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Abstract: Secret image sharing (SIS), as one of the applications of information theory in information
security protection, has been widely used in many areas, such as blockchain, identity authentication
and distributed cloud storage. In traditional secret image sharing schemes, noise-like shadows
introduce difficulties into shadow management and increase the risk of attacks. Meaningful secret
image sharing is thus proposed to solve these problems. Previous meaningful SIS schemes have
employed steganography to hide shares into cover images, and their covers are always binary
images. These schemes usually include pixel expansion and low visual quality shadows. To improve
the shadow quality, we design a meaningful secret image sharing scheme with saliency detection.
Saliency detection is used to determine the salient regions of cover images. In our proposed scheme,
we improve the quality of salient regions that are sensitive to the human vision system. In this
way, we obtain meaningful shadows with better visual quality. Experiment results and comparisons
demonstrate the effectiveness of our proposed scheme.

Keywords: secret image sharing; random elements utilization model; statistical correlation; saliency
detection; meaningful shadows; polynomial-based SIS

1. Introduction

With the development of artificial intelligence and internet technology, many studies
have focused on the information security. Large amounts of images are transmitted in
the cloud networks every day. It is worth paying attention to the transmission safety of
sensitive images such as remote-sensing images and military images. Image encryption [1]
and information hiding [2,3] are traditional image protection technologies, but they are
not applicable in some scenarios. Secret image sharin g (SIS), as one of the applications of
information theory in information security protection, has been widely used in many areas,
such as blockchain [4], identity authentication [5,6] and distributed cloud storage [7,8].

In a secret image sharing scheme with a (k, n) threshold [9], a secret image is divided
into n shadows and sent to n participants. If k or more shadows are collected, the original
secret can be reconstructed. In contrast, less than k shadows reveal nothing of the secret
image.

Generally, there are three main branches in SIS: visual cryptography (VC) [10,11], Chi-
nese Remainder Theorem (CRT)-based SIS [12–14] and polynomial-based SIS (PSIS) [15–18].
PSIS is always adopted because of the lossless recovery, no pixel expansion and good visual
quality shadows. The primitive polynomial can be used to realize PSIS, and Lagrange inter-
polation is exploited to reconstruct the original secret image. The polynomial multiplication
is required as the main operation in Lagrange interpolation with a higher computational
cost than VC and CRT-SIS. The Number Theoretic Transform (NTT) can be used to improve
the performance of polynomial multiplication [19–21]. Thus, the recovery efficiency is
improved, especially with large polynomial degrees. According to the characteristics of
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images, the existing PSIS is more commonly implemented over the integer field with a
prime P, which is illustrated in Section 2.1.

In traditional SIS, the shadows are usually noise-like. These noise-like shadows easily
attract the attention of attackers. On the other hand, it is difficult to distinguish noise-like
shadows, which presents difficulties in shadow management. To facilitate shadow manage-
ment and ensure transmission security, some researchers have committed to generating
meaningful shadows. Meaningful SIS was first proposed by Ateniese et al. [22]. They ap-
plied visual cryptography to generate meaningful binary shadows. According to different
design concepts, meaningful SIS can be classified into two categories.

The first design concept combines SIS with information hiding schemes. First, tradi-
tional SIS schemes are employed to share the secret image and obtain noise-like shadows.
Then, an information hiding scheme is applied to embed noise-like shadows into cover
images to make shadows meaningful. In the recovery phase, the noise-like shadows are
first extracted from the covers, and the original secret image can be reconstructed by the
recovery algorithm.

Yuan et al. [23] applied multi-cover adaptive steganography to share natural images.
The secret image is adaptively embedded into the textured regions of cover images, but
pixel expansion occurs in their scheme. Cheng et al. [24] employed a Gray code to obtain
meaningful shadows. In their method, AMBTC compression is used to reduce the transmis-
sion bit rate. Chiu et al. [25] presented a (2, n) threshold progressive visual cryptography
scheme to generate meaningful shadows. He et al. [16] used LOCO-I compression to reduce
the statistical correlations between neighboring pixels and obtain meaningful shadows
based on steganography. Derya et al. [26] introduced a method to generate meaningful
shares with Arabic letters. They embedded shares into the R, G and B channels of their
RGB cover images with steganography.

