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Abstract: The power output of Stirling engines can be optimized by several means. In this study, the
focus is on potential performance improvements that can be achieved by optimizing the piston motion
of an alpha-Stirling engine in the presence of dissipative processes, in particular mechanical friction.
We use a low-effort endoreversible Stirling engine model, which allows for the incorporation of finite
heat and mass transfer as well as the friction caused by the piston motion. Instead of performing
a parameterization of the piston motion and optimizing these parameters, we here use an indirect
iterative gradient method that is based on Pontryagin’s maximum principle. For the varying friction
coefficient, the optimization results are compared to both, a harmonic piston motion and optimization
results found in a previous study, where a parameterized piston motion had been used. Thus we
show how much performance can be improved by using the more sophisticated and numerically
more expensive iterative gradient method.

Keywords: piston motion optimization; endoreversible thermodynamics; Stirling engine; irreversibility;
friction; power; efficiency; optimization; optimal control

1. Introduction

Stirling engines [1] are devices capable of transforming heat into mechanical work by
utilizing almost any external heat source. Thus, they constitute an interesting alternative for
power production in various scenarios, e.g., for waste heat or burnable waste gas utilization,
or as part of electrothermal energy storage systems for renewable energies.

The most essential parts of a Stirling engine are the hot working space, the cold
working space, and the regenerator. The two working spaces are thermally connected
to external heat baths through heat exchangers. The volumes of the working spaces are
cyclically varied over time so as to compress the gas at low temperature, heat it up with
help of the regenerator, expand it at high temperature and cool it down again using the
regenerator. One technical configuration to realize this is referred to as alpha-Stirling
engine, where the two working spaces are in separate cylinders and their volumes are
changed by independently movable working pistons.

To determine proper design parameters of a Stirling engine suitable for a specific
application, parameter optimizations can be performed, see for example [2–6]. Then,
the piston motions are often determined as harmonic functions or parametric functions
representing specific piston drive mechanisms. In this theoretical study we focus on how the
piston motion influences the engine performance by applying methods similar to previous
optimizations of Stirling engines’ piston motions [7–13]. Experimental studies [14,15] have
shown that power output improvements of Stirling engines are feasible through altering
the piston motion.

In the current study we revisit [12], where we performed the optimization of an
alpha-Stirling engine for a parameterized class of smooth piston motions. In contrast
to this previous publication, we will not restrict ourselves to such a parameterized class
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of piston motions here, but we will use optimal control theory to obtain a more general
solution of the optimal control problem. To this end we apply an indirect iterative gradient
method [11] that exploits limit cycles in the state and costate problems to solve them for
periodic boundary conditions.

In order to make such optimizations feasible, models with few degrees of freedom
and low numerical effort are required. Stirling engine models are often categorized as
first, second, and third order [16,17]. Especially in the case of the more detailed third
order models, relatively large numerical effort is typically connected to the description
of the regenerator. Therefore, several attempts [10,11,18,19] have been made to develop
reduced-order regenerator models that constitute proper tradeoffs between accuracy and
numerical effort for optimal control problems.

In the current study we use an ideal regenerator model [12] that is based on Endore-
versible Thermodynamics. This model does not require additional differential equations
to describe the regenerator dynamics. Instead, the regenerator is described as an endore-
versible engine that instantaneously balances fluxes of particles, energy, and entropy. Hence,
this model allows for a very-low-effort Stirling engine description including finite heat
transfer between the working gas and the external heat baths, finite mass transfer through
the regenerator as well as friction of the pistons.

2. Stirling Engine Model
2.1. Endoreversible Notation

Endoreversible Thermodynamics [20,21] is a sub-field of finite-time thermodynam-
ics [22–26]. Generally, the common goal is to develop models that incorporate the system’s
most dominant loss phenomena for describing performance features more accurately than
reversible models. The focus typically is on providing models that can be solved either
analytically or with low numerical effort so as to facilitate optimizations, obtain general
results, and understand the overall irreversible system behavior. The application of finite-
time thermodynamics is by no means restricted to heat engines and refrigerators [27–35],
but various kinds of systems [36–44] can be considered.

