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Abstract: Oversampling is the most popular data preprocessing technique. It makes traditional
classifiers available for learning from imbalanced data. Through an overall review of oversampling
techniques (oversamplers), we find that some of them can be regarded as danger-information-based
oversamplers (DIBOs) that create samples near danger areas to make it possible for these positive
examples to be correctly classified, and others are safe-information-based oversamplers (SIBOs) that
create samples near safe areas to increase the correct rate of predicted positive values. However,
DIBOs cause misclassification of too many negative examples in the overlapped areas, and SIBOs
cause incorrect classification of too many borderline positive examples. Based on their advantages
and disadvantages, a boundary-information-based oversampler (BIBO) is proposed. First, a concept
of boundary information that considers safe information and dangerous information at the same time
is proposed that makes created samples near decision boundaries. The experimental results show
that DIBOs and BIBO perform better than SIBOs on the basic metrics of recall and negative class
precision; SIBOs and BIBO perform better than DIBOs on the basic metrics for specificity and positive
class precision, and BIBO is better than both of DIBOs and SIBOs in terms of integrated metrics.

Keywords: boundary information; synthetic sample generation; imbalanced datasets

1. Introduction

Data is said to be imbalanced when one of its classes (majority class, negative class)
has many more examples than that of other classes (minority class, positive class). This
occurs in many real-world cases, such as customer credit risk prediction [1], bankruptcy
prediction [2], product fault diagnosis [3], medical data analyses [4], fraud prediction [5],
etc. In these cases, their minority class is typically interesting, important, and has high
misclassification costs. However, when traditional classifiers are used to classify them, the
classifications usually bias the majority class. This paper calls these unsatisfactory learning
results for imbalanced data learning problems.

Many studies have shown the reasons for imbalanced data learning problems in-
cluding: (1) a high imbalance ratio, where the misclassifications of positive examples are
regarded as tolerable errors because the total classification accuracy is high enough even
though the examples are classified as negative, (2) a small disjuncts problem [6,7], where a
small number of positive examples forming subclusters that cannot be ignored are usually
misclassified to reduce model complexity, (3) overlapping [8,9], which is an area that in-
cludes both the majority class and the minority class. Positive examples in the overlapping
are typically sacrificed in order to minimize structural risk.

To improve the performance of learning from imbalanced data, many kinds of methods
have been proposed. This paper divides them into five classes as follows:
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(1) Algorithmic modification. Some traditional classifiers work well on imbalanced data
after their internal operations are changed. Yu et al. [10] utilized an optimized decision
threshold adjustment strategy in a support vector machine (SVM). Zhao et al. [11]
proposed a weighted maximum margin criterion to optimize the data-dependent
kernel in an SVM. In addition to kernel-based SVMs, fuzzy rule-based classification
systems are used and modified to deal with imbalanced data, such as in López
et al. [12] and Alshomrani et al. [13].

(2) Cost-sensitive classification. This classification takes into consideration that the minority
class misclassification costs are more expensive than those for the majority class. Zhou
and Liu [14] moved an output threshold toward majority class such that minority
class examples become more difficult to misclassify in a training cost-sensitive neural
network. Siers and Islam [15] proposed a cost-sensitive voting technique to minimize
the classification costs for a decision forest. Lee et al. [16] adjusted factor scores by
categorizing instances based on an SVM’s margin for AdaBoost.

(3) Ensemble learning. This class can be used reduce variances by aggregating predictions
of a set of base classifiers. Sun et al. [17] investigated cost-sensitive boosting algorithms
with different weight updating strategies for imbalanced data. Sun et al. [18] turned
an imbalanced dataset into multiple balanced sub-datasets and used them in base
classifiers. Another very common way type of ensemble learning is where it is
combined with resampling techniques, such as SMOTEBagging [19], random balance-
boost [20], and the synthetic oversampling ensemble [21].

(4) Data particle geometrical divide (GD). The GD technique creates class-based data parti-
cles to classify data examples by comparing data gravitation between different data
particles. Rybak and Dudczyk [22] developed a new GD method with four algorithms
for determining the mass of a data particle to effectively improve gravitational clas-
sification in the Moons and Circles datasets. Furthermore, Rybak and Dudczyk [23]
proposed the variant of GD method named unequal geometrical divide to improve
classification performance of imbalanced occupancy detection datasets.

(5) Resampling techniques. Here, the aim is to balance the class distribution by removing
majority class examples (undersampling) or by inflating minority class examples
(oversampling). Since the synthetic minority oversampling technique (SMOTE) [24]
was proposed in 2002, it has become one of the most influential data preprocess-
ing/oversampling techniques in machine learning and data mining. To improve the
SMOTE, undersampling techniques e.g., condensed nearest neighbor (CNN) [25],
Tome lines [26], etc. were used after the oversampling. SMOTE_IPE [27] is another
combined resampling method. It uses an iterative-partitioning filter [28] to remove
noisy samples in both majority and minority classes to clean up boundaries and make
them more regular. Li et al. [29] used the mega-trend-diffusion technique [30] for
undersampling and used a two-parameter Weibull distribution estimation for over-
sampling in their work. A more improved oversampling technique will be introduced
in Section 2.