All the abovementioned schemes are based on an information hiding scheme to
generate meaningful shadow images. Shadows in these schemes possess some information
hiding properties, such as steganography resistance. However, limited by the embedding
rate of information hiding schemes, these sharing schemes must minimize the size of the
secret image. To obtain better visual quality, they usually have pixel expansion.

The second design concept does not require steganography. With the constraints of
secret pixel values and cover pixel values, researchers have improved the sharing algorithm
to generate a shadow pixel, which is close to its corresponding cover pixel. As a result, the
shadows are meaningful and similar to the cover images.

Wu et al. [27] constructed meaningful shadows based on random grid visual cryp-
tography. Their covers consisted of binary images. Yang et al. [28] applied digital half-
toning technology to improve the visual quality of meaningful binary shadow images.
Liu et al. [29] utilized a sharing map and a sharing pool to obtain meaningful shadows.
They made the most significant bit of each shadow equal to the higher bit of the correspond-
ing cover image. Yan et al. [30] presented a CRT-based SIS that can generate meaningful
shadows. A modular operation is applied to share the secret image. They also used binary
images as covers.

These methods mostly use binary cover images, which have lower visual quality than
grayscale images. Some of them only use one cover image; thus, their shadows are all
similar to the cover with the same content. Generally, neither of these two kinds of schemes
has high visual quality, and the secret images are shared as pure data. However, as natural
images, adjacent pixels in a cover image have a strong correlation in color, texture and
luminance, which are not considered in the above two kinds of schemes.

The motivation of this article is to propose a meaningful SIS scheme with saliency
detection to improve the visual quality of shadows. Since the salient regions are quite
different from adjacent regions in color, texture, or luminance, human attention always
focuses on an image’s salient regions. In the proposed scheme, we try to improve the visual
quality of salient regions in shadows; then, the overall visual quality can be improved
apparently. LC algorithm is utilized to identify the salient regions, and a random elements
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utilization model is exploited to screen shared values and distribute more identical bits to
salient regions. In this way, salient regions in shadows are more similar to the same salient
regions in covers. The experiment results show that our shadows have better visual quality
than the relative schemes.

We organize this article as follows: Section 2 introduces the principle of polynomial-
based SIS and a saliency detection method named LC. The proposed scheme is presented in
Section 3. Experiments and comparisons with relative schemes are presented in Section 4.
Section 5 concludes this paper.

2. Preliminaries
2.1. Polynomial-Based Sis

In (k, n) threshold polynomial-based SIS, as seen in Equation (1), a (k − 1) degree
polynomial is constructed in a finite field GF(P), where P is a prime number. In the sharing
phase, we set the secret pixel value s = a0 and randomly select the coefficients a1, a2,
· · · , and ak−1 within the interval [0, P). f (i) is calculated as the share value according to
Equation (1). After all secret pixel values have been shared, n shadows can be obtained.

f (x) = (a0 + a1x + · · ·+ ak−1xk−1) mod P (1)

As described in Equation (2), Lagrange interpolation is used to reconstruct the original
polynomial if k or more shares are gathered. In this way, k coefficients are calculated, and
a0 is the recovered secret pixel value s

′
. The polynomial cannot be reconstructed with fewer

than k shares; consequently, no secret information can be revealed.

f (x) =
k

∑
i=1

f (xi)
k

∏
j=1
j 6=i

(x− xj)

(xi − xj)
(2)

2.2. Saliency Detection

The human vision system can quickly determine the interesting regions in a complex
image [31]. The salient regions are more likely to attract the attention of the human eyes
because they are quite different from other regions in terms of texture, color and luminance.
Saliency detection is used to simulate the human vision system to obtain the salient regions
in an image.

Here, we introduce a pixel-level saliency detection algorithm based on a pixel’s con-
trast to all other pixels (the so-called LC algorithm). The LC algorithm is proposed by Zhai
and Shah [32], and it is one of the state-of-the-art traditional methods for saliency detection.

The LC algorithm builds a saliency map with a color contrast between pixel values.
The saliency value of pixel Pt is defined as Equation (4), which equals the sum of Euclidean
distances between the pixel value of Pt and all the other pixels of image I.