In the endoreversible approach, physical systems are described as networks of re-
versible subsystems, which exchange extensities (entropy, volume, particles, . . . ) and
energy through reversible or irreversible interactions. Hence, in endoreversible modeling
all irreversibilities are typically captured by the interactions whereas the subsystems can
be described with the convenient tools of equilibrium thermodynamics. The most basic
kinds of subsystems are (in-)finite reservoirs that contain extensities on the one hand, and
engines, which represent ideal energy conversion devices, on the other.

A finite reservoir i is characterized by a state function E(Xα
i ) that determines its energy

content depending on the amount of the extensities Xα
i contained in the reservoir. Here, the

superscript α specifies the extensity, e.g., entropy Si = XS
i , volume Vi = XV

i , and particle
number ni = Xn

i . The corresponding intensity Yα
i follows as

Yα
i =

∂Ei(Xα
i )

∂Xα
i

, (1)

where YS
i = Ti is the temperature, 9YV

i = pi is the pressure, and Yn
i = µi is the chemical

potential of the reservoir. When it comes to specifying the state of the finite reservoir one
has some freedom in the choice of state variables. One way is to specify all extensities.

The reservoir can have one or several contact points r, to each of which one interaction
is attached. Through these interactions, the reservoir can take up or release extensities.
According to the Gibbs relation every extensity flux Jα

i,r that enters (Jα
i,r > 0) or leaves

(Jα
i,r < 0) the reservoir at r carries an energy flux Iα

i,r = Yα
i Jα

i,r. If the interaction involves
several extensity fluxes (see multi-extensity fluxes [39]) then the overall energy flux at r is
Ii,r = ∑α Iα

i,r.
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The dynamics of the finite reservoir can then for example be defined by a number of
ordinary differential equations (ODEs), each describing the balance equation for one of the
respective extensities

Ẋα
i = ∑

r
Jα
i,r. (2)

In contrast, if the reservoir is considered as infinite, it is characterized by prescribing the
full set of intensities Yα

i , which do not change—regardless of the size of the extensity fluxes
Jα
i,r.

As stated above, engines represent energy conversion devices. They can either operate
cyclically or continuously, where we solely consider the latter here. They do not contain
extensities and energy but only pass them on. Correspondingly, engines are characterized
by a set of balance equations for all extensities and energy:

0 = ∑
r

Jα
i,r, (3)

0 = ∑
r

∑
α

Yα
i,r Jα

i,r. (4)

While the intensity values are equal at all contact points of a reservoir, with engines the
intensity values generally differ from contact point to contact point so that all these balance
equations are fulfilled.

Interactions are the modeling objects in Endoreversible Thermodynamics which gen-
erally capture all irreversibilities. They are characterized by balance equations for the
extensities and energy, as well as by transfer laws. We will here only consider bilateral
interactions that connect two subsystems. A bilateral interaction is reversible if and only
if the intensity values are equal at the two connected contact points. This is achievable
with infinitely fast transfer laws, making sure that small intensity differences are balanced
instantaneously.

If the transfer laws are finite, the system might evolve in a way such that the intensity
values at the bilateral interaction’s two contact points deviate. Then the interaction becomes
irreversible: now energy and all extensities but entropy are conserved in it. Any proper
definition of transfer laws must assure that entropy can only be produced and never
annihilated.

2.2. State Dynamics

The state dynamics of the endoreversible Stirling engine model is characterized by six
coupled ODEs describing the dynamics of the working space volumes, particle numbers,
and entropies:

V̇1 =
νV
τ
(u1(t)−V1) , V̇2 =

νV
τ
(u2(t)−V2) , (5)

ṅ1 = α(p2 − p1) +
ntot − n1 − n2

νn τ
, ṅ2 = α(p1 − p2) +

ntot − n1 − n2
νn τ

, (6)

Ṡ1 = κ(TH − T1)/T1 +
S1
n1

ṅ1 , Ṡ2 = κ(TC − T2)/T2 +
S2
n2

ṅ2 , (7)

where 1 refers to the hot working space, 2 to the cold working space, H to the hot heat
bath and C to the cold heat bath, as indicated in Figure 1. The heat bath temperatures are
defined as TH = 400 K and TC = 300 K.