Among the above referenced techniques, resampling is the most common for handling
imbalanced data since it can be regarded as preprocessing of the previous three techniques,
and it is simple-to-use do to not involving complex classifier algorithms. Instead of under-
sampling, which may result in discarding useful data that worsen variances and produces
warped posterior probabilities [31], developing oversampling techniques (or oversamplers)
has attracted more attention. The next section introduces more oversamplers. In Section 3,
their advantages and shortcomings are discussed, and the motivation of the study is pro-
vided. Then, our method using boundary information is proposed in Section 4. In Section 5,
two experiments are designed to provide strength comparisons of different oversamplers
and the performance verifications of the proposed method. The experimental results are
shown and discussed in Section 6, and conclusions are drawn in Section 7.
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2. Oversampling Techniques

More oversampling techniques are introduced in this section. For convenience, sup-
pose m is a majority class example selected to be oversampled; p (or n) is a positive (or
negative) example selected to be oversampled with m, and s is a synthetic sample generated
by m and p (or n).

The simplest method for oversampling is random oversampling (ROS). Because it is
sampling with replacement, each sample can be trained at least two times using classifiers,
which causes overfitting. Chawla et al. [24] suggested that ROS makes classifiers learn
specific patterns. Instead of duplication, SMOTE created s by s = m + r× (p−m), where
p was a random one of the k nearest positive neighbors (kNPN) of m, and r was a real value
between 0 and 1. Because s was different from m and p, it was called a synthetic sample.
Synthetic samples can help classifiers create more general patterns.

To generate more helpful synthetic samples, some studies have suggested that danger-
ous minority class examples are more important and that new samples should be created
dependent on them. Han et al. [32] regarded m as dangerous if at least half of its k nearest
neighbors (kNNs, containing both minority class and majority classes are majority class
examples. Then, only dangers were selected to be oversampled by using SMOTE. This pro-
cedure is called Borderline-SMOTE1 (B1_SMOTE). If s was not only created between two
dangerous examples, but also between a dangerous example (m) and its k nearest negative
neighbor (kNNN, n), the approach is called Borderline-SMOTE2 (B2_SMOTE), where s is
computed using the formula s = m + r× (n−m), and r is a real value between 0 and 0.5,
so that s is closer to m. Similarly, the adaptive synthetic sampling approach (ANASYN) [33]
deems that harder-to-learn examples are more important. It defines the difficulty level
of learning m by the ratio of the number of majority classes to the number of minority
classes in the kNNs of m. Then, examples with greater difficulty levels are more easily
oversampled using SMOTE. Instead of using the counts to determine important examples,
borderline over-sampling (BOS) [34] and synthetic informative minority over-sampling
(SIMO) [35] identify dangerous examples based on decision boundaries trained by an SVM.
Then, BOS generates synthetic samples by using interpolation or extrapolation techniques
based on the ratio of the majority class to the minority class; SIMO generates synthetic
samples based on the distance to decision boundaries, and the examples being misclassified
by the SVM are thus more likely to be oversampled. The majority weighted minority
oversampling technique (MWMOTE) [36] was designed as a new approach to determine
boundary examples. Initially, the majority set near the minority set was considered to be
the borderline majority class. Second, the minority set near the borderline majority set was
considered to be the borderline minority class. Then, the denser the majority set was, and
the sparser the minority set was, the more important the borderline examples were. In the
latest approaches, an attribute weighted kNN hub on SMOTE (AWH_SMOTE) [37] was
applied to the kNN hub to find informative examples. Examples with rare occurrences in
kNN hub were considered to be more dangerous and thus more important.

Conversely, other oversamplers considers safe minority class examples to be more
important, and thus, it is felt that new samples should be created based on them. Safe-
level-SMOTE (SL_SMOTE) [38] attempts to generate synthetic samples in safe regions.
It defines the safe level of m by using the number of minority class in its kNNs. Let slm
be the safe level of m, and slp be the safe level of p. If slm is larger than slp, then the s
generated between m and p is positioned near m, and vice versa. However, when m and p
are from two different subgroups, s will fall into a majority class group to become noise.
The local neighborhood extension of SMOTE (LN_SMOTE) [39] fixed this problem by
selecting oversampled examples from their kNNs rather than from their kNPN. Instead
of using kNNs, cluster-SMOTE (C_SMOTE), proposed by Cieslak et al. [40], clusters the
minority class first, then selects oversampled examples in the same clusters. In addition,
synthetic oversampling of instances by clustering and jittering (SOI_CJ) [41] utilize jittering
process within the same clusters so that only one example is selected to be oversampled
each time. Douzas et al. [42] proposed the k-means SMOTE (km_SMOTE), which uses a
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k-means algorithm to cluster the entire dataset; then, only the clusters dominated by the
minority class can be used to oversample, where the sparser the clusters are, the more
synthetic samples the clusters generate.