Sal(Pt) = ∑
∀Pi∈I
‖Pt − Pi‖ (3)

The LC algorithm is suitable for grayscale images because the saliency value of pixel
Pt is the sum of Euclidean distance between pixel Pt and all the other pixels in the image.
The saliency value computation for a pixel Pt can be optimized with the use of image color
histograms as:

Sal(Pt) =
255

∑
n=0

fnD(t, n) (4)

where t is the color value of pixel Pt; D(t, n) is the color difierence between Pt and Pn; fn is
the probability of pixel value n in image I.

Figure 1 illustrates our experiment images their saliency maps with LC algorithm.
Compared with other saliency detection methods [33–35], such as AC [36], FT [37], CA [38],
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RC [33], LC takes a little running time because LC is purely computational with low
computational complexity. According to Figure 1 and the comparing results illustrated
in [33], the precision of LC is satisfied, and the saliency maps with LC algorithm are
accordant with human eye perception. However, other traditional saliency detection like
FT [37], AC [36] and RC [33] can also be used in our scheme after some adjustments since
they are designed for color images.

Recent saliency detection researches are focused on Convolutional Neural Networks
(CNN). The CNN-based saliency detection methods may obtain more precise saliency maps.
However, the CNN models are complex, which leads to high computation complexity
and long running time. Moreover, the LC algorithm is good enough for our scheme as
demonstrated in our experiment results.

(a) C1 (b) C2 (c) C3

(d) LC1 (e) LC2 (f) LC3

Figure 1. LC algorithm results. (a–c) original grayscale images; (d–f) saliency maps for original
images.

3. The Proposed Scheme

Here, we introduce our proposed scheme. First, the concept of our method is presented.
Then, the details of our sharing method are described in Algorithm 1.

Algorithm 1. The Sharing Phase of Our Proposed Scheme.

Input: a grayscale secret image S with a size of W×H; n grayscale cover images Ci with
a size of W×H;
Output: n meaningful shadows SC1, SC2, ...,SCn.
Step 1: Use the LC algorithm to calculate the saliency values for every pixel in cover Ci.
Note the saliency values as Sal1

i , Sal2
i , ..., SalW×H

i .
Step 2: Compare Salt

1 and Salt
2,...,Salt

n, which are the saliency values of the same pixel
position Pt of n covers.
Step 3: Utilize the random elements utilization model and the result of Step 2 to screen
the shadow pixel values.
Step 4: Repeat Step 2 and Step 3 until all secret image pixels have been shared.
Step 5: Output n meaningful grayscale shadow images SC1, SC2, · · · SCn.

3.1. Design Concept

The design concept of our scheme is illustrated in Figure 2. In our method, the LC
algorithm is utilized to calculate the saliency values (noted as Sal1

i , Sal2
i , ..., SalW×H

i ) for
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every pixel of each cover image. The saliency value indicates the pixel’s significance in
the image. A larger saliency value means a more significant role that the pixel plays in the
image. The saliency maps of covers can be obtained through the LC algorithm.

To generate meaningful shadows, we set some specific conditions during the sharing
phase. In terms of visual quality, the higher bits of a pixel value are more important than
the lower bits. If we keep more higher bits identical for corresponding pixels, the two
images are more similar. However, there is a limit to the sum of identical bits, and for n
different cover images, the salient regions are different. If we distribute more identical bits
to salient regions, the shadow quality will be better.

The design concept of our scheme distributes more identical bits to salient regions
according to the saliency values. A random elements utilization model is used to screen
the shadow pixels that satisfy these specific conditions. In this way, the salient regions in
shadows are more similar to the same regions of the corresponding cover image. Therefore,
the shadows will obtain better visual quality.

Figure 2. Design concept of the proposed scheme.

3.2. Random Elements Utilization Model

According to the principle of PSIS, coefficients ai (1 ≤ i ≤ k− 1) are selected randomly
to gain shared values. Different ai lead to different shared values, and the coefficients ai are
regarded as the random elements in the sharing phase.

The random elements utilization model is exploited to screen shared values to obtain
meaningful shadows with better quality. The sum of identical bits is expected as more as
possible to obtain better visual quality, t. Since wi is noted as the identical higher bits that
distribute to SCi, we correlate the random elements utilization model with a maximize
problem as follows.

Maximize
n

∑
i=1

wi (5)

s.t.



