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Abstract: Free electron systems are ubiquitous in nature and have demonstrated intriguing effects
in their collective interactions with weak electric and magnetic fields, especially in aqueous envi-
ronments. Starting from the Dirac Hamiltonian, a fully relativistic expression is derived for the
electron energy shift in the presence of a spatiotemporally constant, weak electromagnetic field. The
expectation value of this energy shift is then computed explicitly using the Fourier transforms of
the fermionic fields. To first order in the electromagnetic fields, the average relativistic energy shift
is found to be completely independent of the electron spin-polarization coefficients. This effect is
also considerably larger than that predicted in quantum mechanics by the analogous Zeeman shift.
Finally, in the non-relativistic limit, it is shown how to discriminate between achiral and completely
polarized states, which leads to a concluding discussion of possible mesoscopic and macroscopic
manifestations of electron spin states across many orders of magnitude in the physical world, with
stark implications for biological and other complex systems.
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1. Introduction

Deviations from linear response theory in liquids have been examined from several
experimental and theoretical perspectives that have highlighted the role of nonequilibrium
effects. Such nonlinear responses—and their role in light-driven, mechanical–structural
phase transitions—originate from the strong coupling of electronic and vibrational degrees
of freedom. This effect has also been described for Fröhlich polarons, where the impul-
sive movement of an electron in the highly nonlinear regime induces persistent coherent
phonons (quantized vibrations).

Such nonlinearities pose significant challenges for molecular dynamics (MD) simu-
lations of dissipative systems that are hallmarks of biology, and which reflect the flow
of energy under nonequilibrium conditions. The breakdown of linear response theory
may thus be closely related to the deviations observed from ergodic behavior in systems
of biological relevance. Fluorescence upconversion experiments in the ultraviolet, com-
bined with nonequilibrium MD simulations, have observed deviations from the linear
response approximation for the relaxation dynamics of photoexcited tryptophan in water.
It has also been demonstrated that metabolic activities drive the biological milieu toward
non-ergodicity far from thermodynamic equilibrium, resulting in increased cytoplasmic
fluidization that allows larger components to escape their local environment anomalously
and explore larger regions of the cellular compartment. Works since 2018 [1–3] have pre-
dicted, observed, and simulated the emergence and evolution of terahertz-scale phonon
coherence in optically driven, out-of-equilibrium proteins in ionic solutions. These “phonon
condensates” emerge from a dynamic interplay among physical degrees of freedom in
the protein, water, and ions in the solution, and they are intimately related to long-range
electrodynamic behaviors in aqueous systems.
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Indeed, there is a long-studied relationship between coherent states and fractal self-
similarity across physical systems. Since at least the time of Schrödinger (1920s), and more
fully developed in the quantum theory of light through seminal works by Bargmann, Segal,
Glauber, Sudarshan, Schwinger, and others in the 1960s, a dynamic phase coherence has
been proposed between matter coupled to electromagnetic fields. In the quintessential
example of the laser, the pumping of a crystal with the appropriate quantum electronic
transitions, nonlinearly coupled to its dissipative environment, creates a physical scenario
where “population inversion” can occur, violating the thermal equipartition of energy
due to the highly driven, nonequilibrated context. This in turn results in a redistribution
of energy into the preferred mode(s), which can be “squeezed” in the corresponding
space of conjugate, non-commuting observables A and B, according to the generalized
Heisenberg uncertainty relation ∆A ∆B ≥ 1

2i
[
Â, B̂

]
, where Â and B̂ are the quantum

operators corresponding to the observables. Since the 1980s, Vitiello et al. have applied
these insights to understanding the emergence of fractal structures via the spontaneous
symmetry breaking of coherent states in dissipative environments, which are characteristic
of crystals, ferromagnets, superconductors, and biological systems.