To be brief, when a minority class example is surrounded by most of majority class
examples, it is called the dangerous minority class example. On the contrary, it is called the
safe minority class example as shown in Figure 1.
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Figure 1. Two types of majority class examples.

3. Motivation

From the overall reviews of the oversampling techniques in Section 2, we find that
some oversamplers suggest that the important minority class examples are those that
are dangerous, borderline, hard to learn, and misclassified, whereas others suggest that
safe examples are the most important. When oversamplers based on dangerous minority
class examples to create samples, oversamplers were called danger-information-based
oversamplers (DIBOs). Conversely, based on safe ones, others were called safe-information-
based oversamplers (SIBOs). We summarized oversamplers in Table 1, respectively.

Table 1. Two classes of oversamplers note apparent row misalignment.

Oversamplers Authors [Reference] Methods

Danger-information-based
oversamplers (DIBOs)

Han et al. [32] B1_SMOTE
B2_SMOTE

He et al. [33] ADASYN
Nguyen et al. [34] BOS

Barua et al. [36] MWMOTE
Piri et al. [35] SIMO

Fahrudin et al. [37] AWH_SMOTE

Safe-information-based
oversamplers (SIBOs)

Cieslak et al. [40] C_SMOTE
Bunkhumpornpat et al. [38] SL_SMOTE

Maciejewski and Stefanowski
[39] LN_SMOTE

Sanchez et al. [41] SOI_CJ
Douzas et al. [42] km_SMOTE

We find that DIBOs generate synthetic samples biased toward majority class areas,
which can strengthen the decision boundaries necessary to be correctly classified as minority
class. SIBOs generate synthetic samples biases toward minority class areas, which can
protect safe regions from being misclassified as majority class. However, the extra samples
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generated by DIBOs become noises that affect the classification of the majority class, while
SIBOs tend to ignore the minority class borderline examples. To visually understand these,
a makeup imbalanced dataset shown in Figure 2a is taken to be resampled to balance
classes using different methods, and then they are classified by using SVM classifiers with
the same parameter settings. As can be seen in Figure 2e–h, the synthetic samples generated
by DIBOs are more radical, so the predicted decision boundaries are biased toward the
majority class. As shown in Figure 2i–l, the synthetic samples generated by SIBOs are more
conservative, so fewer majority class examples are misclassified, while at the same time,
more borderline minority class examples are not being correctly classified.
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Based on the advantages and disadvantages of DIBOs and SIBOs respectively, this
paper proposes a new boundary information concept, where the created samples depending
on it are close to the decision boundaries, rather than close to the more dangerous areas as
with DIBOs or close to the safer areas as with SIBOs.

4. Methodology

In this section, this paper firstly defines the boundary information; then, this section
introduces the procedure for a boundary-information-based oversampler (BIBO), after
which we provide an analysis of its strengths.

4.1. Boundary Information

In MWMOTE [36], the Euclidean distance is used to compute the information weight
for minority class examples. Euclidean distance is also used in computing the similarity of
two points. As in a similarity calculation, this paper claims that the information weight
(IW) of b on a denoted by IW(a← b) is negative to the Euclidean distance from b to a
denoted by ‖b− a‖ and that is exponential decay by ‖b− a‖ as Equation (1):

IW(a← b) = e(−‖b− a‖), (1)
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Suppose in a minority class example m that its IW is very small if another exam-
ple is far away from it. Therefore, we can only consider the IWs between m and
its kNNs. Suppose that minkNNs = {p1, p2, . . . , pi} are kNPNs in the kNNs of m,
then IW(m← minkNNs) = ∑i

1 e(−‖pi′ −m‖); majkNNs =
{

n1, n2, . . . , nj
}

are kNNNs

in the kNNs of m, and IW(m← majkNNs) = ∑
j
1 e
(
−‖nj′ −m‖

)
, where i + j = k. Obvi-

ously, compared with IW(m← majkNNs), the larger IW(m← minkNNs) is, the safer m
is, and vice versa. Thus, this paper calls the safe information weight (SIW) of m and call
IW(m← majkNNs) the danger information weight (DIW). It can be said that the virtual
samples generated by DIBOs are biased towards dangerous examples and that the SIBOs
generate new samples biased towards safe examples. As discussed in Section 3, this paper
suggests that created samples should be biased towards decision boundaries.