∑n
i=1 wi ≤ 8(k− 1)

f (xt) = s + ∑k−1
m=1 amxm

t mod P
am ∈ Z , am ∈ (0, P]
s ∈ [0, 255]
f (xt) ∈ [0, 255]
t = 1, 2, ..., n

(6)

The maximization problem can be solved by the integer linear programming technique.
According to the random elements utilization model, identical higher bits wi are distributed
to SCi, respectively. The shared values in SCi can be screened while keeping wi identical
bits with the corresponding cover pixels; thus, the shadows are meaningful and similar to
the corresponding covers.

3.3. Our Scheme

The detailed sharing steps are described in Algorithm 1, and we make the following
points:
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1. The salient regions have a greater influence on human visual perception than other
regions. We improve the visual quality of the shadows by improving the visual quality
of the salient region.

2. We apply the LC algorithm to calculate the saliency values for every pixel in each
cover. Saliency values are used to measure the importance of corresponding pixels. A
larger saliency value indicates that the cover pixel is in a salient region, while a cover
pixel with a smaller saliency value is in a non-salient (less important) region.

3. In our scheme, the sum of identical higher bits for all shadows is limited. With the
random elements utilization model and the comparison results in Step 2, we distribute
more identical higher bits to salient regions and less to non-salient regions. Thus,
the salient regions obtain better visual quality and are more similar to corresponding
regions in cover images. Moreover the distribution process is adaptive to different
shadow images.

4. There is a limitation on the sum of identical higher bits for all shadows. Since we
choose 257 as the prime number, the total number of sharing values is 257k−1 ≈ 28(k−1).
In our scheme, the total number of satisfied sharing values is 2∑n

i=1 wi . To ensure the
successful sharing process, the sum of identical higher bits should be subject to
∑n

i=1 wi ≤ 8(k− 1).
5. Polynomial-based SIS is used to share the secret pixels, and a prime number P of

257 is chosen to ensure lossless recovery. In the recovery phase, the secret image
can be losslessly reconstructed by Lagrange interpolation. The recovery operation
complexity is O(klog2k) [39].

4. Experiments and Discussion

In this section, we first exhibit our experimental results. Then, comparisons with
relative schemes are performed to show the effectiveness of our proposed scheme with the
same threshold and secret image. In addition, a discussion is provided.

4.1. Image Illustration

The experimental results of our proposed scheme with the (2, 2) threshold are exhibited
in Figure 3; (a) shows the grayscale secret image. Two grayscale cover images are shown
in (b)–(c); the recovered secret image is illustrated in (d); (e)–(f) demonstrates two shares.
The shares are not noise-like but meaningful. They are similar to the corresponding cover
images. The details of the shadows can also be accurately recognized. For example, as
Figure 3e illustrates, the lines on the deck of the warship can be recognized easily and
accurately. All the shares and reconstructed secret images have the same size as the original
secret image, and no pixel expansion occurs.

4.2. Quality Evaluation Metrics

Our experiment evaluates the image quality with the statistical correlation between
shadows and corresponding covers. Here, three statistic-based metrics are introduced to
obtain the statistical correlation between two images. In SIS, peak signal-to-noise-ratio
(PSNR) , structural similarity (SSIM) [40], and universal quality index (UQI) [41] are widely
used statistic-based metrics.

PSNR between image S and S’ is calculated as Equation (7).

PSNR = 10log10
2552

MSE
(dB) (7)

MSE =
1

W × H

W

∑
i=1

H

∑
j=1

[
S′(i, j)− S(i, j)

]2 (8)

where MSE represents the mean square error of image S’ and image S. The value range of
PSNR is [0,+∞]. The larger the value of PSNR is, the more similar the two images are.



Entropy 2022, 24, 340 7 of 12

(a) S (b) C1 (c) C2

(d) S
′
12 (e) SC1 (f) SC2

Figure 3. (2,2) threshold experimental results of our proposed method; (a) grayscale secret image;
(b,c) two grayscale cover images; (d) recovered secret image with two shares; (e,f) two meaningful
shadow images.

Different from PSNR, SSIM evaluates image similarity from brightness, contrast, and
structure. SSIM is defined as Equation (9).

SSIM(x, y) = [l(x, y)]α · [c(x, y)]β · [s(x, y)]γ (9)

where
l(x, y) = 2µxµy+C1

µx2µy2+C1

c(x, y) = 2σxσy+C2
σx2σy2+C2

s(x, y) = 2σxy+C3
σxσy+C3

(10)

UQI can also be used to evaluate image distortion, and its value range is [−1, 1] . The
larger value of UQI indicates less distortion and better quality. UQI is calculated as follows.