In contemporaneous development, spintronic architectures and electron vortex beam
setups have been buttressed by advancements in theory on angular momentum conversion
between spin and orbital types [4]. Careful analyses [5,6] have shown that electron vortices
carry “intrinsic” orbital angular momentum that behaves similarly to the spin of a massless
particle, even in the non-relativistic limit. In the framework of quantum field theory (QFT),
we have over the last five years computed the effects of a static magnetic field on free
electron systems [7–9]. As with those treatments, the spin ~S = (S1, S2, S3) = (S23, S31, S12)
can be written as follows in terms of the fermionic fields, using ψ(x) as a function of the
four-vector x = (x0,~x):

Sab =
∫

dx ψ†(x)
1
2

σab ψ(x) =
∫

dx ψ†(x)
i
2

γaγb ψ(x). (1)

Here, γµ = (γ0,~γ) defines the conventional Dirac matrices. The Weyl (chiral) basis is used
in the presentation that follows.

The work described here is motivated by the rich history in condensed matter and
particle physics of extending quantum mechanical results by the application of QFT. Consid-
ering the field nature of fundamental particles in complex systems can produce drastically
different theoretical predictions that may elucidate exotic quantum phenomena at larger
scales. In particular, our study makes use of the fact that in QFT spin angular momentum
is precisely defined at the outset as a function of the quantum fields, rather than arising in
quantum mechanics as an ad hoc addition to the orbital angular momentum (i.e.,~J = ~L+~S).
It is important to note that the calculation of infrared, Raman, and terahertz absorption
spectra from dipole-dipole correlation functions is contingent upon their derivation in
quantum mechanics from first-order perturbation theory (e.g., via Fermi’s golden rule).
This work thus provides the foundation for identifying additional terms needed from QFT
for the generation of more accurate long-wavelength absorption spectra, in particular when
Fermi’s golden rule breaks down.

2. Preliminary Details

The purpose of the present article is to study the effects of static electric and magnetic
potentials on electron energy. Following the approach for a Dirac electron [10] from prior
work [9], we begin with the free-electron Hamiltonian, written explicitly with the four
electron field components ψ1, ψ2, ψ3, ψ4, such that
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H =
∫

d~x
[
− i

2
ψγp∂p +

i
2
(∂pψ)γp + meψ

]
ψ

=
∫

d~x {2me <[ψ∗1 ψ3 + ψ∗2 ψ4 ] − =[ψ∗1 ∂3ψ1 + ψ∗1 ( ∂1 − i∂2 )ψ2 + ψ∗2 ( ∂1 + i∂2 )ψ1 − ψ∗2 ∂3ψ2 ]

+ =[ψ∗3 ∂3ψ3 + ψ∗3 ( ∂1 − i∂2 )ψ4 + ψ∗4 ( ∂1 + i∂2 )ψ3 − ψ∗4 ∂3ψ4 ]}. (2)

Implicit summation over the index p spans the spatial components only. An electromagnetic
potential is introduced by the covariant four-vector Aµ = (A0, ~A), which will modify the
free Hamiltonian via the Dirac minimal-coupling prescription ∂µ → ∂µ − i|e|Aµ. Keeping
terms to the first order in the components of Aµ, the energy shift due to the electromagnetic
potentials has been derived [9]:

∆Aµ
H = 2|e|

∫
d~x
{

A0ρ0 + ~A ·
[
<(−ψ∗1 ψ2 + ψ∗3 ψ4),=(−ψ∗1 ψ2 + ψ∗3 ψ4),

1
2

(
−|ψ1|2 + |ψ2|2 + |ψ3|2 − |ψ4|2

)]}
, (3)

where ρ0 = ∑4
j=1 |ψj|2. Further detail on this calculation can be found in the Methods below.

