. Technically, they can all be regarded as a way to
automatically specify a hidden variable model Λ that gives good predictions based on
well-defined input data [60]. With deep learning approaches, the parameter space that
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makes up Λ can be very large. Although the numerical values may be set automatically to
provide good forecasts on training and test data, the interpretability and explainability of
such hidden variable models can be poor. Context-adaptive procedures, i.e., systems that
construct contextual explanatory models for classes of real-world phenomena, would be
desirable [63–65]. Linking probabilistic learning methods with representations of known
causal relationships can improve on methods restricted to data mining, which are based
only on correlations. Plausible causal models or a reasonably conjectured hypothesis
in the theory of probably-approximately-correct learning may, for example, serve as a
starting point to restrict the space of possible models [41,66–70]. In the same way as
hyperparameters in machine learning can be set manually or determined by means of a
routine, a human specialist could set up simple plausible causal relationships, for example,
using directed acyclical graphs for Baysian networks [71–74], and Bell inequalities could be
used to test them automatically, as the Baysian networks would place restrictions on the
joint distribution of the observed variables [75,76]. Causal models that are not ruled out by
the available data would be available for statistical parameter fitting by existing machine
learning algorithms and could provide explainable causal connections.

Without human input, machine learning is limited. As shown in [77], standard
causal discovery algorithms that try to infer causal relationships from correlations cannot
distinguish correlations that satisfy Bell inequalities from those correlations that violate
those inequalities.

6.4. Connection Strength in Quantum Systems, Free Choice and Locality

Modern discussions of Bell’s work in quantum foundations focus less on hidden
variable models and instead summarize Bell’s theorem by saying that the combination of
three assumptions, namely, locality, free choice and realism, force |Si| 6 2. As we can observe
violations of these inequalities experimentally, at least one of the three assumptions has to
be given up. Unsurprisingly, this is a controversial and exciting statement, because these
three terms hold cherished meanings in everyday language and intuitive theories about
nature, albeit not always precisely defined ones.

Several ways of dealing with the conundrum are possible. At the most basic level,
one may decide not to care too much, because the formalism of quantum theory already
allows predictions for measurable outcomes correctly and reconciles conservation laws
with a probabilistic description of physical reality in a mathematically elegant way. If
one seeks a more complete explanation, one may say that nature tells us that the notion
that a system of particles has pre-existing values for all possible measurements has to be
rejected. Under this view the measurement context becomes important, as the results will
depend on how a measurement is applied. It is not always possible to specify a single
probability space in advance for all possible measurements; rather, “quantum probabilities”
appear based on classical probability according to the conditions of different possible
experimental settings [22]. Interpreting the meaning of a quantum state, and the question of
whether it expresses the objective underlying physical state of a system or rather the possible
measurement outcomes and information, is still a matter of debate [19,21,23]. Contextuality
becomes an important concept [25,28,78–83] and it can be formalized to some degree, for
example, by requiring predictive completeness, which means that the quantum state has to
be completed by linking it with a measurement operator as well [29].

Alternatively, Bell’s approach may be considered as pointing to something new, which
is responsible for the observed connection strength. One may use it as a starting point
to reconsider the role of time and retrocausality [84,85], restrictions of free choice [86–88],
superdeterminism [89,90], collapse theories [91–93] or to speculate about what quantum
entanglement tells us about the fabric of spacetime [94–96].

In any case, one needs to keep in mind that in Bell’s approach, the terms free choice
and locality are essentially used as names for certain equations on the basis of the hidden
variable space Λ and a joint probability measure: Equation (11) is named (i) locality and
Equation (12) is referred to as (ii) free choice or even free will. In response to [97], just as
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Valerio Scarani has used the title Bell nonlocality for his book [24], the longer term Bell free
choice may be more fitting for (ii). Essentially, (ii) is a statistical independence condition.
As shown in [27], assumptions (i) and (ii) can, on the basis of (iii) realism, be proven to
be equivalent, when it comes to the optimal strategies to simulate a desired joint statistic
P(a, b|xy). This is surprising as (i) and (ii) would appear to be unconnected concepts in
everyday language. If one imagines a universe with an infinite speed of light, the locality
principle would disappear, but there is no reason why this should affect the question of
free will. Thus, in a sense, the mathematical equivalence of violations of (i) and (ii) can also
be taken as an argument for making a clearer distinction between the terms free choice and
locality in everyday language, in order to differentiate from their use in the sense of Bell.
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