UQI =
4µxµyσxy

(µ2
x + µ2

y)(σ
2
x + σ2

y )
(11)

The three statistic-based metrics can be directly used for grayscale images. In the
comparison experiment, the input binary images are first grayed, and the pixel value is
multiplied by P− 1. Then, the three metrics can be used to evaluate the image quality.

4.3. Comparisons with Relative Methods

In this section, we compare the proposed scheme with two relevant meaningful SIS
methods: Liu et al. [29] and Yan et al. [30]. These methods both obtain meaningful shadows.
To better show the advantages of our proposed scheme, we use the same secret image and
thresholds in the comparative experiments.

Liu et al. [29] obtained meaningful shadows by employing a sharing map and sharing
pool. The sharing pool is determined by the secret pixel values and cover pixel values.
Different binary images are used in their method as covers. They choose appropriate shared
pixel values from the sharing pool to obtain meaningful shadows. We use two binary covers
that have the same content as our covers to realize their (2, 2) threshold experiment. The
results are illustrated in Figure 4.
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(a) S (b) C1 (c) C2

(d) S
′
12 (e) SC1 (f) SC2

Figure 4. (2,2) threshold experimental results of Liu et al.; (a) grayscale secret image; (b,c) binary
cover images; (d) recovered secret image; (e,f) meaningful shadow images.

Yan et al. [30] presented a meaningful SIS scheme based on the Chinese Remainder
Theorem. They also utilized binary images as covers, and the secret image was shared by
a modular operation. We also realize their scheme with a (2,3) threshold. The results are
exhibited in Figure 5e–h.

To show the effectiveness of saliency detection in our scheme, we designed a compari-
son experiment without saliency detection. In the comparison experiment, the threshold
and the sum of the identical bits are equal our proposed scheme. We removed the saliency
detection, and identical bits were distributed randomly among each shadow. The compari-
son experiment we refer to as IBDR. Figure 5i–l shows the (2, 3) threshold results of the
IBDR scheme.

The results of our proposed scheme with the (2, 3) threshold are illustrated in
Figure 5m–p. Compared with our experimental results with relative schemes in
Figures 4 and 5, we can see that the visual quality of the shadows in our scheme is obvi-
ously better than Liu et al. [29] and Yan et al. [30]. In their shadows, only the outlines of the
objects can be distinguished. In the IBDR scheme, the visual quality is higher than Liu et
al. and Yan et al., but it failed to display some of the details of the shadows. For example,
in Figure 5l, we can identify that it is a warship, but we cannot determine the lines on the
deck, and the details of the ship cannot be recognized clearly. In contrast, in the results
of our proposed scheme, the lines on the deck of the warship are accurately illustrated
in Figure 5p. Moreover, as shown in Figure 5k,o, the outline of the cars in our scheme is
clearer than that of the IDBR scheme.

The visual quality of images can be measured by PSNR, SSIM and UQI. Tables 1 and 2
exhibit the statistical results of our proposed scheme and the comparison schemes. Com-
pared with Liu et al. [29] and Yan et al. [30], the visual quality is improved significantly.
This is also demonstrated by the PSNR values in Table 1, but the PSNR values of IBDR
are close to our scheme. For further analysis, we calculated SSIM and UQI for these two
schemes, as shown in Table 2. The statistical data show that our method performs better in
SSIM and UQI.
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(a) S (b) C1 (c) C2 (d) C3

(e) S
′
123 (f) SC1 (g) SC2 (h) SC3

(i) S
′
123 (j) SC1 (k) SC2 (l) SC3

(m) S
′
123 (n) SC1 (o) SC2 (p) SC3

Figure 5. (2, 3) threshold experimental results of IBDR, Yan et al. and our proposed method; (a)
grayscale secret image; (b–d) three grayscale cover images; (e–h) results of Yan et al.’s scheme; (i–l)
results of IBDR scheme; (m–p) results of our proposed scheme.

Table 1. PSNR comparison between the proposed scheme and relative schemes.