If we transform the spin current components using the γ5 ≡ iγ0γ1γ2γ3 and Pauli
matrices σp, such that

s′p = s′ab =
1
2

ψ†γ5σabψ =
1
2

ψ†
[
−I2 0

0 I2

][
σp 0
0 σp

]
ψ =

1
2

ψ†
[
−σp 0

0 σp

]
ψ, (4)

and define s′0 ≡ ψ†(x) I4 ψ(x) = ρ0, the energy shift expression takes on a particularly
suggestive and compact form:

∆Aµ
H = 2|e|

∫
d~x Aµs′µ. (5)

Because we can use γ5 to construct the chirality projection operators 1
2 (I4±γ5), Equation (4)

constitutes a chiral transformation of the spin operator σab.
Written in this way, one can see that we have derived a QFT effect analogous to the

Zeeman shift in quantum mechanics:

∆~AHZeeman = −gsµB~B · ~S, (6)

where gs is the familiar gyromagnetic factor and µB, the Bohr magneton, is half the electron
charge-to-mass ratio. One can now see the resemblance between Equation (6) above and
the vector potential portion of the QFT scalar product in Equation (5), with roughly a
replacement of the magnetic field ~B with the magnetic potential ~A and likewise of the spin
~S with the transformed spin current~s ′. A similar comparison could be made between the
energy shift due to the electric potential A0 and the Stark effect.

We now want to compute the expectation value of the energy shift in Equation (5) in a
specific electron state. We shall separate this energy shift into the two contributions ∆A0H
and ∆~AH from the electric and magnetic potentials, respectively. Consider the state with
momentum~k and defined as a linear combination of two spin eigenstates with complex
coefficients. Following the definitions and conventions expressed in [9], namely∣∣∣Ψ(~k)

〉
= λ+

∣∣∣↑,~k〉+ λ−
∣∣∣↓,~k〉, (7)

where the spin eigenstates are given by∣∣∣↑,~k〉 =
√

2E a↑ †
~k
|0〉,

∣∣∣↓,~k〉 =
√

2E a↓ †
~k
|0〉, (8)
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with E =
√

m2
e + |~k|2 and with the state normalization and Fourier transforms of the

fermionic fields fixed according to the prescriptions of Peskin and Schroeder [11], we are
able to compute the energy shift expectation value from the starting expression

〈
∆Aµ
H
〉
=

〈
Ψ(~k)

∣∣∣∆Aµ
H
∣∣∣Ψ(~k)

〉
〈

Ψ(~k)
∣∣∣Ψ(~k)

〉 . (9)

This integration is complicated by the exact functional form of the potentials Aµ. To
simplify it, these components are approximated by their average values 〈A0〉, 〈A1〉, 〈A2〉, 〈A3〉
over the integration volume so they can be treated as numbers. The integration volume is
fixed by the scale d of the experimental apparatus in which the electron interacts with the
potentials. To ease notation in the results below, we will drop the average symbols 〈. . .〉 for
the potentials, which will hereafter be presumed wherever the Aµ appear.

3. Results

Each term in the expectation value (9) must be computed between four sets of bra-
kets corresponding to the ↑↑, ↓↓, ↑↓, and ↓↑ configurations. Additional details on the
organization and symmetry of these calculations are included in the Methods. The final
magnetic energy shift expression for our single-electron state is thus

〈
∆~AH

〉
=
|~k|
E
|e|A3. (10)

This is a remarkable result: In the fully relativistic treatment, the first-order energy splitting
due to the magnetic potentials is completely independent of the spin-state coefficients
λ±. Furthermore, by choosing spinor fields corresponding to spin-z eigenstates, only the
z component of the vector potential ~A survives in the expression for the average energy
shift, due to symmetrical but cancelling contributions elsewhere (see the Methods). In
the ultra-relativistic limit (E ≈ |~k|), this shift is proportional to the change (|e|A3) in the
conjugate momentum in the z direction due to the introduction of magnetic potentials.