As a rule of thumb, examples having as much DIW and SIW are more likely to be
decision points. To find desirable decision boundaries, this paper defines a new concept of
boundary information (BI), and the BI weight (BIW) is computed using Equation (2):

BIW(m) = IW(m← minkNNs)× IW(m← majkNNs), (2)

From Equation (2), it is known that an example has zero BIW when all of its kNNs are
minority class, which this paper calls a redundancy; an example also has zero BIW when
all of its kNNs are majority class, which this paper calls noise; an example has great BIW
only when its DIW and SIW are both large. This paper proposes that synthetic samples
should be biased towards examples with larger BIW, and Figure 3 is used to demonstrate
the expected effects of this assumption. For example, the ab and bc are far away from b since
the b is a safe example with very low BIW; the bc and cd are near c since c is a decision point
with great BIW; the cd is far away from d since d is a noise; the ef is closer to f as compared
to e since the BIW of f is larger than the BIW of e; in the case of small disjunct examples h
and i, their created sample hi is within them so it is easier for them to be recognized.
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4.2. Procedure for the Boundary-Information-Based Oversampler

This paper calls the oversampler that generates synthetic samples near the examples
having larger BIW, the boundary-information-based oversampler (BIBO). The procedure
for the BIBO is proposed in Table 2.

4.3. Computational Complexity of BIBO

The computational complexity of the proposed BIBO algorithm depends on the num-
ber of major class examples N, the number of original imbData n, and the number of
minority class examples P. In Table 2, the for loop (p in P) indicates that we perform
P times of calculations of BIW and r with each synthetic sample generation. In our al-
gorithm, the number of synthetic samples is set as 2N − n. Namely, when the size of
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imbData is increased from n to 2N, the proposed BIBO algorithm is stopped. Therefore, the
computational complexity of the BIBO algorithm can be calculated by Equation (3):

Computational ComplexityBIBO = O(P(2N − n)) (3)

Table 2. The algorithm of the proposed boundary-information-based oversampler.

Input:

imbData: An imbalanced dataset.
K: The number of kNPNs for oversampling.
k: The number of kNNs for computing BIW.

Output:

resData: The imbData that had been resampled by
this procedure

Procedure Begin

1. P← minority class set from imbData
2. N← majority class set from imbData
3. resData = imbData
4. while the length of resData < twice the length of N:
5. for p in P:
6. KNNp← the K nearest neighbors of p from P
7. kNNp← the k nearest neighbors of p from imbData
8. BIW(p)← computing BIW of p with kNNp
9. if BIW(p) = 0: return to 4, then continue
10. pp← randomly select an example from KNNp
11. kNNpp← the k nearest neighbors of pp from imbData
12. BIW(pp)← computing BIW of pp with kNNpp
13. if BIW(pp) ≥ BIW(p):
14. r = (BIW(pp)− BIW(p))/(BIW(pp) + BIW(p))
15. s = p + (r, 1)× (pp− p)
16. else:
17. r = 2× BIW(pp)/(BIW(pp) + BIW(p))
18. s = p + (0, r)× (pp− p)
19. resData = resData + s:
20. if the length of resData >= twice the length of N
21. break # the numbers of the two classes are balanced
22. return the resData
Procedure End.

4.4. Strengths Analysis

The proposed BIBO selects minority class examples to be oversampled for which the
BIWs are not zero in order to filter out examples with noise and redundancy. Then, the
created samples are far away from both safe examples and dangerous examples, and they
are closer to boundary examples. Also, it is easily understood. Only two parameters are
considered. The capital letter K is used for the purpose of determining the kNPNs for
oversampling, and the small letter k is used for determining the kNNs for the purpose of
computing BIWs.

To illustrate the strengths of the proposed BIBO, the imbalanced dataset shown in
Figure 2a is applied to be oversampled by using the BIBOs with different values of K and
k. Then, they are trained and classified using the same SVM classifiers. The classification
results are shown in Figure 4, where from top to bottom, the K values increase from 5 to
15, and from left to right, the k values increase from 5 to 30. From the figures, this paper
finds that when both the K and k are small (see Figure 4a), the BIBO is conducted like
SIBOs; when the K increases from 5 to 15, the areas predicted to be positive (PPAs) are
larger, and some separated PPAs are merging, as the kNPNs become larger and generate
virtual samples inside them; when the k increases from 5 to 30, the PPAs become larger
and start to intrude into the majority class areas as the old noises in the overlapping areas
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become fewer in number. However, even though both K and k are large enough, as shown
in Figure 4l, the synthetic samples are still near the decision boundaries. Therefore, the
BIBO has a great tolerance for parameter value settings.
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5. Experiment

The experiment designs weighing the comparative strengths of the various oversam-
plers and the performance verification of the BIBO are introduced in this section. Before
introducing them, this section provides the results of the classification evaluation metrics
and the oversampler evaluation procedure, respectively.