Threshold Schemes Shadows1 Shadow2 Shadow3 Average

(2,2)
Liu 10.6781 10.6942 10.6861

Ours 22.4381 20.4256 21.4318

(2,3)

Yan 7.9441 8.2266 8.1357 8.1021

IBDR 16.4911 17.2531 17.5863 17.1101

Ours 16.7203 18.2884 18.2662 17.7583
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Table 2. SSIM and UQI comparison between our proposed scheme and BIDR scheme.

Schemes Metrics Shadows1 Shadow2 Shadow3 Average

IBDR SSIM 0.4362 0.1089 0.1677 0.2376
UQI 0.4659 0.0751 0.1461 0.2291

Ours SSIM 0.4647 0.1599 0.2213 0.2817
UQI 0.4892 0.1182 0.1853 0.2642

4.4. Analysis and Discussion

According to Figures 4 and 5 and Tables 1 and 2, some analyses are given as follows.

1. Our scheme significantly improved visual quality compared with Liu et al. [29] and
Yan et al. [30].

2. The PSNR of the IBDR method is close to ours. However, PSNR is calculated based
on the discrepancy between the corresponding two pixel values, while the visual
characteristics of human eyes are not taken into account. For example, human eyes
are sensitive to luminance and texture and are usually influenced by the neighboring
regions around the target object. The PSNR values are often inconsistent with the
subjective judgment of human eye perception.

3. To further compare our scheme with IBDR, we calculated the indicators SSIM and
UQI, which can better reflect the overall structure of images. As exhibited in Table 2,
the higher values of SSIM and UQI show that our scheme is more effective than IBDR.

4. In our scheme, saliency detection is applied, which can effectively improve the visual
quality of salient regions in shadows. For instance, the lines on the deck of the warship
in Figure 3e can be clearly distinguished, but they are blurred in the corresponding
shadows of other relative schemes. Our scheme exhibits the details of shadow images
more accurately. The structural characteristics are used in saliency detection, so
the outline of the cars in Figure 5o are clearer than in Figure 5k. These are also
demonstrated with SSIM and UQI in Table 2.

5. The relative meaningful SIS schemes process each pixel individually. However, the
color, texture and luminance among neighboring pixels have a strong correlation. They
are sensitive to human eye perception. Our proposed scheme takes the correlation
among neighboring pixels and structural characteristics into account by utilizing
saliency detection. According to the random elements utilization model, the identical
higher bit distribution process is adaptive to different shadow images. Then, the
visual quality of saliency regions of shadows can be improved adaptively.

6. Our scheme performs well with small thresholds such as (2, 2) and (2, 3). For larger
thresholds such as (4, 4) or (4, 5), the total number of identical bits is 8(k− 1) = 24.
Because there are enough identical higher bits for each pixel and the lower bits have a
smaller influence on visual quality, both the salient and less salient regions can obtain
satisfied visual quality. In this condition, saliency detection is not very effective with
large thresholds.

7. The LC algorithm can identify the salient regions accurately in our scheme. However,
there are also some limitations. The sum of Euclidean distances between pixel values
is calculated to obtain the saliency map in the LC algorithm. Mistakes will be involved
when pixels with rare pixel values mistakenly gain high saliency values. Other
saliency detection methods, such as FT [37], AC [36] and RC [33], can also be used in
our scheme to obtain accurate saliency maps.

5. Conclusions

In this article, we design an SIS scheme with saliency detection to obtain meaningful
shadows. Saliency detection methods such as the LC algorithm are used to determine the
salient regions, which are sensitive to the human vision system. In this way, the shadows
in our scheme have better visual quality than the relative method. The experimental
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results indicate the effectiveness of our scheme. In addition, our future work will focus on
meaningful SIS for color images with other saliency detection methods.
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19. Mert, A.C.; Öztürk, E.; Savaş, E. Design and implementation of a fast and scalable NTT-based polynomial multiplier architecture.
In Proceedings of the 2019 22nd Euromicro Conference on Digital System Design (DSD), Kallithea, Greece, 28–30 August 2019; pp.
253–260.

20. Feng, X.; Li, S.; Xu, S. RLWE-oriented high-speed polynomial multiplier utilizing multi-lane stockham NTT algorithm. IEEE
Trans. Circuits Syst. II Express Briefs 2019, 67, 556–559.