Choosing ~A = 1
2
~B×~x, and using sample values for a weak magnet of 3 gauss and an

apparatus of length d = 1 meter, it is found that
∣∣〈∆~AH

〉∣∣ . 0.160 MeV, just slightly over
30% of the rest mass of the electron. This value is more than 20 times the maximum energy
shift for slow electrons (E ≈ me) with (1− v2)−1/2 = 1.001, for which

∣∣〈∆~AH
〉∣∣ is about

1.4% of the electron rest mass. As a comparison, the quantum mechanical Zeeman shift for
these characteristic values is orders of magnitude smaller (10−8 eV), as one might expect
for such weak field strengths. Such QFT estimates are thus a reasonable validation of the
employed perturbative approach, which retains the magnetic fields to first order.

The expression for the average energy shift due to the electric potential is similar:〈
∆A0H

〉
= 2|e|A0. (11)

This electric energy shift is similarly independent of the spin-state coefficients but also lacks
information on the electron momentum, which can be understood from the nature of the
Lorentz force, ∂0kµ = e(∂µ Aν − ∂ν Aµ)∂0xν or in three-vector notation ~F = e(~E +~v× ~B).
Computing the average energy shifts in the non-relativistic limit (NRL) where ψ1, ψ2 �
ψ3, ψ4, we obtain

〈
∆A0HNRL

〉
= |e|A0

(
1− |

~k|
E
|λ+|2 − |λ−|2
|λ+|2 + |λ−|2

)
, (12)

〈
∆~AHNRL

〉
=

−|e|
|λ+|2 + |λ−|2

{
me

E
[A1<(λ∗+λ−) + A2=(λ∗+λ−)] +

1
2

A3

[
|λ+|2 − |λ−|2

]}
+
|e|A3

2
|~k|
E

. (13)
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Equations (12) and (13) make apparent that, in the NRL, symmetries are broken that require
the inclusion of spin-state information (λ±) in the expressions for the average energy shift.
Still, it is interesting to note that there exists a fixed term in each of the electric and magnetic
shifts in the NRL that is entirely independent of the spin-state coefficients.

In the low-mass limit, a correspondence exists between the physical description for
chirality X and that of helicity:

X me�E−−−→
~S·~k∣∣∣~k ∣∣∣ , Xkz = Sz, (14)

where ~S is the spin for a particle with momentum~k = (0, 0, kz). Assuming the definition
for chirality from Equation (14), it is found that the electric energy shift from Equation (12)
can be rewritten as 〈

∆A0HNRL
〉
= |e|A0

(
1− 2|~k|

E
〈
Xkz

〉)
. (15)

Thus, this average shift due to the electric potential in the NRL is a maximum for achiral
states

(〈
Xkz

〉
= 0

)
, and attains a maximum value (equal to the fixed term |e|A0) pre-

cisely half that of the fully relativistic result shown in Equation (11). Likewise, the fixed

term + |
~k|
E |e|A3/2 in the average magnetic shift (13) is precisely half that of the relativistic

shift (10).
Putting our calculations for electric and magnetic potentials together, we obtain the

fully general result 〈
∆Aµ
H
〉
= |e|

(
2A0 +

|~k|
E

A3

)
(16)

to first order, and for achiral electron states, we get

〈
∆Aµ
Hachir

NRL

〉
= |e|

(
A0 −

me

2E
A1 +

|~k|
2E

A3

)
. (17)

For a completely polarized right- (λ− = 0) or left-handed (λ+ = 0) electron state, A1 and
A2 terms vanish:

〈
∆Aµ
Hpol

NRL

〉
= |e|

[
A0

(
1∓ |

~k|
E

)
+ A3

(
|~k|
2E
∓ 1

2

)]
. (18)

The difference between these energy shifts,

〈
∆Aµ

(
Hpol

NRL −H
achir
NRL

)〉
= |e|

(
∓|

~k|
E

A0 +
me

2E
A1 ∓

1
2

A3

)
(19)

and 〈
∆Aµ

(
Hpol,L

NRL −H
pol,R
NRL

)〉
= |e|

(
2|~k|

E
A0 + A3

)
, (20)

can be experimentally measured to test the validity of our theory. From Figure 1, we can
see that the difference in Equation (20) is larger than that in Equation (19) for all non-
zero values of |~k|. Indeed,