5.1. Evaluation Metrics

Accuracy rate (acc) is the common metric for evaluating classifications, for which
Equation (4) is the formula. However, using acc is cause of imbalanced data learning
problems because it creates biases toward the majority class, as mentioned in Section 1.
To balance the effects of two classes, the confusion matrices shown in Table 3 are used to
formulate the imbalanced data classification evaluation metrics. The recall (rec) calculated
using Equation (5) and the specificity (spec) calculated using Equation (6) are the true
positive rate and true negative rate, respectively, that is to say, the percentages of correct
classifications of the classes. The positive class (preP) precision calculated using Equation
(7) and the negative class (preN) precision calculated using Equation (8) are the positive
predictive value and the negative predictive value, respectively, in other words, the correct
rates for the predicted values. This section calls these the five basic metrics, and the metrics
integrated by two or more basic metrics are called integrated metrics.

Considering rec and spec, g-measure (Gmean) is defined as the geometric mean of rec
and spec, which is calculated using Equation (9). Instead of considering only proportions
that are being correctly classified, the F-measure (Fmeas) takes preP into account and is
calculated using Equation (10). Another well-known measure is the area under the ROC
curve (AUC) [43]. In the ROC chart, the x-axis is 1-spec, and the y-axis is rec, and the
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curve shows their tradeoff by giving a decision cut-off. Obviously, these five are integrated
metrics, in which the β in Fmeas is set as 1 in our experiments:

acc =
TP + TN

TP + FP + FN + TN
(4)

rec =
TP

TP + FN
(5)

spec =
TN

TN + FP
(6)

preP =
TP

TP + FP
(7)

preN =
TN

FN + TN
(8)

Gmean =
√

rec× spec (9)

Fmeas = (1 + β)2 × rec× preP

β2 × rec + preP
(10)

Table 3. Confusion matrix.

Predicted Positive Predicted Negative

Positive class True positive (TP) False Negative (FN)
Negative class False positive (FP) True Negative (TN)

5.2. Dataset Description

To verify the universality of the oversamplers, this paper tests some datasets that
are downloaded from the KEEL-dataset repository [44]. Because the differences in the
MM-metrics on different datasets are not commensurate, this paper uses the rankings of
the oversamplers on each dataset to obtain their mean. Then, the mean rankings can be
regarded as the performance measures of the oversamplers on the classifier.

5.2.1. The Simulated Datasets

A set of 2-dimensional datasets [45] that are simulated by using different values of
number of examples (Ex.), the imbalance ratio (IR), and the disturbance ratio (DR) are used
in this experiment; see Table 4, in which the paw that its minority class is decomposed into
three elliptical subregions that resemble a paw print; the clover that is its minority class
resembles a flower with five elliptical petals; in the subcl, there are five small disjuncts
shaped like rectangles.

Table 4. The simulated datasets.

No. Name Ex. IR DR (%) No. Name Ex. IR DR (%)

1 paw1 600 5 0 10 clover4 800 7 0
2 paw2 600 5 30 11 clover5 800 7 30
3 paw3 600 5 60 12 clover6 800 7 60
4 paw4 800 7 0 13 subcl1 600 5 0
5 paw5 800 7 30 14 subcl2 600 5 30
6 paw6 800 7 60 15 subcl3 600 5 60
7 clover1 600 5 0 16 subcl4 800 7 0
8 clover2 600 5 30 17 subcl5 800 7 30
9 clover3 600 5 60 18 subcl6 800 7 60
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5.2.2. The Real-World Datasets

Oversamplers using the kNN concept are not applicable when dealing with highly
imbalanced datasets because most minority class examples in them would be recognized as
noise and lead to the wrong results. Therefore, the real-world datasets with imbalance ratios
between 1.5 and 9 used in Fernández et al. [46] are used in this experiment. In addition,
the ionosphere dataset downloaded from the UCI machine learning repository [47] is
used in our experiment. The dataset has 17 pulse numbers with two attributes and one
output to indicate returns of electromagnetic signals. Moreover, one big dataset named
Swarm Behaviour Aligned with 2400 attributes and 24,017 samples downloaded from UCI
machine learning repository is used in our experiments. Thus, a total of 23 datasets are
used to implement our experiments. They are shown in Table 5, where Att. is the number
of attributes.

Table 5. The real-world datasets.