Entropy 2022, 24, 340 12 of 12

21. Bisheh-Niasar, M.; Azarderakhsh, R.; Mozaffari-Kermani, M. High-speed NTT-based polynomial multiplication accelerator for
CRYSTALS-Kyber post-quantum cryptography. In In Proceedings of the 2021 IEEE 28th Symposium on Computer Arithmetic
(ARITH), IEEE, Lyngby, Denmark, 14-16 June 2021; pp.94-101 .

22. Ateniese, G.; Blundo, C.; De Santis, A.; Stinson, D.R. Extended capabilities for visual cryptography. Theor. Comput. Sci. 2001, 250,
143–161.

23. Yuan, H.D. Secret sharing with multi-cover adaptive steganography. Inf. Sci. 2014, 254, 197–212.
24. Cheng, T.F.; Chang, C.C.; Liu, L. Secret sharing: Using meaningful image shadows based on gray code. Multimed. Tools Appl.

2017, 76, 9337–9362.
25. Chiu, P.L.; Lee, K.H. Efficient constructions for progressive visual cryptography with meaningful shares. Signal Process. 2019, 165,

233–249.
26. Avci, D. A novel meaningful secret image sharing method based on Arabic letters. Kuwait J. Sci. 2016, 43, 114–124.
27. Wu, X.; Sun, W. Generalized random grid and its applications in visual cryptography. IEEE Trans. Inf. Forensics Secur. 2013, 8,

1541–1553.
28. Yang, C.N.; Yang, Y.Y. New extended visual cryptography schemes with clearer shadow images. Inf. Sci. 2014, 271, 246–263.
29. Liu, L.; Lu, Y.; Yan, X. Polynomial-based extended secret image sharing scheme with reversible and unexpanded covers. Multimed.

Tools Appl. 2019, 78, 1265–1287.
30. Yan, X.; Lu, Y.; Liu, L.; Song, X. Reversible image secret sharing. IEEE Trans. Inf. Forensics Secur. 2020, 15, 3848–3858.
31. Duncan, J.; Humphreys, G.W. Visual search and stimulus similarity. Psychol. Rev. 1989, 96, 433.
32. Zhai, Y.; Shah, M. Visual attention detection in video sequences using spatiotemporal cues. In Proceedings of the 14th ACM

international conference on Multimedia, Santa Barbara, CA, USA, 23–27 October 2006; pp. 815–824.
33. Cheng, M.M.; Mitra, N.J.; Huang, X.; Torr, P.H.; Hu, S.M. Salient object detection and segmentation. IEEE Trans. Pattern Anal.

Mach. Intell. 2013, 37, 1.
34. Huang, Y.; Qiu, C.; Yuan, K. Surface defect saliency of magnetic tile. Vis. Comput. 2020, 36, 85–96.
35. Wang, X.; Ma, H.; Chen, X.; You, S. Edge preserving and multi-scale contextual neural network for salient object detection. IEEE

Trans. Image Process. 2017, 27, 121–134.
36. Achanta, R.; Estrada, F.; Wils, P.; Süsstrunk, S. Salient region detection and segmentation. In Proceedings of the International

Conference on Computer Vision Systems, Santorini, Greece, 12–15 May 2008; Springer: 2008; pp. 66–75.
37. Achanta, R.; Hemami, S.; Estrada, F.; Susstrunk, S. Frequency-tuned salient region detection. In Proceedings of the 2009 IEEE

conference on computer vision and pattern recognition, Miami, FL, USA, 20–25 June 2009; pp. 1597–1604.
38. Goferman, S.; Zelnik-Manor, L.; Tal, A. Context-aware saliency detection. IEEE Trans. Pattern Anal. Mach. Intell. 2011, 34,

1915–1926.
39. Asmuth, C.; Bloom, J. A modular approach to key safeguarding. IEEE Trans. Inf. Theory 1983, 29, 208–210.
40. Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE

Trans. Image Process. 2004, 13, 600–612.
41. Wang, Z.; Bovik, A.C. A universal image quality index. IEEE Signal Process. Lett. 2002, 9, 81–84.


	Introduction
	Preliminaries
	Polynomial-Based Sis
	Saliency Detection

	The Proposed Scheme
	Design Concept
	Random Elements Utilization Model
	Our Scheme

	Experiments and Discussion
	Image Illustration
	Quality Evaluation Metrics
	Comparisons with Relative Methods
	Analysis and Discussion

	Conclusions
	References