〈
∆Ā

(
Hpol,L

NRL −H
pol,R
NRL

)〉
is the sum of

〈
∆Ā

(
Hpol,L

NRL −Hachir
NRL

)〉
and

〈
∆Ā

(
Hachir

NRL −H
pol,R
NRL

)〉
. This is consistent with what we would expect for achiral

states, as they are intermediate between the extremes of completely polarized (right- or
left-handed) states.
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Figure 1. Expectation values of energy shifts due to electromagnetic potentials Aµ. The energy

shift expectation values, computed in the single-electron state
∣∣∣Ψ(~k)

〉
= λ+

∣∣∣↑,~k〉+ λ−
∣∣∣↓,~k〉, have

been normalized by |e|Ā, with Ā = A0 = A1 = A2 = A3. Dimensionless results for the fully

relativistic treatment
〈

∆Aµ
H
〉

(blue), non-relativistic limit (NRL) achiral state
〈

∆Aµ
Hachir

NRL

〉
(orange),

and NRL completely polarized states
〈

∆Aµ
Hpol, R

NRL

〉
(yellow) and

〈
∆Aµ
Hpol, L

NRL

〉
(purple) are presented

as functions of the electron momentum |~k|, in units of MeV. See the Results for further description of
these states, in particular Equations (16)–(20).

The energy shifts above are clearly not invariant with respect to the (gauge) poten-
tials but can be transformed in such a way to include only the operationally significant
fields. Admittedly, the main results from Equations (10), (11), and (16) only hold true for
spatiotemporally constant fields. However, adding a constant vector potential to change
only the A1 and A2 components—which dictate the magnetic field B3 along the axis of
the critical spin-z eigenstates—would not alter Equation (16), in which the average energy
splitting is strictly a function of A0, A3, and electron parameters (cf. discussion between and
after Equations (10) and (11)). Described in the Coulomb gauge, and with the constraints
above, the average energy shift due to magnetic fields (cf. Equation (10)) is determined
to be dependent only on B1, B2, and the scale of the apparatus over which the fields are
effective. If the magnetic field is oriented entirely along the z-axis, which in principle can
always be done without loss of generality, then the fully relativistic magnetic energy shift
vanishes. The non-relativistic magnetic shift from Equation (13), however, does not vanish
in this case because A1 = − 1

2 B3d = −A2. Thus, the realizable magnetic field functions
as the operationally significant quantity in the calculations, and this field (B = ∇× A)
is not changed by an arbitrary gauge transformation (A → A +∇Λ). The averaging
approximation for the potentials described at the end of the Preliminary Details (where
the potentials are removed from the integration as numbers) can thus be replaced with
the operationally significant fields for each of the resulting energy shifts presented above.
Beyond that, it is important to recall the admonition by Aharonov and Bohm, in the closing
of their seminal work on the physical effectiveness of electromagnetic potentials [12], that
further development of a nonlocal theory is necessary, in which the electron interacts with
a field in a finite volume. That is precisely the scenario we have before us.
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4. Discussion and Conclusions

It has been demonstrated in this article, starting from the Dirac Hamiltonian for a free
electron, that a QFT treatment predicts energy shifts induced by magnetic fields acting
on the electron spin state that are several orders of magnitude larger than the quantum
Zeeman effect. For the fully relativistic treatment, where all four Dirac spinor components
are retained, it is observed that the average energy splitting to first order in the potentials
is completely independent of the spin-state polarization coefficients. In the NRL, where
only the “large” Dirac spinor components are considered, symmetry breaking produces
distinctions between achiral and polarized states, and we provide analytical solutions for
the different energy shifts that can be experimentally measured.