The volume dynamics from Equation (5) is defined dependent on prescribed periodic
control functions ui(t), i ∈ {1, 2}. Here, νV is a large number (where we will use νV = 500)
and τ is the cycle time. This volume dynamics is similar to an over-damped mass-spring-
system with moving spring support. If νV (the “spring constant”) is chosen large, then Vi(t)
will approach ui(t) for t→ ∞. This indirect way of controlling the volume through ui(t)
allows the dynamics to approach the limit cycle independent from the chosen initial value
for the volume.
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Figure 1. Endoreversible model of the Stirling engine with reservoirs (rectangles) and endoreversible
engines (circles) as well as reversible (straight lines) and irreversible (wavy lines) interactions. On the
left side the hot cylinder 1 is located with its interactions to the hot heat bath H and a transmission
unit T1. On the right side the cold cylinder 2 is displayed with corresponding interactions to the
cold heat bath C and a transmission unit T2. Both are connected by the regenerator R in the middle
which interacts with an entropy and work reservoir, SR and WR, respectively. Further reservoirs are
work reservoirs WT and WF collecting the net power and friction losses, respectively, from the energy
converting engines T1 and T2 as well as volume reservoirs E representing the environment [12].

The particle dynamics from Equation (6) essentially features two terms. The first term
α(pj − pi) describes a pressure driven particle flux between the two working spaces i and j,
where α is a particle transfer coefficient. The second term was added in the current model
to make sure that the particle dynamics features a limit cycle, which is essential for the
application of the indirect optimization algorithm used in this study and—as above—gives
freedom in choosing the initial values for the particle numbers. Here, ntot and νn are fixed
parameters, where we will use ntot = 1 mol and νn = 20. For t → ∞, n1 + n2 → ntot and
then this term becomes an additive zero.

The entropy dynamics from Equation (7) is the very same as in [12]. It also features
two terms, the first one describing heat transfer from or to the corresponding external heat
bath with the heat transfer coefficient κ and the second one describing reversible entropy
exchange with the ideal endoreversible regenerator.

The intensities in the two working spaces i ∈ {1, 2} can be calculated as [12]:

Ti =

(
R T1+ĉV

0
p0

ni
Vi

e
( Si

ni R−
S0

n0 R

)) 1
ĉV

, (8)

pi =
ni R
Vi

Ti , (9)

µi =

(
ĉV R + R− Si

ni

)
Ti , (10)

where we use ĉV = 5/2 for the dimensionless specific heat capacity, R is the ideal gas
constant and S0/n0 is the working gas’s molar entropy at reference conditions T0 and p0.
Corresponding data can for example be found in [45]. In fact, apart from constant shifts
in the entropies, the system dynamics is not influenced by the definition of this reference
entropy. Hence we refrain from giving values here.

Note that even though Equations (5)–(10) describe the complete system dynamics,
additional care has to be taken regarding the evaluation of output quantities like mechanical
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power. This is due to the use of the ideal endoreversible regenerator model and will be
addressed next.

2.3. Performance Measures

As displayed in Figure 1, the ideal endoreversible regenerator is represented by the
engine R. This engine has interactions with the working spaces 1 and 2. Moreover, in order
to allow for the instantaneous balancing of energy and entropy fluxes that enter or exit R at
the corresponding contact points, R is given additional interactions to a heat bath SR and a
work reservoir WR. The heat bath SR is chosen to have the cold heat bath’s temperature TC.
Then from the energy and entropy balances follows that

JS
SR,R = 9JS

1,R − JS
2,R (11)

and
PR = 9T1 JS

1,R − µ1 Jn
1,R − T2 JS

2,R − µ2 Jn
2,R − TC JS

SR,R . (12)

In this rather simple, ideal endoreversible regenerator model the integral surplus or deficit
of the energy

∫ τ
0 PR dt is then assumed to enter the overall work output:

Wout =
∫ τ

0
p1V̇1 + p2V̇2 − β

(
V̇2

1 + V̇2
2

)
+ PR dt. (13)

Here, β is the friction coefficient of the pistons. Correspondingly, the average net power
output of the Stirling engine is Pout = Wout/τ. The heat taken from the hot heat bath
during one cycle is

Qin =
∫ t0

0
κ(TH − T1)dt (14)

and the efficiency of the Stirling engine results as η = Wout/Qin.
Note that detailed analyses of Stirling engines, as necessary during design develop-

ment, require more detailed regenerator models than the ideal endoreversible regenerator
model used here. Nevertheless, this model is considered useful when the behavior of
regenerative systems is studied in a rather general manner, as it is the case here, and if
additionally very low numerical effort is a key requirement.