No. Name Att. Ex. IR No. Name Att. Ex. IR

1 ecoli-0_vs_1 7 220 1.86 12 page-blocks0 10 5472 8.79
2 ecoli1 7 336 3.36 13 pima 8 768 1.87
3 ecoli2 7 336 5.46 14 segment0 19 2308 6.02
4 ecoli3 7 336 8.6 15 vehicle0 18 846 3.25

5 glass-0-1-2-3 _vs_4-5-6 9 214 3.2
16 vehicle1 18 846 2.9
17 vehicle2 18 846 2.88

6 glass0 9 214 2.06 18 vehicle3 18 846 2.99
7 glass1 9 214 1.82 19 wisconsin 9 683 1.86
8 glass6 9 214 6.38 20 yeast1 8 1484 2.46
9 haberman 3 306 2.78 21 yeast3 8 1484 8.1
10 new-thyroid1 5 215 5.14 22 ionosphere 34 351 1.79
11 new-thyroid2 5 215 5.14 23 Swarm Behaviour Aligned 2400 24017 2.20

5.3. Oversampler Performance Evalutation

This paper uses the k-fold cross-validation procedure to obtain the performance mea-
sures of oversamplers on every metric. For an imbalanced dataset and its one cross-
validation process, first, the data set is partitioned into a training set and a testing set.
Second, the training set is oversampled using an oversampler. Third, a classifier is trained
using the oversampled set. Fourth, the testing set is used on the trained classifier to obtain
the evaluation metrics. This process is repeated k times to obtain the mean of the met-
rics. Since the oversampler can increase the variances in the classifier, this paper further
repeats the k-fold-cross-validation process K times to obtain the mean of the mean metrics
(MM-metrics). Then, the MM-metrics can be regarded as the performance measures of the
oversampler on both the dataset and the classifier.

Based on the above process, this paper uses different oversamplers containing RAW
(without oversampler), SMOTE, B1_SMOTE, B2_SMOTE, ADASYN, MWMOTE, SL_SMOTE,
LN_SMOTE, SOI_CJ, km_SMOTE, and BIBO to obtain their MM-metrics, respectively.
Among them, RAW is where the original training set is used without being oversam-
pled; the B1_SMOTE, B2_SMOTE, ADASYN, and MWMOTE are DIBOs; the SL_SMOTE,
LN_SMOTE, SOI_CJ, and km_SMOTE are SIBOs. These programs are imported from the
smote_variants package [48], and their parameters are the default settings. The BIBO is
programed as shown in Table 2, where the K and the k are set as 5 and 15, respectively.
Then, these oversamplers are ranked based on their MM-metrics on every metric.

6. Results and Discussion

In this section, the two experiment results are introduced and discussed.
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6.1. Comparative Strengths Results

As is known, some evaluation metrics contradict each other, such as rec and spec,
preP and preN . However, in most studies, only partial metrics were used to verify the
effectiveness of their own proposed oversamplers. In this experiment, we attempt to apply
all of the metrics to determine the comparative strengths of the different oversamplers.
Since most oversamplers employ the concept of kNN, the kNN classifier is applied in this
experiment. The comparative strengths of the oversamplers are presented using different
metrics. The experimental results are shown in Table 6, and the findings are summarized
as follows:

(1) All the oversamplers outperform the RAW on the rec and preN basic metrics, but they
do not on the acc, spec, and preP metrics. This means that, for oversamplers, more
positive examples are correctly classified, but at the same time, many more negative
examples are incorrectly classified as positive values.

(2) The oversamplers outperform RAW on most of the integrated metrics and in terms of
the average of all of the metrics (ave). This means that oversampling techniques are
helpful for improving imbalanced data learning problems.

(3) Compared with SMOTE, DIBOs perform better on the rec and preN basic metrics,
and most SIBOs are better on the acc, spec and preP metrics (with the exception of
SL_SMOTE, which was caused by too many virtual samples being created in the
negative class areas). It can be said that DIBOs tend to avoid missing any positive
examples being correctly classified, and SIBOs improve the problem of the negative
examples being incorrectly classified. However, DIBOs and SIBOs do not always
outperform SMOTE on integrated metrics.

(4) On the acc, spec, and preP basic metrics, BIBO has good performance like the SIBOs,
and it outperforms all the DIBOs. On the contrary, for the rec and preN metrics, BIBO
outperforms all the SIBOs, similar to the DIBOs. These findings confirm that BIBO is
better than the SIBOs and DIBOs in general due to moving virtual samples toward
decision boundaries.

(5) BIBO has better performance results on the Fmeas, AUC and ave. Hence, BIBO is better
oversampler for improving imbalanced dataset learning problems.

Table 6. The rankings of the oversamplers using different metrics.