Our results may be relevant to a range of mesoscopic and macroscopic observables in
condensed matter, quantum optics, quantum transport, quantum biology, and a variety of
biomedical disciplines. Indeed, though the accurate description of these free or quasi-free
electron states is rather complicated, recent studies [13–15] suggest that spin polarization
enforces symmetry constraints on biorecognition processes between chiral molecules, and
that electrons transmitted in charge redistribution processes through chiral molecules are
filtered according to spin state and may serve as an allosteric control signal. More generally,
it was observed more than three decades ago that a delicate relationship exists between the
chirality of enantiomeric crystals formed out of solution, and the low-energy fluctuations
that are introduced from exogenous perturbations (e.g., stirring) of the crystallization
solution [16]. Diverse spectroscopic approaches [17,18] using ultrafast X-rays and electron
vortex beams can be used to probe the molecular chirality of such crystals.

Sensitive dependencies between biological function and the chirality of underlying
spin states are apparent with free, as well as bound, electron systems. Many researchers
have reported the effects of weak magnetic fields on the rate of adenosine triphosphate
(ATP) production [19] and reactive oxidative species (ROS) formation [20] by electron
spin flipping in a fashion that preserves quantum coherence. It has also been shown in
our group [21] that so-called “palindromic” DNA sequences with a defined chiral mirror
symmetry are essential to the synchronization of DNA double-strand breaks, which are
catalyzed by a certain class of enzymes used widely in molecular biology, biochemistry, and
genomics. Recent theoretical, computational, and experimental work [22–24] has demon-
strated that the handedness of DNA is reflected and imprinted in the chiral superstructure
of its surrounding water matrix.

Consistent with previous works [1–3], we are actively pursuing the experimental
realization, control, and exploitation of nonequilibrium effects in similarly driven but
more complex systems characteristic of biology. The inclusion of magnetic field effects
affecting spin degrees of freedom in these driven, nonequilibrium quantum systems will be
potentially groundbreaking in augmenting our understanding of how faster life processes
at the terahertz scale might influence slower life processes that are commensurate with
the functional experience and conscious information processing of whole organisms. Such
evidence illuminates the existence of a multiscale, intrinsic structural order connecting
electron spin systems to their mesoscopic and macroscopic manifestations, across many
orders of magnitude in the physical world.

5. Methods

All derivations and calculations were completed by hand, with multiple independent
checks. The figure was produced in MATLAB.

To derive Equation (3), we proceed with the following replacements in the integrand
of Equation (2), to first order in the potentials:

2me<
(

ψ∗1 ∆Aµ
ψ3 + (∆Aµ

ψ∗1 )ψ3 + ψ∗2 ∆Aµ
ψ4 + (∆Aµ

ψ∗2 )ψ4

)
−=[ψ∗1 (−i|e|A3)ψ1 + ψ∗1 (−i|e|A1 − |e|A2)ψ2 + ψ∗2 (−i|e|A1 + |e|A2)ψ1 − ψ∗2 (−i|e|A3)ψ2]

+=[ψ∗3 (−i|e|A3)ψ3 + ψ∗3 (−i|e|A1 − |e|A2)ψ4 + ψ∗4 (−i|e|A1 + |e|A2)ψ3 − ψ∗4 (−i|e|A3)ψ4]. (21)



Entropy 2022, 24, 358 8 of 9

To organize the calculations for the expectation value of the change in energy, we
consider the numerator of Equation (9), which requires evaluating four bra-kets for each
term of the sandwiched operator expression. Starting with ∆A0H, we explicitly evaluate
the bra-ket for the ↑↑ configuration:

2|e|
∫

d~x A0|λ+|2
〈
↑,~k
∣∣∣ψ∗1 ψ1 + ψ∗2 ψ2 + ψ∗3 ψ3 + ψ∗4 ψ4

∣∣∣↑,~k〉
= 2|e|A0|λ+|2

∫
d~x
∫ d~p d~p ′

(2π)6
ei(~p−~p′)·~x√

4EpEp′

〈
↑
∣∣∣∣∣∑
s,s′

as′
p′

†
as

p

[
us′

1 (p′)
∗
us

1(p) + us′
2 (p′)