3. Optimization

In this study we revisit a previous work [12] where we used a parametric optimiza-
tion method to optimize the piston motion of the Stirling engine described above. This
parametric optimization leads to a power-optimal piston motion that we will refer to as OS
motion. In the following we will briefly introduce this parametric optimization method.
Afterwards, we will describe the optimization method based on Optimal Control Theory,
which we use in the present study to obtain a more general optimization result labeled
COC motion.

3.1. Parametric Optimization (OS Motion)

In the study mentioned above [12] the piston motion of the alpha-Stirling engine was
parametrized by the following function:

Vi(t) = Vmin + (Vmax −Vmin) f (t/τ, σi, δi), (15)

f (t/τ, σ, δ) = f1( f2(t/τ, σ), δ), (16)

f1(y, σ) = (sin(2πy + σ sin(4πy)) + 1)/2, (17)

f2(x, δ) = x + δ(1− cos(2πx)). (18)

This motion is dependent on the two parameters σ and δ which can be different for the
two cylinders of the engine, hence we have σi, δi with i = 1, 2. The state dynamics—and
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consequently the power output—is thus influenced by the parameters σi, δi. Then, using
an iterative optimization algorithm σi, δi are adapted to maximize the power output. The
resulting piston motion we refer to as OS motion. For more details see [12].

Note however that even though the OS motion might capture important features of
the fully optimized motion, the possible shapes, which can be realized with this parametric
approach, are quite limited. For example, the swept volume (Vmax −Vmin) was not part of
the optimization in [12]. Thus, it must be expected that the optimal power output obtained
with the OS motion can be outmatched by using a more general parametrization Vi(t).

In this study we will use Optimal Control Theory to optimize the piston motion,
which will be described below. It does not require any kind of parametrization of the piston
motion and will thus lead to a more general optimization result.

3.2. Optimal Control Theory (COC Motion)

The working volumes of the Stirling engine are here considered to result from τ-
periodic control functions ui(t), i ∈ {1, 2} in terms of differential equations:

V̇i =
νV
τ
(ui(t)−Vi), (19)

as described in Section 2.2. Now, for prescribed cycle time τ, our goal is to choose ui(t) in
a way such that the work output Wout is maximized for the solution of the system of ODEs

ẋ = f (x, u) (20)

in the time domain t ∈ [0, τ] under periodic boundary conditions: x(0) = x(τ). Here, we
use the following definitions of the state vector x := (V1, V2, n1, n2, S1, S2)

T and the control
vector u := (u1(t), u2(t))

T as well as the state dynamics f defined as a vector function of
the latter according to Equations (5)–(10).

This constitutes a cyclic optimal control problem. To set up the necessary conditions
of optimality, we define the Hamilton function:

H := ζ + λT f (x, u), (21)

where λ is a costate vector and ζ is the path target function:

ζ := p1V̇1 + p2V̇2 − β
(

V̇2
1 + V̇2

2

)
+ PR − pen(V1, V2). (22)

This is in accordance with the definition of the overall work output from Equation (13).
However, here a penalty term was added in order to account for minimum and maximum
volume constraints:

pen(V1, V2) := νp0

(
eνp1

Vmin−V1
∆V + eνp1

V1−Vmax
∆V + eνp1

Vmin−V2
∆V + eνp1

V2−Vmax
∆V

)
, (23)

where the prefactors are defined as νp0 = 1 W and νp1 = 500, the maximum admissible
swept volume is ∆V = Vmax −Vmin, and the minimum and maximum volumes are Vmin =
1 L and Vmax = 11 L, respectively. The actual swept volume ∆VCOC that the optimized
piston paths of the COC motion involve may also turn out to be smaller than ∆V, as will be
seen later.