Oversamplers Methods acc rec spec Gmean preP preN Fmeas AUC ave

RAW - 4.09 11.00 2.52 5.57 2.39 10.43 7.65 11.00 8.00
SMOTE - 7.13 4.22 7.17 7.22 7.91 2.91 6.83 4.22 5.57

DIBOs

B1_SMOTE 7.30 5.30 7.87 7.26 5.96 4.00 6.26 5.30 6.80
B2_SMOTE 10.00 7.78 9.96 10.22 9.65 6.35 9.91 7.78 9.91
ADASYN 10.43 5.43 10.26 9.39 9.09 5.22 9.78 5.43 9.65

MWMOTE 6.70 1.57 8.00 5.91 7.70 2.04 5.57 1.57 5.26

SIBOs

SL_SMOTE 9.17 8.96 7.22 9.74 9.04 8.22 9.87 8.96 9.87
LN_SMOTE 4.93 2.65 5.09 4.52 5.22 2.83 3.43 2.65 3.78

SOI_CJ 3.02 4.61 4.04 2.83 4.00 6.09 2.04 4.61 2.04
km_SMOTE 1.78 4.91 2.83 1.09 3.04 8.09 1.13 4.91 1.04

BIBO - 1.43 6.57 2.04 2.26 1.00 9.83 3.52 6.57 3.30

Note: The values in bold are the oversamplers that outperform the SMOTE (underlined ranking).

6.2. Performance Results

In this experiment, the most representative metrics containing acc, Gmean, Fmeas, AUC,
and their average (ave) are used to measure the performance of oversamplers on the four
classifiers kNN, C4.5, SVC_L, and SVC_S. This paper uses SVMs with linear and sigmoid
kernel functions in which the C4.5 program [49] is a “DecisionTreeClassifier” with the
“entropy” criterion imported from “sklearn.tree”; the SVM programs are “sklearn.svm.
SVC” with “linear” and “sigmoid” kernels denoted as SVC_L and SVC_S, respectively. The
results are shown in Table 7, and the findings are summarized as follows:
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(1) When C4.5 is used as the classifier, BIBO obtains better results on all of the metrics,
even the acc. It can be deduced that the virtual samples created by BIBO are near the
real decision nodes on the decision tree.

(2) For the four classifiers and the five metrics on each of them, 20 metrics in total, half
of them indicate that BIBOs have better performance results (the values in bold and
underlined). Consequently, this further confirms that BIBO is better technique for
improving imbalanced data learning problems.

(3) Some oversampler performance results are not better than those for RAW, especially in
the case of SVC_L and SVC_S. This may have been caused by (1) contradictory metrics,
(2) overlapping blurriness, (3) the noise of virtual samples, or (4) the effectiveness of
some classifiers on some imbalanced datasets.

Table 7. The performance results of the oversamplers using different classifiers.

Classifiers kNN C4.5
Oversamplers Methods acc Gmean Fmeas AUC ave acc Gmean Fmeas AUC ave

RAW - 4.65 6.52 8.35 8.00 8.96 7.61 8.09 8.57 9.52 8.26
SMOTE - 7.59 8.04 7.61 5.83 7.30 7.39 7.13 7.09 7.00 7.04

DIBOs

B1_SMOTE 7.48 7.91 7.00 5.78 7.26 8.78 8.83 8.22 8.30 8.65
B2_SMOTE 9.87 9.26 9.30 7.57 9.26 9.65 9.65 9.65 9.04 9.65
ADASYN 9.17 7.43 7.57 3.74 7.04 6.30 5.35 4.61 2.87 4.30

MWMOTE 6.20 5.39 5.26 1.30 5.00 4.48 3.61 2.48 4.78 3.25

SIBOs

SL_SMOTE 10.26 10.96 9.78 9.26 10.87 10.26 9.17 9.26 9.91 8.22
LN_SMOTE 4.70 4.17 3.26 3.35 3.48 2.63 3.56 3.48 2.61 3.74

SOI_CJ 2.65 2.35 1.30 3.04 1.43 2.57 3.04 4.13 4.39 4.13
km_SMOTE 1.78 1.30 1.87 5.74 1.70 4.26 5.09 5.17 5.35 5.22

BIBO - 1.65 2.65 3.70 6.39 3.70 2.57 2.83 2.35 2.22 2.30

Classifiers SVC_L SVC_S
Oversamplers Methods acc Gmean Fmeas AUC ave acc Gmean Fmeas AUC ave

RAW - 4.50 7.70 6.50 4.50 6.50 7.37 8.46 7.50 5.50 5.50
SMOTE - 7.57 6.13 5.04 4.30 5.78 7.74 6.30 5.04 4.57 6.00

DIBOs

B1_SMOTE 8.96 9.46 6.87 6.48 7.13 8.91 7.70 6.70 6.22 7.09
B2_SMOTE 9.96 8.70 7.87 7.39 7.96 9.00 8.61 7.83 7.17 8.00
ADASYN 4.96 2.74 2.09 1.61 2.26 4.87 3.70 1.83 2.04 3.91

MWMOTE 5.39 3.09 1.96 1.91 2.35 5.87 2.39 2.13 1.35 2.78

SIBOs

SL_SMOTE 7.54 10.46 10.50 10.50 10.50 7.37 10.46 10.50 10.50 10.50
LN_SMOTE 5.00 5.35 4.91 5.26 5.13 4.48 5.30 5.00 5.70 5.00

SOI_CJ 7.54 6.74 8.74 8.74 8.74 4.74 3.61 2.91 2.83 2.87
km_SMOTE 2.76 2.63 4.70 6.61 2.57 2.70 2.53 4.87 6.39 2.61

BIBO - 1.83 3.65 2.83 2.70 3.09 1.96 6.48 8.70 8.74 8.74

Note: The values in bold indicate the best ranking.