∗
us

2(p) + us′
3 (p′)

∗
us

3(p) + us′
4 (p′)

∗
us

4(p)
]∣∣∣∣∣ ↑

〉

= 2|e|A0|λ+|2
∫ d~p d~p ′

(2π)6
(2π)3δ(3)(~p− ~p′)√

4EpEp′

〈
0

∣∣∣∣∣(2Ek)a↑~k ∑
s,s′

as′
p′

†
as

p[ · · · ]a
↑
~k

†
∣∣∣∣∣0
〉

= (2π)32|e|A0|λ+|2
∫

d~p
2Ek
2Ep

〈
0
∣∣∣δ(3)(~p−~k)δ↑s′ [us′

1 (p)
∗
us

1(p) + us′
2 (p)

∗
us

2(p) + us′
3 (p)

∗
us

3(p) + us′
4 (p)

∗
us

4(p)
]
δ(3)(~p−~k)δ↑s

∣∣∣0〉
= (2π)32|e|A0|λ+|2δ(3)(0)

[
u↑1(k)

∗
u↑1(k) + u↑2(k)

∗
u↑2(k) + u↑3(k)

∗
u↑3(k) + u↑4(k)

∗
u↑4(k)

]
= (2π)32|e|A0|λ+|2δ(3)(0)[(E− kz) + 0 + (E + kz) + 0] = 4|e|A0E|λ+|2(2π)3δ(3)(0) , (22)

where in the last line we have employed the use of the spinor fields from [11]. We see that
the more general expression for these spinors along a fermion spin-component axis with
coordinates θ, φ can be derived [11] from the two-component spinors

ξ(↑) =
(

cos θ
2

eiφ sin θ
2

)
, ξ(↓) =

(
−e−iφ sin θ

2
cos θ

2

)
. (23)

By symmetry, we obtain a result similar to the boxed quantity (22) for the ↓↓ configuration,
with the replacement λ+ → λ−. We get zero contributions from both opposite-spin configu-
rations. Note that in ∆A0H, the normalization for our spin state Ψ in the denominator of the
expectation value precisely cancels the factor of (|λ+|2 + |λ−|2)E(2π)3δ(3)(0) contributed
by the same-spin configurations.

Moving to ∆~AH, we note that there are zero contributions from the A1 and A2 terms,
due to precise cancellation of contributions from the opposite-spin configurations, e.g.,∫

d~x
〈
↑,~k
∣∣∣<(−ψ∗1 ψ2)

∣∣∣↓,~k〉 = −
∫

d~x
〈
↑,~k
∣∣∣<(ψ∗3 ψ4)

∣∣∣↓,~k〉 = −(2π)3δ(3)(0)
me

2
,∫

d~x
〈
↑,~k
∣∣∣=(−ψ∗1 ψ2)

∣∣∣↓,~k〉 = −
∫

d~x
〈
↑,~k
∣∣∣=(ψ∗3 ψ4)

∣∣∣↓,~k〉 = +(2π)3δ(3)(0)
ime

2
, (24)

and nothing from the same-spin configurations. By symmetry with the A0 bra-kets com-
puted above, we can easily find the A3 terms as expressed in the following relations:∫

d~x
〈
↑,~k
∣∣∣− |ψ1|2 + |ψ2|2 + |ψ3|2 − |ψ4|2

∣∣∣↑,~k〉 = (2π)3δ(3)(0)2|~k| =
∫

d~x
〈
↓,~k
∣∣∣− |ψ1|2 + |ψ2|2 + |ψ3|2 − |ψ4|2

∣∣∣↓,~k〉. (25)

Therefore the total contributions to ∆~AH in our spin state Ψ all come from the A3 terms, with
a similar cancellation of a factor of (|λ+|2 + |λ−|2)(2π)3δ(3)(0) by the fixed normalization
in the denominator of the expectation value.
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