Then the first order necessary conditions of optimality are [46,47]:

ẋ =∇λH , (24)

λ̇ =−∇xH , (25)

0 =∇u H . (26)
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Equations (24)–(26) need to be solved for periodic boundary conditions for both the state
and the costate variables: x(0) = x(τ), λ(0) = λ(τ). This is here done with an indirect iter-
ative gradient method described in [11], which exploits the existence of attractive and repul-
sive limit cycles in the state problem (Equation (24)) and the costate problem (Equation (25))
for obtaining the periodic solutions.

4. Results

In [12] the Stirling engine piston motion was power-optimized for a parameterized
class of smooth piston motions. The optimized piston motion is referred to as OS, whereas
the “standard harmonic piston motion” with Vmin = 1 L, Vmax = 11 L and 90° phase shift
is referred to as STD and used as a benchmark.

The alpha-Stirling engine model introduced in Section 2 is equivalent to that used
in [12]. However, in the current study additional care was taken to make sure that the
system dynamics feature a limit cycle in order to allow for the application of the above-
mentioned optimization method. The following set of parameter values we will refer to
as “reference values” in this study: β0 = 105 Js/m6, α0 = 100 mol/(s bar), κ0 = 105 W/K,
τ0 = 1 s. Here, the values α0 and κ0 were chosen so that the associated pressures and
temperatures equilibrate very fast compared to the cycle time τ0. Correspondingly, the
associated irreversibilities are relatively small. Hence, apart from the friction irreversibility
the model can be considered near-ideal. The results obtained for these values are called
“reference case”. The piston motions obtained with the cyclic optimal control algorithm
described in Section 3.2 will be referred to as the COC motion. In the following, we will
compare it to the STD motion as well as the OS motion from [12].

In Figure 2 the volumes of the working spaces are plotted against time for the reference
case. The STD motion is represented by dotted lines, the OS motion by dashed lines, and
the COC motion by solid lines. The red lines represent the hot working space and the blue
lines the cold working space. It can be seen that there are considerable deviations between
all three types of piston motions. However, the OS and the COC motion do have in common
that the pistons tend to spend more time close to their bottom and top dead centers than
with the STD motion. Consequently, the average piston velocities are increased compared
to the STD motion. The highest piston velocity occurs for the OS motion. For the COC
motion the maximum piston velocity is lower but the velocity is almost constant during
four clearly distinguishable strokes. This leads to large accelerations at the transitions
between those strokes, especially at t/τ ≈ 5/8. This is connected to the fact that the path
target function used here does contain friction as a function of the velocity (via V̇i), whereas
it does not contain the acceleration (via V̈i) and thus there is no penalty on fast accelerations.
We will come back to this sharp transition later.
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o
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i
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2

Figure 2. Resulting cylinder volumes V1 and V2 against relative time t/τ for the STD, OS, and COC
motions with reference case parameters.
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The overall gas volume V1+2 := V1 + V2 is depicted in Figure 3 for all three types of
piston motions by black curves. The cold working volume is again shown by blue lines.
As indicated above, apart from the moderate irreversibility due to friction, the reference
values lead to a near-ideal thermodynamic model. It is interesting that for the considered
friction law and volume constraints corresponding to an alpha-type Stirling configuration,
the COC motion does not contain isochoric strokes–in contrast to the ideal Stirling cycle.
Instead, the overall gas volume V1+2 changes with approximately constant absolute rate
during almost the whole cycle, in order to minimize frictional losses. This may be different
for beta- or gamma-Stirling configurations.

0 1/8 1/4 3/8 1/2 5/8 3/4 7/8 1
0

2

4

6

8

10

12

14

16

18

20

22
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V
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lu
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e
V
i
[L

]

V STD
1+2 V STD

2 V OS
1+2 V OS

2 V COC
1+2 V COC

2

Figure 3. Overall gas volume V1+2 and cold cylinder volume V2 against relative time t/τ for the STD,
OS, and COC motions with reference case parameters.