6.3. Comparative Results of Computational Complexity

In this paper, the test PC is equipped with an Intel® CoreTM i7-10700 CPU @ 2.90 GHz
and 32 GB RAM. The operation system is Ubuntu 20.04.2 LTS. A total of 23 datasets were
used to perform comparisons of computational complexity between the proposed BIBO
and nine algorithms. We sample 80 percent of data in each dataset to run 50 experiments.
The experiments are implemented under above-mentioned environment with Python 3.8.10.
The averages of computational time of the algorithms can be obtained as shown in Table 8.
The SOI_CJ algorithm has the longest running time among them because it performs more
computation on clustering in one big dataset, namely Swarm Behaviour Aligned, as shown
in Table 5. The BIBO algorithm outperforms those of five algorithms on computational time.
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Table 8. The comparison of computational complexity.

Oversamplers SMOTE B1_SMOTE B2_SMOTE ADASYN MWMOTE

computational time (s) 0.085 0.353 0.355 0.371 3.025

Oversamplers SL_SMOTE LN_SMOTE SOI_CJ km_SMOTE BIBO

computational time (s) 0.899 2.002 50.090 4.076 0.689

6.4. An Example of Using the Proposed BIBO Method

In this section, we random draw 80 percent of data from ecoli-0_vs_1 dataset as an
example to explain the proposed BIBO method in details. The data is set as a training
dataset listed in.

The implementation procedure of the BIBO method is explained in the following:

Step 1. The training dataset has 115 majority class examples (Positive) and 61 minority class
examples (Negative) as shown in Table 9.

Table 9. The training dataset.

NO. Mcg Gvh Lip Chg Aac Alm1 Alm2 Class

1 0.23 0.48 0.48 0.50 0.59 0.88 0.89 Negative
2 0.56 0.40 0.48 0.50 0.49 0.37 0.46 Positive

. . . . . . . . . . . . . . . . . . . . . . . . . . .
175 0.24 0.41 0.48 0.50 0.49 0.23 0.34 Positive
176 0.20 0.44 0.48 0.50 0.46 0.51 0.57 Positive

Step 2. Set K = 10 and k = 10 to compute values of BIW and r as shown in Table 2. We briefly
listed the values of BIW(pp), BIW(p), and r in Table 10, respectively.

Table 10. Synthetic example generation.

No. BIW(pp) BIW(p) r Synthetic Examples

1 11.053 11.458 0.982 [0.50, 0.37, . . . , 0.69]
2 16.335 9.340 0.272 [0.00, 0.51, . . . , 0.44]

. . . . . . . . . . . . . . .
53 9.503 10.345 0.958 [0.12, 0.67, . . . , 0.63]
54 5.326 9.503 0.718 [0.33, 0.37, . . . , 0.65]

Step 3. Generate synthetic minority class examples as shown in Table 10.
Step 4. Stop the steps 1–3 when the number of training samples is twice of the number of
majority class samples.
Step 5. Add generated synthetic examples into the original dataset to build up a balanced
training dataset.

7. Conclusions

This paper defined the information weight (IW) between two points by using the
reciprocal of a natural exponential function with the Euclidean distance as its index, where
the total IWs of the minority (or majority) class examples in one’s kNNs is the safe (or
danger) information weight (SIW, or DIW) in the example. Then, examples having larger
SIWs (or DIWs) can be consider as safe (or danger). The comparison experiment proved
that SIBOs generating synthetic samples near safe areas improves the performance of spec
and preP and that DIBOs generating synthetic samples near dangerous areas can improve
the performance of rec and preN .

In the proposed oversampler (BIBO), the product of SIW and DIW is defined as the
boundary information weight (BIW), where synthetic samples are generated near examples
with larger BIWs. This indicates that the examples with both large SIWs and large DIWs
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are more likely to be decision points and that synthetic samples should be generated near
them. The comparison experiment proved that BIBO has the advantages of both SIBOs
and DIBOs. The performance verification experiment confirmed again that BIBO is better
approach on the whole for handling imbalanced data learning problems. However, BIBO
did not have the best performance in all cases. A more customized BIBO on different
datasets or on different classifiers can be proposed in the future. In our future research, one
can use other real datasets downloaded from UCI machine learning repository to verify the
effectiveness of the customized BIBO. Another direction is to undertake verification using
popular artificial neural network as learning models.
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