In Figure 4 the gas pressures in the working spaces are plotted against time for the
reference case. The STD motion is represented by dotted lines, the OS motion by dashed
lines, and the COC motion by solid lines. The red lines represent the hot working space
and the blue lines the cold working space. Note that in this figure the blue lines lie on top
of the respective red lines since there are only very small pressure differences between
the two working spaces. This is due to the choice of a relatively large parameter value
for the mass transfer coefficient α = α0. The optimizations raise the overall difference
between the minimum and maximum cycle pressures. While the minimum pressure values
approximately remain the same, the OS and COC motions lead to much higher maximum
pressures than the STD motion. For the COC motion the pressure curves are much more
peak-shaped than for the OS motion and their maximum values are about 18% higher than
that of the OS motion. With the COC motion the pressure peak occurs at the minimum of
the overall gas volume V1+2 at t/τ ≈ 5/8, which is much lower for COC than for OS, as
can be seen in Figure 3. Obviously, the shape and maximum value of that peak strongly
depend on the volume constraints.

In the following we will discuss the influence of friction on the optimal piston motion
and the resulting performance measures. As can be seen in Equations (13) and (22), friction
is in this work modeled depending on the piston velocity in terms of β V̇2

i with the friction
coefficient β. We repeated the optimization for varying β. Here, we chose a range with
β ≥ 0.5× 105 Js/m6 (for the computation of the COC motions) since for very small friction
the tendency to perform more than one reciprocating piston movement in the prescribed
time period grows. Correspondingly, by choosing β large enough as to prevent additional
reciprocating movements, the results for the COC motion remain comparable to those for
the STD and OS motions.
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Figure 4. Resulting cylinder pressures p1 and p2 against relative time t/τ for the STD, OS, and COC
motions with reference case parameters.

In Figure 5 the volumes of the working spaces of the COC motion are plotted against
time for varying friction coefficient β. The hot working space is represented by solid lines,
the cold working space by dotted lines. Obviously, for the increasing friction coefficient
the piston’s dwell times at the bottom dead center (maximum volume) reduce and above
β ≈ 2× 105 Js/m6, the curves eventually detach from the maximum volume bounds. At
the highest considered value of β = 8× 105 Js/m6, the swept volumes have reduced to
about one half of the available volume. In contrast, the piston’s dwell times at the top
dead center (minimum volume) are only slightly reduced for increasing β. Remarkably,
the sharp edge at t/τ ≈ 5/8 is not affected by increasing friction. Only the absolute values
of the curvature around the volume maximums (bottom dead centers) become smaller
and smaller. This behavior can be related to the path target function from Equation (22):
The volumes are kept minimal as to decrease the effective dead volume and increase the
pressure in the engine and thus the indicated work, which leads to the sharp edge at
t/τ ≈ 5/8. On the other hand as friction becomes more dominant the quadratic average
of the piston speeds (translating to friction) are reduced while trying to achieve swept
volumes (indicated work) as high as possible. This results in the rounded volume maxima.
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Figure 5. Resulting cylinder volumes V1 and V2 against relative time t/τ for the COC motion with
reference case parameters but varying friction coefficient β.
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From the temporal evolution of the state variables, the work output per cycle Wout is
determined by integration, as defined in Equation (13). The cycle-averaged power output
follows as Pout = Wout/τ. In Figure 6 the average power output Pout of the Stirling engine
is plotted against the friction coefficient β for the STD, OS, and COC piston motions. For
low friction coefficient the COC motion leads to about 10% power gain relative to the OS
motion. For higher values of β the power gain due to the COC motion becomes much
larger than that of the OS motion. This is connected to different effects:

• STD motion: As β is increased for fixed piston motion, frictional losses increase linearly
with β. Therefore, the average power output Pout decreases linearly with β.

• OS motion: As β changes, the piston motion adapts. Therefore, the average power
output Pout decreases non-linearly with β. However, since the actual swept volume is
fixed to the maximum admissible swept volume ∆V, the net power output Pout decays
at least with a rate of −2(2 ∆V/τ)2. This follows from Equation (13) for the pistons
moving according to a triangle wave with V̇i = ±(2 ∆V/τ).

• COC motion: As β changes, the piston motion adapts not only in its shape, but also
in its actual swept volume ∆VCOC. This can be seen in Figure 5. Starting from β ≈ 2
the actual swept volume ∆VCOC continuously decreases as β is increased. Therefore,
now the lower bound for the rate of decay of Pout is only −2(2 ∆VCOC/τ)2, which
quadratically reduces with ∆VCOC. Correspondingly, it can be seen in Figure 6 that
the decay of Pout with increasing β is much slower for the COC motion.

To make the latter point clearer we plot the optimization result of the COC motion
already shown in Figure 6 (black line) against both the friction coefficient β and the actual
swept volume (of the cold piston) in Figure 7. The COC motion is here represented by the
thick black line. The color surface apart from that line was obtained by varying β, while
leaving the swept volume and the shape of the piston motion fixed. That is, in Figure 7 the
swept volume is a proxy for the shape of the piston motion according to Figure 5.

It can be seen that, starting in the upper corner, the net power output is reduced by
both increasing the friction coefficient and decreasing the swept volume. If the swept
volume is held constant as β is increased, the decay of net power is very strong, not unlike it
happens for the STD and OS motions. The COC motion (thick black line), however, avoids
this strong decrease by reducing the swept volume for larger β.

The influence of the friction coefficient β on the Stirling engine’s efficiency is shown
in Figure 8. For small β the efficiency approaches a value of 0.25 for all piston motions,
which corresponds to Carnot efficiency. This is because the reference values κ0 and α0 of the
heat and mass transfer coefficients were chosen relatively large, so that the corresponding
irreversibilities are negligible.
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Figure 6. Average power output Pout for the STD, OS, and COC motions with reference case parame-
ters but varying friction coefficient β.
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Figure 7. The thick black line represents the average power output Pout of the COC motion plotted
against the friction coefficient β and the actual swept volume of the cold piston (see Figure 5). The
color surface was obtained by varying β, while leaving the swept volume and the shape of the piston
motion fixed. Correspondingly, the swept volume here is a proxy for the shape of the piston motion
from Figure 5. The plot range is restricted to values above zero watts.

0 1 2 3 4 5 6 7 8
0

0.05

0.1

0.15

0.2

0.25

Friction coefficient β [ 105 J s/m6 ]

E
ffi

c
ie

n
c
y
η

[-
]

STD OS COC

Figure 8. Efficiency η for the STD, OS, and COC motions with reference case parameters but varying
friction coefficient β.

The optimizations of the piston motion were performed for the target function being
the power output in both cases, with the OS and the COC motion. Therefore, the efficiency
resulting from the optimized motions will not necessarily be lager than that of the STD
motion. In fact, for the OS motion it can be observed that its efficiency goes below that
of the STD motion for β below about 2.1× 105 Js/m6. For the COC motion this does not
occur in the considered range with β ≥ 0.5× 105 Js/m6. For large β both, the OS and the
COC motion lead to increased efficiency. However, the efficiency increase due to the COC
motion is much more significant, which is again partially related to the reduction in the
swept volumes.

5. Conclusions

In this study we applied cyclic optimal control theory to power-optimize the piston
motion of an alpha-Stirling engine with dominating mechanical friction irreversibility. The
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underlying endoreversible Stirling engine model additionally takes finite heat and mass
transfer into account. However, we here used large transfer coefficients so that, apart from
friction, a near-ideal thermodynamic model was obtained. The optimizations were repeated
for the varying friction coefficient. The results for the optimized piston motions (COC)
were compared to results of a previous study [12], where parameterized piston motions
had been optimized (OS). Moreover, harmonic piston motions (STD) were resorted to as
a benchmark.

The optimized piston motions OS and COC lead to increased pressure variations
during the cycle, which bring about significant gains in power. The COC motion obtained
with cyclic optimal control theory in the current study, outmatches the OS motion from [12]
regarding both power and efficiency. This especially holds true for high values of the
friction coefficient. However, in the COC motion considerably higher accelerations of the
pistons occur. This is connected to the used definition of frictional losses involving only the
piston velocities, not accelerations.

An interesting result is that for given engine parameters, there is a certain swept
volume for which net power becomes optimal. Increasing swept volume beyond this value
would result in reduction of net power.

Moreover, it was shown that for the considered friction law and volume constraints cor-
responding to an alpha-Stirling configuration, the COC motion does not contain isochoric
strokes, which is in contrast to the ideal Stirling cycle. For other Stirling configurations this
might however be different.

For more detailed analyses, as required in engineering, additional subsystems as well
as transfer and friction laws describing a specific Stirling engine design can be included in
the model. Moreover, in this case a more detailed irreversible regenerator model should
be used. A low-order endoreversible regenerator model developed for this purpose is, for
example, described, numerically validated and applied in [11].
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